
6.972: Game Theory March 31, 2005 

Lecture 15 

1 Agenda 

In this lecture, we discuss: 

Nash bargaining solution. • 

Relation of axiomatic and strategic models. • 

2 Rubinstein’s Model 

As we’ve seen last class, the Rubinstein bargaining model allows players to offer counter­
proposals indefinitely, and it assumes impatient players with discount rates δ1, δ2 ∈ (0, 1). 

The following is an SPE for this game: 

Player 1 proposes x• ∗.1and accepts offer if, and only if, ∗ ≥y y y1 

Player 2 proposes y• ∗.2and accepts offer if, and only if, ∗ ≥x x x2 

∗
1 

1− δ2 
x = (1)

1− δ1δ2 

δ1(1 − δ2)= (2)∗
1y


∗
2 

1− δ1δ2 

δ2(1 − δ1) 
x = (3)

1− δ1δ2 

1− δ1 =
1− δ1δ2 

(4)∗
2y


Clearly, an agreement is reached immediately for any values of δ1 and δ2. 
Now suppose δ1 = δ2: 

1 δIf 1 moves first, the division will be ( 1+δ , 1+δ ).• 

δ 1If 2 moves first, the division will be ( 1+δ , 1+δ ).• 

The first mover’s advantage is clearly related to the impatience of the players (δ): 

1If δ → 1, the FMA disappears and the outcome tends to (1 
2 , 2).• 
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If δ → 0, the FMA dominates and the outcome tends to (1, 0).
•


More interestingly, let’s assume the discount factor is derived from some interest rates r1 

and r2. 

δ1 = e−r1Δt (5) 
δ2 = e−r2Δt (6) 

These equations represent a continuous­time approximation of interest rates. It is equiva­
1lent to interest rates for very small periods of time Δt: e−riΔt 

1+riΔt . 

Taking Δt → 0, we get rid of the first mover’s advantage. 

1− δ2 1− e−r2Δt 

lim x∗ = lim = lim = 
r2 (7)1 1− e−(r1+r2)ΔtΔt 0 Δt 0 1− δ1δ2 Δt 0 r1 + r2→ → →

Alternative Bargaining Model: Nash’s Axiomatic Model 

Bargaining problems represent situations in which: 

There is a conflict of interest about agreements. • 

Individuals have the possibility of concluding a mutually beneficial agreement. • 

No agreement may be imposed on any individual without his approval. • 

Strategic / Noncooperative model: Explicit model of the bargaining process (game form). 

Nash’s Model: Abstract yourself from the process of bargaining, details, how to effectively 
bargain. Consider only the set of outcomes / agreements that satisfy ”reasonable” proper­
ties. 

Nash 1953: ”One states as axioms several properties that would seem natural for the so­
lution to have and then one discovers that axioms actually determine the solution uniquely.” 

What are the ”reasonable” axioms ? 

ex: Suppose 2 players must split one unit of a good. 

If no agreement is reached, then neither receives anything. • 

If preferences are identical, then expect each to obtain half. • 

Two desirable properties are efficiency and symmetry of the outcome. 
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What if the preferences are not identical ? 

Consider a more general scenario: 

X: set of possible agreements. 
D: disagreement outcome. 

ex: X = {(x1, x2)|x1 + x2 = 1, xi ≥ 0} , D = (0, 0). 

Each player has preferences (ui) over X ∪ {D}. 

Let the set of possible payoffs be: 

U = {(v1, v2) | u1(x1) = v1, u2(x2) = v2 for some x ∈ X}
d = (u1(D), u2(D)) 

(8) 
(9) 

A bargaining problem is a pair (U, d) where U ⊂ R2 and d ∈ U . 

• U is convex and compact. 

• ∃ v ∈ U s.t. v > d (vi > di ∀i) 

Denote the set of all possible bargaining problems by B. A bargaining solution is a 
function f: B → U . We will study bargaining solutions (f) that satisfy a list of reasonable 
conditions. 
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Axioms:


1 ­ Pareto Efficiency


A bargaining solution f(U,d) is Pareto efficient if there does not exist a (v1, v2) ∈ U s.t. 
v ≥ f(U, d) and vi > fi(U, d) for some i. 

Justification: An inefficient outcome is unlikely, since it leaves space for renegotiation. 

2 ­ Symmetry 

Let (U,d) be such that (v1, v2) ∈ U iff (v2, v1) ∈ U and d1 = d2. Then f1(U, d) = f2(U, d). 

If the players are indistinguishable, the agreement should not discriminate between them. 

3 ­ Invariance to Equivalent Payoff Representations 

Given a bargaining problem (U,d), consider a different bargaining problem (U’,d’) for some 
α > 0, β: 

U � = {(α1v1 + β1, α2v2 + β2) (v1, v2) ∈ U} (10)|
d� = (α1d1 + β1, α2d2 + β2) (11) 

Then, fi(U , d ) = αifi(U, d) + βi. 

The idea of this axiom is that utility functions are only representation of preferences over 
outcomes. A transformation of the utility function that maintains the some ordering over 

15­4




d V1

V2

w

U’ U

4 

preferences (such as a linear transformation) should not alter the outcome of the bargaining 
process. 

4 ­ Independence of Irrelevant Alternatives 

Let (U,d) and (U’d) be two bargaining problems such that U’ ⊆ U. 

If f(U,d) ∈ U’, then f(U’,d) = f(U,d). 

Nash Bargaining solution 

Definition 1 A pair of payoffs (v
ing optimization problem: 

max(v1 − d1)(v2 − d2) 
v1,v2 

s.t (v1, v2) ∈ U 

Denote fN (U, d) the Nash bargaining solution. 

Existence of a solution: U is compact and the objective function is continuous, hence • 
the problem has a solution.


Uniqueness of the solution: The objective function is strictly quasi concave.
• 
Recall that a real function f : S R where S is nonempty convex is quasi concave if → 

) is a Nash bargaining solution if it solves the follow­∗
2

∗, v1
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∀x, y ∈ S, ∀λ ∈ [0, 1]: 

f(λx + (1 − λ)y) ≥ min(f(x), f(y)) 

Another characterization is that the level sets of f are convex {x ∈ S f(x) ≤ C}.|
f is strictly quasi concave if the above inequality holds strictly ∀λ ∈ (0, 1). 
Here the level sets of the objective function are hyperbolic. 

Property 1 Nash bargaining solution fN (U, d) is the only solution satisfying the 4 axioms. 

Proof: The proof has 2 steps: first we prove that Nash bargaining solution that satisfies the 
4 axioms; then we prove that if a bargaining solution satisfies the 4 axioms, it is equal to 
fN (U, d). 
Step 1 : 

1. Pareto efficiency:	 the objective function is increasing in v1 and v2. Assume it were 
not Pareto efficient: then there is a v verifying v ≥ fN (U, d) and vi > fN (U, d) for 
some i. Then the objective function evaluated at v is greater than at fN (U, d) since 
it is increasing. This contradict the optimality of fN (U, d). 

1, v
∗2. Symmetry:	 Assume d1 = d2. Let v∗ = (v∗ 2) = fN (U, d) be the Nash bargaining 

solution. Then we verify that (v∗ 1) is also solution. By uniqueness of the solution, 2, v
∗


it holds that v∗ = v∗

2, i.e f1 

N (U, d) = f2 
N (U, d).1 

3. Independence of irrelevant alternatives:	 Let U � ⊆ U . fN (U �, d) is solution to the 
optimization problem with the same objective function as fN (U, d) and a smaller 
feasible set. Hence the objective function value at fN (U, d) is greater than or equal to 
that at fN (U �, d). If fN (U, d) ∈ U �, then the objective function values must be equal, 
i.e fN (U, d) is optimal for U � and by uniqueness of the solution fN (U, d) = fN (U �, d). 

4. Invariance to equivalence payoff representation: f(U , d ) is solution of: 

max(v1 − α1d1 − β1)(v2 − α2d2 − β2) 
v1,v2 

s.t (v1, v2) ∈ U � 

Perform the change of variables v1 = α1v1 + β1 v2 = α2v2 + β2, then it follows that 
fN (U �, d�) = αif

N (U, d) + βi, i = 1, 2.i i 

Step 2 : Let f(U, d) be a bargaining solution satisfying the 4 axioms. 
Prove that f(U, d) = fN (U, d). 

Let z = fN (U, d), and U � = {α�v + β v ∈ U ; α�z + β = (1/2, 1/2)�; α�d + β = (0, 0)�}.•	 |
Since f(U, d) and fN (U, d) both satisfy axiom 3, then f(U, d) = fN (U, d) is equivalent 
to f(U �, 0) = fN (U �, 0) = (1/2, 1/2). Hence it is sufficient to prove that f(U �, 0) = 
(1/2, 1/2). 
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Let us show that there is no v ∈ U � such that v1 + v2 > 1:• 
Assume that there is a v ∈ U � such that v1+v2 > 1. Let t = (1−λ)(1/2, 1/2)+λ(v1, v2) 
for some λ ∈ (0, 1). As U � is convex, t ∈ U �. We can choose λ sufficiently small so 
that t1t2 > 1/4 = fN (U �, 0): this contradicts the optimality of fN (U �, 0). 

Since U � is bounded, we can find a rectangle U �� symmetric w.r.t the line v1 = v2, such • 
that U � ⊆ U �� and (1/2, 1/2) is on the boundary of U ��. 

By axioms 1 and 2, f(U ��, 0) = (1/2, 1/2).• 

By Axiom 4, since U � ⊆ U ��, we have f(U �, 0) = (1/2, 1/2).• 

Example: Dividing a dollar 
X = {(1, x2) x1 ≥ 0, x1 + x2 = 1}, D = (0, 0).

U = {(v1, v2)

|
(v1, v2) = (u1(x1), u2(x2)), (x1, x2) ∈ X}, d = (u1(0), u2(0)). U is convex and
|

compact. (U, d) is a bargaining problem. 

Case 1: u1 = u2 = u: symmetric bargaining problem. Hence fN (U, d) = (1/2, 1/2):• 
the dollar is shared equally. The Nash bargaining problem is solution to the following 
problem: 

max v1(z)v2(1 − z) = u(z)u(1 − z)
0≤z≤1 

We denote its solution zu: it verifies the first order optimality conditions: u�(z)u(1 −
u�(1−zu)z) = u(z)u�(1 − z) i.e u�(zu) = u(1−zu) . u(zu) 

Case 2: player 2 is more risk averse: v1 = u, v2 = h u, where h : R R increasing• ◦ →
concave function with h(0) = 0. The Nash bargaining problem is solution to the 
following problem: 

max v1(z)v2(1 − z) = u(z)h(u(1 − z))
0≤z≤1 

We denote its solution zv : it verifies the first order optimality conditions: u�(z)h(u(1−
h�(u(1−zv ))u�(1−zv )z)) = u(z)h�(u(1 − z))u�(1 − z) i.e u�(zv ) = u(1−zv ) 

. u(zv ) 

Since h is concave increasing and h(0) = 0, we have for t ≥ 0: h�(t) ≤ h(t) . Hencet 
u�(zv ) u� (1−zv ) 
u(zv ) 

≤ u(1−zv ) 
. Hence zu ≤ zv .


Conclusion: player 2 is more risk averse: player 1’s share increases.


Question: Can we modify Rubinstein’s model so that it reaches a Nash bargaining solution? 
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(x1,x2)

Y N O

(delta1 y1,delta2 y2)

Y N

Y N O

((delta1)^2 z1,(delta2)^2 z2)

∗
2 ∗
2 

2 y iff y1 ≥ δ1(1 − d2). 
2), 1− δ1(1 − d2 x iff x2 ≥ d2. 

xN : 
x xN = x≥0(x−d1)(1− 

x− d
2) 

1

x
2

Y N
alpha

1−alpha

y
2

1
Y N

(d1,d2)(x1,x2)

(y1,y2) alpha

1−alpha

(d1,d2)

z

Y N
(z1,z2)

1

2

Options Model 

When responding to an offer, player 2 may pursue an outside option. 

then the strategy pair of Rubinstein’s bargaining model is the unique SPE. 
then the game has a unique SPE in which: 

) and accepts a proposition 
)) and accepts a proposition 

Intuition: Player 2’s outside option has value only if it is worth more than her equilibrium 
payoff in the game without the option, otherwise, the outside option has no effect. 
Compare with the Nash bargaining solution 

. The Nash bargaining solution is arg max

Special Case of disagreement outcome: (0, d

bargaining with risk of breakdown 

Claim: 
If d2 ≤ x
If d2 > x
Player 1 proposes (1 − d
Player 2 proposes (δ1(1 − d

2, d

Let u1(x) = x and u2(x) = 
2) = 1/2 + 1/2(d1 − d2). 

If d : no effect.
∗
2∗
2

2 < x
If d : then
 = 1− d∗

12 > x x 2. 
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There is a probability α of breaking down. Assume δ → 1: the possibility of a breakdown

puts pressure to reach an agreement.

The game has a unique SPE:

1 proposes ˆ
x and accepts an offer y iff y1 ≥ ŷ1. 
2 proposes ŷ and accepts an offer x iff x1 ≥ x̂1. 

1− d2 + (1 − α)d1
x̂1 = 

2− α 
(1 − α)(1 − d2) + d1 

ŷ1 = 
2− α 

Let α 0: then ˆ→ x1 → 1/2 + 1/2(d1 − d2): this is the Nash bargaining solution: For risk 
averse players, the game’s outcome is the NBS. 

7 Annex 1: Solution of outside options model: 

Suppose there is an equilibrium in which an offer is accepted: 
Player 1 accepts iff δ1y1 ≥ δ2 

1z1 i.e y1 ≥ δ1z1. 
Player 2’s strategy is: (δ1z1, 1− δ1z1). 
Player 2 accepts iff x2 ≥ max(d2, δ2(1 − δ1z1)). 
1’s optimal offer is : x2 = max(d2, δ2(1 − δ1z1)). 
Assume d2 ≤ δ2(1 − δ1z1): then z1 = 1− δ2(1 − δ1z1). 
Hence z1 = 1−δ2 = x∗1−δ1δ2 1. 

δ2(1−δ1)1−δ2Then replacing z1 by its value: d2 ≤ δ2(1 − δ1 1−δ1δ2 
) = = x∗


If d2 ≤ x∗ then 1 offers x∗ and accepts y1 ≥ y∗
1−δ1δ2 2. 

2.
1; 2 offers y∗ and accepts x2 ≥ x∗2 

If d2 > x∗2, then 1 offers (1 − d2, d2) and accepts y1 ≥ δ1(1 − d2); 2 offers (δ1(1 − d2), 1 −
δ1(1 − d2)) and accepts x2 ≥ d2. 

8 Annex 2: Solution of risk of breakdown model: 

1 accepts iff y1 ≥ (1 − α)z1 + αd1


2’s optimal strategy is ((1 − α)z1 + αd1, 1− ((1 − α)z1 + αd1)).

2 accepts iff x2 ≥ αd2 + (1 − α)(1 − ((1 − α)z1 + αd1))

1 offers z1 = 1− αd2 − (1 − α)(1 − ((1 − α)z1 + αd1).


ˆSolving for z1: let z1 = x1: 

1− d2 + (1 − α)d1
x̂1 = 

2− α 
(1 − α)(1 − d2) + d1 

ŷ1 = 
2− α 
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