6.972: Game Theory February 24, 2005

Lecture 7: Supermodular games

Lecturer: Asu Ozdaglar

1 Agenda

In this lecture, we discuss:
e Existence of Nash equilibrium for continuous strategy spaces (Glicksberg’s theorem).

e Supermodular Games.

2 Existence of Nash Equilibria for continuous strategy spaces

In last lecture, we proved the existence of a pure strategy NE for continuous strategy spaces (Debreu,
Glicksberg, Fan Theorem) under assumptions of:

e nonempty, convex, compact strategy spaces S;.
e payoff functions u;(s) continuous in s.
e u;(s;,5_;) concave in s; (quasi-concave is sufficient).

Question: What if we relax the quasi concavity assumption? Think about approximating finite
strategy spaces by continuous spaces: the corresponding payoff functions will not be quasi concave.
We use mixed strategies to obtain convex-valued best responses:

Theorem 1 (Glicksberg) Consider a strategic form game < I,(S;),(u;) >. If the utility func-
tions u;(s) are continuous in s, then there exists a mized strategy Nash Equilibrium.

But continuity of the payoffs is still a strong assumption. For discontinuous payoffs, use Das-
gupta and Maskin Theorem.
Examples: Hotelling competition, Section 12.2 of Fudenberg and Tirole.

3 Supermodular Games

Idea: Supermodular games are characterized by strategic complementarities. When a player takes
a higher action according to a defined order, the other is better off if he also takes a higher action;
we have increasing best responses.

Motivation:

e It ensures existence of a pure strategy NE without requiring quasi concavity of payoffs.

e The equilibrium set has an order structure with extremal elements, for which there exists a
simple algorithm.

e It behaves well under various learning rules.
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e Relation to global games and equilibrium selection.
Literature:
e Topkis (1979): Lattice programming and monotonicity of optimal solutions.
e Vives (1990).
e Milgram and Roberts (1990).
e Vives (2002, 2001: Oligopoly pricing).

3.1 Monotonicity of Optimal Solutions
Consider z(t) = arg maxze x f(z,t). When is z(¢) increasing in t7

Definition 1 (Order Structure) We consider a finite dimensional Euclidian space RX with or-
der > defined as : x>y o xp >y Ve=1,..., K.

Note, this relation defines a partial order on the space.

Definition 2 (Definition) Let T' be a partially ordered set w.r.t order structure > and X C R.
A function f: X x T — R has increasing differences in (z,t) if:

Vo' >z, V' >t
f(.l‘,,t,) - f(.’I,‘,tl) > f(xlat) - f(xat)
i.e f(2',t) — f(z,t) is increasing in t and symmetrically f(z,t') — f(z,t) is increasing in z.

Lemma 1 For a function f € C? (twice continuously differentiable), f has increasing differences

iff:
, of iy s 9f

>t = &E(a:,t)z 8x(:v,t)

& 82f( t)>0Vze X, VteT

oot ) = TR '

3.1.1 Examples

Wireless uplink power control
References

e Saraydar, Mandayan, Goodman (2001): Efficiency power control via pricing in wireless data
networks.

e Altman (2003): Supermodular games and power control in wireless networks.

Characteristics of uplink power control problem in a single cell CDMA wireless data
system. The resource to allocate is the power. There is interference between users. In the classical
power control for voice, decisions are done centrally by the base station.

In a CDMA wireless data system, all users access the channel using orthogonal codes at the same
time, utilizing the entire available frequency spectrum (unlike TDMA, FDMA). The new paradigm
is that users are assigned utilities as a function of the power they consume and the SIR (Signal-to-
interference Ratio) they attain; each user competes selfishly for power.
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Voice traffic as a function of the SIR is a step function with support [ymin; 00).

The data utility function u(vy) is a function of the SIR 7.

p; denotes the power (e.g battery life on a portable device).

Matched filter receiver:

i = hipi
;=
> jzihipj +0?

where h; is the channel gain from mobile to base, and o2 is the noise variance.

e u;(pi,p—i) = f(v:) — ep; with f(.) increasing not necessarily concave.

We need to check whether the function u; is supermodular, the partial derivatives are:

Oui g (i
Ap; (pisp—i) = f (’Yz)pi c

S, O Vih; " '
Vi #i 8pi3pj (pzap—z) = pghi (_')’zf ('Yz) + f (71))

The elasticity is less than 1, i.e 7}{,’2%) < 1, or =i f"(v) + f'(:) > 0. Hence the cross partial

derivatives are positive, and u; is supermodular.
One examples of such a function is f(y) = y'T® with a < 1; the elasticity is a < 1.

Oligopoly Models Example: Cournot competition in a duopoly:

2 firms choose the quantity they produce ¢; € [0; 00).

The inverse demand function is: p(gi,q;) € C?% it is a function of Q = ¢; + g;.

The payoff functions of the firms are: w;(g;, q;) = ¢ip(q + ¢;) — c(qi)-

The marginal revenue is: ‘g—gf(qi, q;) = plai, qj) + q,-% =p+ ¢p: it is decreasing in g;.

8%y,
Hence 5,54 = p' + qip” <0.
Let us consider the transformed game: s; = g1, so = —qo: it is easy to see that this game is
supermodular.

Monotonicity of optimal solutions (continued). Consider z(t) = arg max,cx f(z,t). When
is z(t) increasing in t?

Theorem 2 (Topkis) Assume that f : X XxT — R where X C R is compact and T is a partially
ordered set.

Also assume f(.,t) to be upper semi-continuous in x Vt € T

Define z(t) = arg maxgex f(z,t). Then we have:

1. Vt € T, z(t) # 0 and has a greatest and least element denoted respectively Z(t) and x(t).
2. Z(t) and z(t) are increasing in t.

Proof:
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Compactness (i.e closeness and boundedness in finite dimension) and upper semi-continuity
of f imply the existence of a maximum. Hence z(t) is nonempty V¢:

Let {z*} be a sequence of points in z(t): since X is compact, there is a limit point Z:
f(z*.t) > f(z,t) Vz € X.

By us.c of f, f(Z,t) > limsupy_,, f(z¥,t) > f(z,t) Vz € X.

Hence z belongs to z(t).

z(t) is therefore closed, and it is bounded since contained in X, i.e it is compact. It therefore
has a greatest and least element.

. Let ¢ > t. Let z € z(t) and 2’ = Z(t'); then we have:

f(.’E,t) - f(min(wawl)at) >0

f(ma'x(waxl)atl) - f(wlatl) >0

By increasing differences of f, we get:

f(ma‘x(waxl)atl) - f(wlatl) >0

Thus max(z, z') maximizes f(.,t'), i.e max(z, ') belongs to z(¢'). As z' is the greatest element
of the set z(t'), we conclude that max(z,z") < z', thus z < z'.

.. if f has increasing differences, the set of maxima z(t) is increasing in the sense that both
Z(t) and x(¢) are increasing.

Supermodular Games

Definition 3 (Supermodular Game) < Z,(S;), (u;) > is a supermodular game if for all i:

1.
2.
3.

S; is a compact subset of R (S; is a sublattice of R™ );
Uu; 18 upper semi continuous in S;, continuous in S—;;

u; has increasing differences in (s;,s—;) (u; supermodular in (s;,s—;))

Definition 4 (Upper semi-continuity) A function f is said to be upper semi-continuous at x

—

V{z*} converging to x, we have: f(z) > limsupy_,., f(z*)

Applying Topkis’s theorem, the best responses are increasing in actions of others.

Corollary 1 Assume < Z,(S;), (u;) > is a supermodular game.
Let Bi(s—;) = argmaxg,cs; ui(Si,s—;). Then:

B,-(s_

;) has a greatest and least element, denoted B;(s—;) and B;(s_;);

Bi(s_;) and B;(s_;) are increasing in s_;.

Theorem 3 Let < Z,(S;), (ui) > be a supermodular game.

Then the set of strategies that survive Iterated Strict Dominance (ISD) (iterated elimination of
strictly dominated strategies) has greatest and least elements 3 and s, which are pure strategy Nash
Equilibria.

Corollary 2 1. Pure strategy NE exist;

2.

The largest and smallest strategies are compatible with ISD, rationalizability, CE, NE are the
same;
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3. If a supermodular game has a unique NE, it is dominance solvable (ISD).

Proof: Idea: iterate best response mapping.

e S%= 3, denote s° = (s9,...,5Y) the largest element of S.
Let s} = B;(s%,) and S} = {s; € S? : 5; < s}
Claim: Any s; > s} i.e any s; ¢ S} is dominated by s,.
By increasing differences, Vs_;:
ui(8iy ) — ui(sh, s—i) < ui(siys®;) —ui(s}, s%;) < 0, the last inequality stemming from the
fact that s; is not a best response to s(li.
st <) = sl<sd
iterate k: s¥ = B;(s"71); Sk = {s; € SF71 . 5; < sk}
Assume s* < s¥=1. Then :
41 = By(sk,) < By(sh7)) = of
{sk} is a decreasing sequence, bounded below, hence it has a limit denoted 5.
Only the strategies s; < §; are undominated.

e Similarly, start with s® = (s,...,s%) the smallest element in S and identify s° with s.

e Show that 5 and s are NE:
Vi Vs;: ui(sfﬂ,s’ii) > (s, 8*,).
By u.s.c of u; in s; and continuity of w; in s_;, taking the limit as k — oo yields:
Ui(gi; S:i) > ui(si, S:i).
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