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Abstract: Gödel claimed that Zermelo-Fraenkel set theory is ‘what becomes of the theory of
types if certain superfluous restrictions are removed’. The aim of this paper is to develop
a clearer understanding of Gödel’s remark, and of the surrounding philosophical terrain. In
connection with this, we discuss some technical issues concerning infinitary type theories and
the programme of developing the semantics for higher-order languages in other higher-order
languages.

1 Introduction

This remarkable passage was written by Kurt Gödel in 1933:

only one solution [to the paradoxes] has been found, although more then 30 years

have elapsed since the discovery of the paradoxes. This solution consists in the

theory of types. (I mean the simple theory of types [. . . ].)

It may seem as if another solution were afforded by the system of axioms for the

theory of aggregates, as presented by Zermelo, Fraenkel and von Neumann; but

it turns out that this system is nothing else but a natural generalization of the

theory of types, or rather, it is what becomes of the theory of types if certain

superfluous restrictions are removed. (Gödel 1933, pp. 45-6)

The passage is remarkable for several reasons. One is of a technical nature. The theory of

types is stratified in a way that standard set theory is not. Whereas the language of type-

theory contains variables of many different sorts and imposes significant constraints on the

ways in which these variables can be combined, the language of set-theory contains only one

sort of variable, any instance of which is allowed to fill the argument-places of any predicate

in the language. So one might have thought that much more than the removal of ‘superfluous
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restrictions’ would be required to get from the theory of simple types to a system like Zermelo-

Fraenkel set theory.

Other reasons are more philosophical. Type theory is a generalization of higher-order

logic. And higher-order logic is widely regarded as profoundly different from set theory in

motivation, interpretation, and philosophical status. For instance, a great deal of attention

has been given to the view that second-order languages—languages consisting of the first two

levels of the theory of simple types—are ‘ontologically innocent’ in a way that the language

of set-theory is not.1 According to this line of thought, all it takes for a second-order sentence

such as ‘∃X(X(Susan))’ to be true is for Susan to exist. In contrast, sets must exist in

order for the corresponding set-theoretic sentence, ‘∃x(Susan ∈ x)’, to be true. So any

formal similarities between set-theory and type-theory would belie a crucial difference in

their subject-matter. The language of set-theory is about a particular kind of object—sets.

The language of type-theory is not: it increases our expressive resources without imposing

demands on our ontology. In short, where set theory describes an ‘ontological hierarchy’

of independently existing sets, higher-order logic—and, more generally, type theory—makes

available an ‘ideological hierarchy’ of stronger and stronger expressive resources.2

The widely shared assumption that these two hierarchies are profoundly different plays

a key role in many popular applications of higher-order logic. Ontological applications have

already been mentioned. Other examples include uses of higher-order logic in semantics

(especially to defend the possibility of absolutely general quantification)3 and philosophy of

mathematics (where it is used to defend the categoricity of important mathematical struc-

tures).4 Gödel’s claim that set theory is ‘nothing else but a natural generalization of the

theory of types’ would appear to be a direct challenge to the assumption that the two hierar-

chies are importantly different, and therefore to the many applications of higher-order logic

that depend on this assumption.
1See for instance Boolos 1984, Rayo and Yablo 2001, and Wright 2007.
2A related point is that whereas the set-theoretic membership relation is typically regarded as a non-logical

predicate, the corresponding type-theoretic relation is typically regarded as a logical predicate.
3See Boolos 1985, Rayo and Uzquiano 1999, and Williamson 2003.
4See for instance Shapiro 2000.
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The aim of this paper is to develop a clearer understanding of Gödel’s remark and the

surrounding philosophical terrain. After reconstructing and defending the remark, we will

discuss the claim that there is no significant philosophical difference between the ‘ontological

hierarchy’ of sets and the ‘ideological hierarchy’ of type theory, and argue that there is much

to be said on behalf of this claim.5 We will also discuss some technical issues concerning

infinitary type theories, and generalize the programme of developing the semantics for higher-

order languages in other higher-order languages.6

2 Gödel’s ‘superfluous restrictions’

As we have seen, Gödel saw Zermelo-Fraenkel set theory as resulting from the removal of

certain ‘superfluous restrictions’ from the theory of simple types. What, exactly, are these

restrictions? Gödel lists three:

(i) In Russell’s theory the process of going over to the next higher type—for instance, from

classes of individuals to classes of classes of individuals—can be repeated only a finite

number of times; i.e. to each class occurring in the system of Principia Mathematica,

there is assigned a finite number n, indicating in how many steps the class under con-

sideration can be reached, starting from the level of individuals. This number n can

be arbitrarily large, but it must be finite. Now there is no reason whatever to stop the

process of formation of types at this stage. You can, e.g., form the class of all classes

of finite type, which, of course, is not of finite type, but may be called of type ω. It is

clear how this process can be continued indefinitely. (Gödel 1933, pp. 46-47)

(ii) Only the so-called pure types have been admitted [. . . ], i.e. no class can be formed

which contains classes of different type among its elements. (ibid., p. 46)

(iii) Propositions of the form a ∈ b are regarded as meaningless (i.e. neither true nor false)

if a and b are not of the appropriate types—if, for instance, a is of higher type than b.
5This will make good on suggestions made in Linnebo 2003, pp. 87-88 and Rayo 2006, p. 248.
6See the references in foonote 3.
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This complication can be removed simply by stating that a ∈ b is to be false if a and b

are not of the appropriate types. (ibid., p. 46)

This calls for explanation. Let us begin with the notion of type theory. Ordinary first-

order logic contains quantifiers that range over individuals. But logicians and philosophers

have also been interested in systems which extend the language of first-order logic by adding

new kinds of variables and quantifiers. The most familiar such system is second-order logic,

which adds second-order variables (i.e. variables taking the position of first-order predicates)

and second-order quantifiers (i.e. quantifiers binding such variables).7 But instead of adding

just one set of variables and quantifiers, one could add a whole hierarchy.

The best known language of this sort is the language of the simple theory of types, where

each variable is indexed with a natural number known as its type (‘x1’ and ‘y17’, for instance,

are variables of type 1 and 17, respectively). On the classical interpretation of the language,

variables of type 0 range over individuals; variables of type 1 range over classes of individuals;

variables of type 2 over classes of classes of individuals; and so on. (This is how Gödel expresses

himself in the passage that we quoted at the beginning of this article.) But today the most

popular interpretations are based on a hierarchy of concepts, or on a hierarchy of pluralities,

super-pluralities and beyond. There are some important differences between the axiomatic

theories that are appropriate for these two interpretations; for instance, there are empty

concepts but no empty pluralities. It will be useful to work with the conceptual interpretation

in what follows, but we offer a discussion of the plural interpretation in appendix A. We will let

the atomic formulas of type theory be of the form ‘s(t)’, rather than use the notation ‘t ∈ s’,

which we will reserve for set theory. For reasons of simplicity, we will not consider types

for functions or polyadic relations. Such types would complicate matters greatly but would

not substantially change the philosophical claims that follow (with one possible exception

explicitly noted).

Although the language of the simple theory of types has only variables of finite types,

more radical extensions of classical first-order languages are possible. In particular, we could
7Although second-order languages are extensions of first-order languages, the historical development was

actually the reverse: the former languages were formulated and investigated before the latter. See Shapiro
2000, Ch. 7.
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allow variables whose type-indices are not just natural numbers but arbitrary ordinals. (Of

course, this requires working against the background of ordinary set theory.) We say that a

language is of order α when all of its variables have type-indices below α. This is a natural

generalization of the familiar notion of a nth-order language, for finite n. For instance, a

second-order language has variables of type 0, which range over individuals, and variables

with type 1, which range over first-order concepts (or pluralities, or classes of individuals).

What is often known as a ‘second-order variable’ is thus regarded as a variable of type 1, and

likewise for variables of greater finite order. The language of the simple theory of types is a

language of order ω, as it has variables of all types below ω.

Type-theoretic languages may also contain constants. Specifically, a language of order α

may contain constants of type less than or equal to α. This too is a natural generalization

of familiar notions. For instance, a second-order language may contain constants of type 2,

which are applicable to ‘second-order variables’ of type 1.

Next we explain the notion of ‘cumulativity’. A typed language is said to be cumulative

when for any two terms s and t the string s(t) is regarded as a well-formed formula just

in case the type of s is strictly greater than the type of t. A typed language is said to be

non-cumulative when the stricter requirement is imposed that the type of s must be precisely

one greater than the type of t. (The languages of ordinary higher-order logic and simple

type theory are non-cumulative languages in this sense.) A cumulative typed language thus

counts more predications as well-formed than a non-cumulative typed language. But even a

cumulative typed language deems many predications ill-formed: those where the type of the

subject term is equal to or greater than that of the predicate term.

On the intended interpretation of a cumulative language, the values of a variable of limit

type will consist of the ‘union’ of the values of variables of all preceding levels, and the values

of a variable of successor type will consist of the ‘union’ of the values of variables of the

proceeding level plus all ‘collections’ of values of variables of that level.

Removal of Gödel’s three ‘superfluous restrictions’ from simple type theory amounts to

the implementation of the following three changes:

(i) Allow infinite types.
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(ii) Allow the type structure to be cumulative.

(iii) Allow a type-unrestricted notion of predication.

In the next three sections we will consider some arguments for making these changes. Al-

though we believe our arguments to be consonant with Gödel’s position, they go well beyond

his brief discussion of the issue. Our goal is not an exegetical one. We wish to develop an

interesting argument which is broadly in the spirit of Gödel’s proposal.

3 Step one: Admitting infinite types

Why should we admit infinite types?

Gödel’s initial answer seems to be simply: ‘Because we can.’ It makes perfect mathemat-

ical sense to admit infinite types. So what is to prevent us from doing so?8

We are sympathetic towards this simple answer. But we would like to explore an additional

argument for thinking that one ought to admit infinite types. The argument relies on a

controversial assumption:

Absolute Generality

One’s first-order quantifiers can meaningfully be taken to range over absolutely

all objects.

The reasons Absolute Generality is controversial are tied up in interesting ways with

the question of whether there is a significant philosophical difference between type-theory

and set-theory. Philosophers tend to fall into two main groups. Members of the first group

accept Absolute Generality, and use it to argue that there is a significant philosophi-

cal divide between the ‘ideological hierarchy’ of higher-order languages and the ‘ontological

hierarchy’ of set-theory. (They argue, for example, that whereas ‘∃X∀y(Xy)’ is true when

the range of the type-0 variables consists of absolutely every individual, the corresponding
8Other logicians too were motivated by this line of thought. See for instance, Hilbert 1926, p. 184 (p. 387 of

translation), Carnap 1934, p. 186, and Tarski 1935, Section 7. Inspired by Hilbert, Gödel suggests introducing
infinite types already in his famous incompleteness paper; see Gödel 1931, fn. 48a. Moreover, according to
Gödel 1944, pp. 464, the constructible hierarchy L can be regarded as an extension of the orders of Russell’s
ramified theory of type into the transfinite.
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set-theoretic claim, ‘∃x∀y(y ∈ x)’, must be false, on pain of paradox.) By contrast, members

of the second group are skeptical of Absolute Generality but tend to believe that there

is no significant philosophical divide between the two hierarchies—the only real difference

between type-theory and set theory has to do with differences in syntactic restrictions on the

corresponding languages.

If you are a member of the second group, you are unlikely to be moved by the main

argument in this section. But you will also be less in need of an argument. For you will think

there is no philosophical obstacle to extending type-theory into the transfinite: transfinite-type

theory is a variant of set-theory with a particularly restrictive notation. So the only potential

obstacle to transfinite type-theory arises from questions about its technical viability.

If you are a member of the first group, you will think that extending type-theory into the

transfinite is philosophically substantial view. For you will think that each additional stage

in the type-theoretic hierarchy presupposes an essentially new kind of expressive resource.

But you will also believe in Absolute Generality, so you will take the argument in this

section to have force.9

Now for the argument. It will be useful to start by presenting a rough version of the main

idea. Let a generalized semantic theory for a given language be a theory of all possible inter-

pretations the language might take. If one were to assume that every possible interpretation of

the language in question is captured by some (set-thereotic) model of the language, then one

would see no difference between a generalized semantic theory for the language and a model

theory for the language. But if you accept Absolute Generality, you will think that a

language can admit of interpretations that don’t correspond to any model in the set-theoretic

sense. The standard interpretation of a language with quantifiers ranging over everything

there is, for example, requires a domain consisting of everything there is. But there is no

universal set. So there is no set-theoretic model capturing the standard interpretation of this

language.
9The argument also presupposes an unrestricted comprehension scheme for each type; see Section 6 and

appendix B for details. Although this assumption is widely regarded as uncontroversial, it has been challenged
in Linnebo 2010. The ensuing dialectical situation is much like the one just discussed. Since the challenge is
based on assumptions that reduce the divide between the two hierarchies, anyone sympathetic to the challenge
will have independent reasons for believing that ascent in the ideological hierarchy is possible.
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More generally, by assuming Absolute Generality one can prove that it is impossi-

ble to state a generalized semantic theory for an nth-order language in another nth-order

language. It is, however, possible to state a generalized semantic theory for an nth-order

language in an (n + 1)th order language.10 So—unless one is prepared to countenance a

language for which generalized semantic theorizing is impossible—one has a motivation for

using languages of order n+ 1 in one’s theorizing whenever one is prepared to use languages

of order n. Since we are certainly prepared to use first-order languages in our theorizing, it

follows that we have a motivation for using languages of every finite type.

But if one is indeed prepared to theorize using languages of order n for each natural

number n, there is no obvious reason for questioning the legitimacy of ω-order languages

(i.e. a languages with variables of every finite type). For such languages would be made up

entirely from vocabulary that had been previously deemed legitimate. And once one has an

ω-level language there is a reason to climb further. For one can prove that it is impossible

to state a generalized semantic theory for an ω-order language in another ω-order language.

It is, however, possible to state a generalized semantic theory for an ω-order language in a

language of even higher order. So—unless one is prepared to countenance a language for

which generalized semantic theorizing is impossible—one has a motivation to ascend even

further.

The argument can be generalized—provided we are willing to work against the background

of ordinary ZF set theory or some other theory of ordinals. For we can then use the following

two (plausible but non-trivial) principles to motivate the legitimacy of languages of type α

for α an arbitrary ordinal:

• The Principle of Semantic Optimism

Given an arbitrary language, it should be possible to articulate a generalized semantic

theory for that language.

• The Principle of Union

For λ a limit ordinal, suppose that one is prepared to countenance languages of order β
10For proofs and details, see Rayo 2006.
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for every β < λ. Then one should also countenance languages of order λ (i.e. languages

containing variables of type β, for every β < λ), on the grounds that they would be

made up entirely of vocabulary that had been previously deemed legitimate.

The argument runs as follows. Assuming Absolute Generality, it is impossible to state

a generalized semantic theory for a β-order language in another β-order language. It is,

however, possible to do so in a (β + 1)-order language (or a (β + 2)-order language if β

is a limit ordinal). So the Principle of Semantic Optimism motivates ascent from β-order

languages to languages of higher order, for arbitrary β. Moreover, the Principle of Union

motivates ascent to λ-order languages, for λ an arbitrary limit ordinal, whenever ascent to

β-order languages, for β < λ, has been motivated. But one should certainly admit the use of

first-order languages in one’s theorizing. So, by transfinite induction, one should admit use

of α-level languages in one’s theorizing, for arbitrary α. QED

Of course, one might attempt to challenge the premises on which the argument is based.

In particular, we have not provided any systematic defense of the Principle of Semantic

Optimism. In the absence of a more systematic defense of the premises, we cannot pretend

to have provided an apodictic route from Absolute Generality to the the legitimacy of

languages of type α for α an arbitrary ordinal. However, we maintain that the premises

are plausible and that our argument thus succeeds in showing that friends of Absolute

Generality are naturally led to the conclusion that there are at least as many types as

ordinals.

It is also worth noting that the argument makes essential use of an ‘external’ theory of

ordinals, which are used as type superscripts on variables. To emphasize the point, it is useful

to consider a skeptic about set theory, who is unwilling to talk about ordinals. Such a skeptic

might accept versions of the Principle of Semantic Optimism and the Principle of Union by

saying ‘for any language, there is a language of higher type’, and ‘for any determinate collec-

tion of languages, one could in principle construct a ‘union’ language which pools together all

their resources’. But when the principles are stated in this way, there is no guarantee that the

skeptic is indeed prepared to go ‘all the way up’, and end up with a hierarchy of languages

isomorphic to the hierarchy of ordinals. For any limit ordinal λ, it is consistent with a reading
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of what the skeptic has said that her principles yield only languages of level β for β < λ.

A final point worth emphasizing is the huge idealization that languages of infinite order

involve. Such languages are of course very different from the sorts of languages that humans

are actually capable of using.11 Our project is to use the resources of set theory to investigate

possible expressive resources, regardless of whether these expressive resources can be mastered

by human beings.

We present proofs of the main technical results underlying the argument in appendix B.

One result is negative and says that, for any ordinal β, it is impossible to give a generalized

semantic theory for a β-order language in another β-order language. Another result is positive

and says that, for any successor ordinal β, it is possible to give a generalized semantic theory

for β-order languages in (β + 1)-order languages.

It is interesting to note that Tarski makes a claim that is closely related to our positive

result (although concerned with truth simpliciter rather than truth in a model, which is our

current concern):

In fact, the setting up of a correct definition of truth for languages of infinite order

would in principle be possible provided we had at our disposal in the metalanguage

expressions of higher order than all variables of the language investigated. (Tarski

1935, p. 272)

A related claim was made by Gödel in 1933:

For any formal system you can construct a proposition—in fact a proposition

in the arithmetic of integers—which is certainly true if the system is free from

contradiction but cannot be proved in the given system. Now if the system under

consideration (call it S) is based on the theory of types, it turns out that exactly

the next higher type not contained in S is necessary to prove this arithmetic

proposition, i.e. this proposition becomes a provable theorem if you add to the

system S the next higher type and the axioms concerning it.” (Gödel 1933, p. 48)
11A less extreme idealization would be to equip the semanticist with ordinal notations, which can be used

as type indices. (Thanks here to Stewart Shapiro.)
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4 Step two: ‘Going cumulative’

Why ‘go cumulative’? That is, why allow an entity of one type to apply to entities of all

lower types rather than just entities of the immediately preceding type?

Again, Gödel’s initial answer seems to be just ‘Because we can’. Since it makes perfect

mathematical sense to do so, what is to prevent us?

While we are sympathetic to this simple answer, we now explore a more systematic argu-

ment. This argument is based on the observation that it is very difficult not to ‘go cumulative’

once infinite types are allowed, as urged in Step 1. Assume for instance that we want to accept

variables of type ω. To what expressions are these variables to apply? The standard non-

cumulative answer is: to terms of the immediately preceding type. But there is no type which

immediately precedes ω. The only natural response is to allow variables of type ω to apply to

terms of any finite type, in other words, to allow type ω to be cumulative. Analogous consid-

erations support the view that variables of any limit type must be allowed to be cumulative.

But once we allow all variables of limit types to be cumulative, why not allow cumulativity

for variables of successor type as well? This amounts to ‘going completely cumulative’.

Can this argument be resisted? One option is to resist the assumption that there are no

infinite descending chains of types. For if there were such a chain α, α−1, α−2, . . ., this would

allow the type hierarchy to be strictly non-cumulative, with terms of one type applicable to

all and only terms of the immediately preceding type. In fact, type theories with infinite

descending chains of types are consistent provided that the corresponding theories without

such chains of types are consistent.12 But even if consistent, systems with such infinitely

descending chains of types are problematic, since they can be shown to have no standard

models.13 Moreover, systems with infinitely descending chains of types seem poorly motivated.
12Proof sketch. Assume there was a derivation of an inconsistency in the former system. Since this derivation

is finite, it uses only finitely many different types. The derivation can therefore be imitated in the latter system.
See Wang 1952 for discussion of type theories where the types are all integers rather than just the natural
numbers.

13For a model to be ‘standard’, in the relevant sense, is for every collection of entities of a given type
to constitute the sole instances of some entity of the next higher type. That no such model exists can be
verified by using an observation from Yablo 2006. Say that an entity yγ is well-founded iff there is no infinite
descending chain yγ , yγ−1, . . . such that yγ−k(yγ−k−1) for every natural number k. Consider the collection
Wα−k of well-founded entities of level α−k−1. Then we must have Wα−k(Wα−k−1) for each k ∈ ω. But this
yields an infinitely descending chain, which means that the entities Wα−k cannot be well-founded after all.

Why doesn’t this problem render the relevant type theory inconsistent? It turns out that inconsistency is
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While a well-ordered theory of types can be motivated by an ‘iterative conception of types’,

there seems to be no analogous motivation for a theory of non-well-founded types. These

considerations make it reasonable to disallow infinitely descending sequences of types.

In fact, the addition of infinite types all of which are non-cumulative would anyway have

had little theoretical value. Much of the point of infinite types is to have variables capable

of applying directly to all (or at least most) of the preceding types. For instance, we may be

motivated to go to an infinite level in order to develop the semantics of languages of all finite

levels. But this requires expressions of an infinite type which is allowed to apply directly to

expressions of all finite types.

A second assumption is that, if variables of limit types are allowed to be cumulative, then

so must variables of successor types. This assumption too can be resisted. It is certainly

possible to adopt a (partially cumulative) hierarchy which is cumulative at limit types but

not at successor types. But there is no obvious philosophical motivation for doing so. If

cumulativity is acceptable at limit types, there can be nothing fundamentally incoherent

or impermissible about it. So then why not accept cumulativity also at successor types?14

Resistance would be philosophically unmotivated.

Notice, moreover, that the refusal to allow for cumulativity at successor types has little

technical significance. For such cumulativity can be simulated by choosing to work only with

variables and constants of limit levels. For instance, the effect of the claim x4(c2) & c2(x0) can

be simulated by ‘relettering’ it as xω+ω(cω) & cω(x0).15 This observation extends to arbitrary

arguments in the fully cumulative language. Provided that the relettering respects the original

ordering of the terms and is uniform throughout an entire argument, the relettered argument

will be well-formed in the partially cumulative language and capable of doing the expressive

and deductive work of the argument in the fully cumulative language.

avoided only because the notion of well-foundedness cannot be expressed in the language, and because the
argument is infinitely long and hence cannot be captured by a finite proof. However, when the theory is
formulated in a system of form Lω1ω1 , both obstacles are removed and an inconsistency can indeed be derived.

14In fact, when the type-theoretic hierarchy is understood in terms of plurals, super-plurals and beyond,
there appears to be an independent motivation for cumulativity at successor types. Consider, for example,
the sentence ‘These people, those people, and that man compete’ where a predication is made of a ‘super-
plurality’ consisting of two ordinary pluralities and one individual. For discussion of ‘super-pluralities’ in
natural language, see Linnebo and Nicolas 2008.

15More generally, formulas can be ‘relettered’ in this way in any language of an order whose Cantor normal
form ends with ω2 · k for natural number k.
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A final assumption made in our argument for ‘going cumulative’ is that the types are

linearly ordered. Together with the second assumption that there are no infinitely descending

sequences of types, this allows us to identify the types with some initial segment of the

ordinals. But why assume that the types are linearly ordered? For instance, why not allow

terms for polyadic relations? Given any types τ1, . . . , τn, we can for instance admit terms of

type 〈τ1, . . . , τn〉, which take n arguments of types τ1, . . . , τn respectively. This corresponds

to a natural partial (but non-linear) order ≤ on the types defined by τi < 〈τ1, . . . , τn〉 for

every i, and letting ≤ be the reflexive closure of <.16

It is worth noting that such relations are not available on the plural interpretation of

type theory. For even if one admits ‘higher’ pluralities, the plural interpretation does not

provide any primitive polyadic relations. (It is irrelevant to our present concern that polyadic

relations can be coded by means of suitable ‘higher’ pluralities.)

On the conceptual interpretation, on the other hand, there is no obstacle to admitting

primitive polyadic relations. Notice, however, that not just any kind of polyadic relation will

help someone who wishes to allow infinitary types while holding on to non-cumulativity and

the well-foundedness of their ordering <. It can be proved that for this goal to be attainable,

we must allow expressions of infinite adicity.17 One can for instance avoid cumulativity at

level ω by admitting relations of countably infinite adicity with a separate argument place

for expresions of each finite type. Although we see no principled objection to type theories

which admit such relations, they would represent a major complication of our type theory. It

is particularly worrisome that such systems will require not just infinitely long conjunctions

and disjunctions, but also infinitely long strings of quantifiers. Such logics are known to be

very complicated. Moreover, relying on relations of infinite adicity is contrary to a major

concern in the foundations of mathematics, namely to develop simple and natural theories

in which much of mathematics can be codified. Although the type theory that we have set

out involves a huge idealization from our actual mathematical languages, we maintain that
16That is, we let τ ≤ τ ′ iff τ < τ ′ or τ = τ ′.
17Proof sketch. Assume there is an infinitary type. Then by the well-foundedness of <, there must be an

<-minimal infinitary type τ . Let e be an expression of type τ . Assume e is of finite adicity, say τ = 〈τ1, . . . , τn〉.
Then by the minimality assumption, τ1, . . . , τn must be finitary types. But then τ cannot be infinitary. Hence
the adicity of τ cannot be finite after all.
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it is very clean and tidy compared with theories that include relations of infinite adicity and

infinitely long strings of quantifiers. So we submit that there are strong pragmatic reasons to

be interested in systems where the types are linearly ordered.

Given the three assumptions just defended, a mathematical proof of full cumulativity is

not far away.18

5 Step three: Admitting type-unrestricted predication

Why should we admit a type-unrestricted notion of predication? That is, why should we

admit a predication as well-formed only when the type of the predicate is strictly greater

than the type of the argument?

According to Gödel, this restriction on predication ‘can be removed simply by stating

that [the predications previously regarded as ill-formed are] to be false if [the expressions] are

not of the appropriate types.’ He argues that doing so does not reintroduce any danger of

paradox and thus is mathematically unproblematic.

We are sympathetic towards this simple argument. But it is worth noting that a more

systematic treatment of the issue is available: one can show that type-unrestricted predi-

cations can be treated as syntactic abbreviations for more complex formulas involving only

type-restricted predication.

We begin by defining a type-unrestricted notion of identity. Let xα ≡γ yβ abbreviate the

claim that xα and yβ are indiscernible by entities of some type γ greater than α and β [that

is, ∀zγ(zγ(xα) ↔ zγ(yβ))]. Let xα ≡ yβ abbreviate xα ≡γ yβ, where γ = max(α, β) + 1.19

We can then prove the following lemma, which shows that ≡ behaves precisely like identity.20

18The first and third assumptions ensure that the types can be taken to be an initial segment of the ordinals.
We next make two further assumptions, which were implicit in the main text but should be uncontroversial.
First we assume that type(e) = sup{type(f) + 1 : pe(f)q is well-formed}. Then we assume that, if e applies
to expressions whose types are cofinal in a limit ordinal λ, then e applies to expressions of all types < λ. The
four assumptions just mentioned, plus the second one mentioned in the main text, entail full cumulativity.
The proof is left as an exercise for the reader.

19Note that the first of these two definitions delivers a different two-place predicate ‘≡γ ’ for each γ, rather
than a single three-place predicate ‘≡’ in which one of the arguments is filled by a type-variable. The second
definition enables a contextual elimination of any occurrence of ‘≡’ in favor of some appropriate predicate of
the form ‘≡γ ’.

20Cf. Degen and Johannsen 2000, Proposition 1. The only type-theoretic assumption used in the proof is
the comprehension scheme described in section 6 below.
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Proposition 1 ≡ is an equivalence relation. Moreover, if φ(xα) and φ(yβ) are well formed,

then we can prove:

xα ≡ yβ → [φ(xα)↔ φ(yβ)]

In the rest of the main text we will mostly assume that the role of identity is played by this

equivalence relation ≡. However, for technical reasons we will also allow languages to contain

a primitive identity predicate which can be flanked by terms of the same type.21

Once this type-unrestricted version of identity is in place, defining a type-unrestricted

notion of predication is straightforward. One simply uses type-unrestricted identity to raise

the type of the predicate enough to ensure that the predication is legitimate. Consider two

terms sα and tβ of any types α and β available in the relevant language. Recall that the

predication sα(tβ) is defined only when β < α. Whether or not this condition is met, we let

tβ ε sα abbreviate ∃zγ [sα ≡ zγ & zγ(tβ)], where γ = max(α, β + 1). It is easy to see that

tβ ε sα ↔ sα(tβ) if β < α. If one wants an untyped notion of predication, it is therefore

sufficient to use ‘tβ ε sα’ in place of ‘sα(tβ)’. (In what follows, we won’t bother maintaining

the two notations and read ‘sα(tβ)’ as type-unrestricted.)22

This completes our defense of Gödel’s claim that the three ‘superfluous restrictions’ should

be lifted. As announced, we believe our defense to be broadly in the spirit of Gödel’s pro-

posal.23 We also believe our defense vindicates Gödel’s view that the three restrictions are

superfluous. Lifting the first restriction amounts to an extension of the original theory rather

than a revision of it. The second and third restriction would constitute genuine modifications

of the theory if taken as primitive. But as emphasized above, the effect of lifting these re-

strictions can, if desired, be simulated by means of coding. And when simulated, the second

and third modifications amount to no modification at all.
21More specifically, the technical results in appendix B would have to be weakened if we did not have a

primitive identity predicate.
22This definition requires a slight modification of Gödel’s claim that predications previously regarded as

ill-formed should be regarded as false. Assume x0 ≡ xω and y1(x0). Then y1(xω) comes out true on our
definition. More generally, our definition allows a variable of lower type to be true of a variable of higher type
if the type of the latter is needlessly high. However, Gödel’s claim remains true if all types are minimal.

23Notice in particular that our argument for the first step, like Gödel’s, is based on observations about the
expressive limitations of languages of any fixed level: see the passage quoted at the end of section 3, as well as
surrounding text from Gödel 1933.

15



6 The transformation of type theory to iterative set theory

We now turn to Gödel’s claim that removing the the restrictions effects a transformation

of type theory to iterative set theory. Recall that in the passage with which we started

Gödel claims that the axiomatization of set theory ‘presented by Zermelo, Fraenkel and von

Neumann [. . . ] is nothing else but a natural generalization of the theory of types, or rather,

it is what becomes of the theory of types if certain superfluous restrictions are removed.’

6.1 Translating between type theory and a restricted set theory

We begin by providing precise characterizations of the relevant higher-order languages

and some analogous (but unusual) set-theoretic languages, and by showing how to translate

between these languages.

The pure cumulative language Lα of order α is defined by a simultaneous induction on

formulas and terms. The language is based on the usual connectives, an identity predicate

that may be flanked by any two terms of equal type, a countably infinite supply of variables

for each type β < α, and quantifiers capable of binding these variables. In addition, for every

formula φ(xγ) with xγ free and γ + 1 < α, there is an abstraction term (λxγ φ(xγ))γ+1 of

type γ+ 1. Intuitively, this term stands for the (γ+ 1)-level concept of being an xγ such that

φ(xγ).

Recall that the values of a variable of limit type will consist of the ‘union’ of the values

of variables of all preceding levels, and the values of a variable of successor type will consist

of the ‘union’ of the values of variables of the proceeding level plus all ‘collections’ of values

of variables of that level.

Let Lα∈ be the usual language of set theory augmented with new primitive terms ‘Vβ’ for

each β < α and the usual formation rules except that all quantification must be restricted to

some Vβ. Note that in this language the ranks are provided ‘from the outside’, rather than

generated and described within the theory as is customary in ordinary ZF. This parallels the

way in which type theory receives its types ‘from the outside’.
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We define a translation ∗ from Lα to Lα∈ as follows:

sβ = tβ
∗7→ sβ = tβ(1)

sγ(tβ) ∗7→ tβ ∈ sγ(2)

∀xγφ ∗7→ (∀xγ ∈ Vγ)φ∗(3)

(λxγ φ(xγ))γ+1 ∗7→ {xγ ∈ Vγ : φ∗(xγ)}(4)

Note that the occurrences of type-indices on the right-hand side is not required by the syntax

of Lα∈. A variable of the form xα can nevertheless be construed as a first-order variable by

regarding the superscript not as a type index but rather as having the same function as primes

(as in x′ and x′′), namely that of producing distinct first-order variables.

What about the reverse direction? Here the main challenge is to find a way to map the

untyped variables of Lα∈ to the typed variables of Lα. Fortunately, every bound variable of

Lα∈ is implicitly typed, since the quantifier doing the binding must be restricted to some Vβ.

This allows us to describe a reverse translation †, defined on all sentences of Lα∈. First we

add type indices to variable-occurrences: if v is bound by a quantifier restricted to Vβ, its

occurrences should be rewritten vβ. Then we translate as follows:

sγ = tβ
†7→ sγ ≡ tβ(5)

tβ ∈ sγ †7→ sγ(tβ)(6)

(∀xγ ∈ Vγ)φ
†7→ (∀xγ)φ†(7)

where sγ ≡ tβ and sγ(tβ) are ‘unpacked’ as described in section 5. If cumulativity is regarded

as primitive, the resulting formulas will involve bound variables of types as high as max(γ, β)+

1 and max(γ, β + 1) + 1 respectively. This means that the translation † will always map

formulas of Lα∈ to formulas of Lα+2 (or Lα, if α is a limit ordinal).

We now describe a way in which the translations preserve truth value. Assume a type

theorist and a set theorist confront a domain of individuals. The type theorist is interested

in the ideological hierarchy of concepts based on these individuals. By contrast, the set
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theorist is interested in the ontological hierarchy of sets based on these individuals regarded

as urelements. Assume that the individuals in question form a set. (The possibility that they

not form a set will be considered in the next subsection.) Then it is easy to verify that the

translations preserve truth value. For in both cases a limit level consists of the ‘union’ of the

values of variables of all proceeding levels. And in both cases a successor level consists of

the ‘union’ of the values of variables of the proceeding level plus all ‘collections’ of values of

variables of that level. This ensures that the concepts of type γ are isomorphic to the sets in

Vγ , for γ an arbitrary ordinal. It follows that ∗ must map every truth of Lα to a true sentence

of Lα∈, and that † must map every truth of Lα∈ to a true sentence of Lα+2.

Our argument for the claim that the translations preserve truth-value takes place against

a background consisting of both type theory and set theory. The argument is thus only

available to people who are willing to presuppose ordinary set theory. We help ourselves to

two assumptions about the relationship between the hierarchies. Firstly, if the two hierarchies

are isomorphic up to a certain level, then there is a unique way to extend this isomorphism

one level further. Secondly, if there are compatible isomorphisms for all levels γ < λ, then

there is a unique way to combine them into an isomorphism for level λ. Based on these two

non-trivial assumptions, our argument clarifies the relationship between type theory and set

theory by establishing that the translations preserve truth-value.

A proof-theoretic comparison of the two hierarchies—which relies on much weaker assump-

tions—will be provided in section 6.

6.2 A set of all individuals?

What if the individuals that the type theorist and the set theorist confront do not form a

set? For instance, these individuals may comprise the entire universe of sets. In such cases,

the type theorist appears to be at an advantage, as she can consider the ideological hierarchy

built on top of these individuals; that is, the ideological hierarchy where all the sets figure as

individuals. The set theorist appears unable to match this. For if we really start with all the

sets, then there are no further sets to be formed that can play the role of the type-theorist’s

‘higher-order entities’.
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Gödel himself is not concerned that a given domain of individuals may fail to form a set:

all the classes occurring in this system [of axioms] can be considered as a new

domain of individuals and used as a starting point for creating still higher types.

There is no end to this process. (Gödel 1933, p. 47)

Just as in type theory it is always permissible to go to the next higher type, in set theory it is

always permissible to regard a domain of sets as a set of some still larger domain—or so the

passage seems to suggest. A similar idea is familiar from Zermelo 1930. If this is right, then

it is always possible to regard a given domain of individuals as a set in some extended process

of set formation. If the universe of sets is open-ended in this way, then the set theorist will

not, after all, be at any disadvantage vis-à-vis the type theorist.

A related but weaker point can be made even without Gödel’s and Zermelo’s view about

the open-endedness of the universe of sets. Type theorists propose an ideological hierarchy in

which the totality of sets may figure as individuals. But each level of this ideological hierarchy

is isomorphic to the corresponding level of ‘further sets’ which Gödel and Zermelo claim can

be formed. So at least from a mathematical point of view, there is no deep difference between

ascending in this ideological hierarchy and taking further ontological steps of the sort that

Gödel and Zermelo are advocating. We return, in the final section, to the question whether

there might be an important philosophical difference between these two isomorphic ways of

extending a given hierarchy.

6.3 Translating from ordinary set theory into type theory

In section 6.1 we showed how to provide type-theoretic translations of set-theoretic sen-

tences all of whose quantifiers are explicitly restricted to some Vβ. But the language of

ordinary set theory allows quantifiers which are not explicitly restricted in this way. So we

do not yet have a translation-method for the language of ordinary set theory.

The standard response to this sort of problem is to map each set-theoretic sentence φ onto

the sentence φ(α), which is the result of restricting all the quantifiers in φ to Vα, for some

suitable ordinal α. This yields a syntactic translation from L∈ to Lα+1
∈ . To what extent does

this translation give us what we want?
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Let us start with the question of preservation of truth-value. Recall that Zermelo set

theory, Z, is ZF minus the axiom scheme of Replacement. Z is satisfied by Vλ for every limit

ordinal λ ≥ ω + ω, so the translation φ 7→ φ(λ) maps every theorem of Z to a truth of Lλ+1
∈ .

By choosing larger ordinals we can get stronger results. Since ZF is satisfied by Vκ for every

strongly inaccessible κ, the translation φ 7→ φ(κ) will map every theorem of ZF to a truth of

Lκ+1
∈ . (Of course, this appeal to strong inaccessibles involves going beyond ZFC.)24

Now consider the requirement that the translation-method preserve not just the truth-

value of the original sentence, but also its intended interpretation. Whether or not one

thinks that the translation φ 7→ φ(α) can satisfy this stricter requirement will depend on

one’s attitude towards sets. If one accepts Absolute Generality, and believes that it is

possible to quantify over all sets, then one will think that the stricter requirement fails to be

satisfied. For although we are capable of quantifying over all sets, no claim resulting from

this translation involves such quantification.

However, if one adopts the view of Gödel and Zermelo that we discussed in the previous

subsection, then one may think that φ 7→ φ(α) is able to preserve intended interpretation.

For one may think that seemingly unrestricted set-theoretic quantifiers are always tacitly

restricted to VΩ, the domain of sets that have been recognized so far—a domain that could

be used ‘as a starting point’ to characterize an even larger domain of sets.

When the translation φ 7→ φ(α) is composed with the translation φ 7→ †φ, from section 6.1,

one gets a function that translates each sentence in the language of ordinary set theory into

a sentence of transfinite type theory. This means that, regardless on one’s attitude towards

Absolute Generality, one should think that there is a truth-value-preserving translation

of ordinary set-theory into transfinite type theory, modulo the existence of suitably large

cardinals. Depending on one’s attitude towards Absolute Generality, one might also

think that the translation preserves intended interpretation.
24Assuming a suitable reflection principle can be justified, one can even show that there is a cardinal ξ such

that Vξ satisfies the same L∈-sentences as the universe. (See Shapiro 1987, pp. 323–4.) Then the translation
φ 7→ φ(ξ) maps every truth of L∈ to a truth of Lξ+1

∈ .
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6.4 A proof-theoretic comparison of type theory and set theory

Let pure cumulative logic of order α be the Lα-theory Tα which arises by making the

following additions to a complete axiomatization of first-order logic without identity. First,

we extend the usual introduction and elimination rules for the quantifiers to quantification of

all types.

Second, we adopt the following axiom scheme of type-raising: ∀xα ∃xβ(xα ≡ xβ) for any

β ≥ α ≥ 0.25

Third, we adopt a limit rule which expresses the idea that every limit type λ < α is ‘the

union’ of all preceding types. If we have proved ∀xγ φ(xγ) for every γ < λ, we may infer

∀xλ φ(xλ).

Fourth, we adopt a comprehension scheme for every type γ such that γ + 1 < α:

(Comp) (λxγ φ(xγ))γ+1(tδ)↔ φ(tδ)

provided φ(tδ) is well-formed.

Fifth, we adopt an axiom scheme of extensionality. Consider two non-empty entities xβ

and yγ , where β ≤ γ < α. Assume xβ and yγ are coextensional in the sense that any entity

falling under the former is equivalent to an entity falling under the latter, and that any entity

falling under the latter is equivalent to an entity falling under the former. Then the axiom of

extensionality says that xβ ≡ yγ .26

Finally, we adopt an axiom scheme to the effect that no individual applies to any other

entity: ¬x0(yα).27

How much of ordinary ZF set theory can be obtained from type theory? Let’s work with

the composite translation φ 7→ †φ(α) described above. The question is then which axioms of
25In the absence of a primitive identity predicate there is an alternative but equivalent approach based on

a simple modification of the introduction and elimination rules for the quantifiers. See Degen and Johannsen
2000, p. 149 for details. Given the version of Extensionality set out below, we can prove every instance of our
axiom scheme where α ≥ 1. The trick is to consider the term (λuβ xα(uβ))β+1 and to make a judicious use of
Proposition 3 of Degen and Johannsen 2000.

26The non-emptiness requirement is needed to handle the case where β or γ is 0. For individuals can be
distinct from each other and from the empty concept although none applies to anything else.

27Our axiomatization follows that of Degen and Johannsen 2000 with two minor exceptions needed to allow
distinct individuals: the extensionality rule has been restricted to non-empty entities (which are thus non-
individuals), and the final axiom scheme replaces Degen and Johannsen’s ‘null rule’.

21



ZF are mapped by this translation to theorems of Tα+3 (as opposed to truths of Lα+3, which

is what we studied above). (In more technical parlance, the question is how much of ZF can

be interpreted in Tα+3 under the mentioned translation.) This question receives a partial

answer by the following proposition:

Proposition 2 (Degen and Johannsen) Let λ ≥ ω + ω be a countable limit ordinal and

α ≥ λ + 3. Then Tα proves †φ(λ) for each theorem φ of Zermelo set theory Z. (In more

technical parlance, Z is interpreted in Tα under the mentioned translation.)

We refer the reader to Degen and Johannsen 2000 for a proof.28

7 Philosophical assessment

Our discussion so far can be thought of as an extended argument for the following two claims:

(1) the sorts of considerations that motivate an interest in the first few levels of the theory of

types also motivate an ascent up to higher and higher types (section 3 and appendix B); (2) the

resulting hierarchy becomes (as Gödel observes) very set-theoretic in character (sections 4–6).

This shows that there is no deep mathematical difference between the ideological hierarchy

of type theory and the ontological hierarchy of set theory. But there might of course be an

important philosophical difference. The purpose of this final section is to discuss whether this

is so.

One possibility is to take our formal results to show that one of the hierarchies should be

eschewed in favor of the other. For instance, a Quinean might see the formal results as an

ultimate vindication of the claim that type theory is ‘set-theory in sheep’s clothing’ (Quine

1986). More specifically, she might use the formal resemblance between the type theoretic

hierarchy and the set theoretic hierarchy to cast doubt on the idea that the language of type-
28The translations of several of the axioms of Z (such as Extensionality restricted to non-empty sets, Empty-

set, Pairing, Union, Power-set, Separation, and Infinity) can be proved directly in our type-theory. This has the
advantage over Degen and Johannsen’s approach of yielding explicit proofs and of avoiding the requirement that
the limit ordinal λ be countable. We don’t know whether (the translations of the instances of) Replacement
can be established in this way.

Gödel intended to provide a more internal motivation of Replacement, where the levels α are generated
internally rather than provided from outside, as above. But it is unclear exactly how the argument is supposed
to work. For some scholarly discussion, see Feferman 1995, esp. note f.
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theory makes sense when taken at face value: it only makes sense as a notational variant

of the language of set-theory. Alternatively, one might see the formal results as rendering

the set-theoretic hierarchy obsolete, by showing that type-theory gives us all the expressive

resources of set-theory without any of its ontological commitments. (It is worth keeping

in mind, however, that we used an external theory of ordinals to set up the type-theoretic

hierarchy, and it is not obvious that this could be avoided.)

Our own view is that it would be a mistake to eschew one of the hierarchies over the

other. We would like to suggest instead that the two hierarchies—ideological and ontological—

constitute difference perspectives on the same subject-matter. The remainder of this section

is an effort to clarify what this means.

It is useful to start with some preliminaries. Logicians and philosophers are divided in

their reactions to Russell’s Paradox. Some are liberal about set formation and assume that

there is a set of F s whenever there is a definite fact of the matter about what F s there

are. Liberalists of this sort see the Paradox as showing that there is no definite fact of the

matter about what sets there are, and therefore that the hierarchy of sets is ‘open-ended’.29

The alternative reaction to Russell’s paradox is to be restrictive about set formation and be

prepared to deny that there is a set of F s even when there is a definite fact of the matter about

what F s there are. Non-liberalists of this sort can thus maintain that there is a definite fact

of the matter about what sets there are, and that Russell’s Paradox relates to one of many

cases where some definite range of F s fail to form a set.30 This also enables non-liberalists to

deny that there is any interesting sense in which the hierarchy of sets is ‘open-ended’.

These two reactions to the Paradox tend to be linked to different ways of thinking about

sets. Non-liberalists tend to see the existence of sets as a substantial matter. (Metaphorically:

when God created Bruno, He did not thereby create Bruno’s singleton; an additional action

on God’s part would be required to bring the set into existence.) Accordingly, for it to be

the case that Bruno is a member of his singleton it is not sufficient that Bruno exist. It is

required, in addition, that Bruno’s singleton exist and that it bear a certain relation to Bruno.

Similarly, for Bruno to be a member of the set of elephants it is not sufficient that Bruno
29Examples of liberalists include Gödel (1933), Zermelo (1930) and Parsons (1977).
30Examples of non-liberalists include Boolos (1984), Lewis (1991) and McGee (1997).
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be an elephant. It is required, in addition, that there be a set of elephants and that it bear

a certain relation to Bruno. On this view, it is natural to think that there is a definite fact

of the matter about what sets exist. (Whichever sets God found it in His wisdom to create,

those are the sets that exist.) And—assuming there is a definite fact of the matter about

which sets exist—it is a truth of (higher-order) logic that there are more collections of sets

than sets. So one immediately gets the result that not every collection of sets forms a set.

In contrast, liberalists tend to deny that there is a substantial gap between the existence

of Bruno and the existence of his singleton, or between there being a definite fact of the

matter about what elephants there are and the existence of a set of all elephants. Different

liberals develop this idea in different ways. Some deny that there is any gap whatsoever:31

for Bruno to be a member of the set of elephants just is for Bruno to be an elephant, and

for Bruno to be a member of his singleton just is for Bruno to be identical to Bruno. So

when God creates Bruno he thereby makes it the case that his singleton exists. On this view,

‘Bruno is an elephant’ and ‘Bruno is a member of the set of elephants’ describe the same

feature of reality. Accordingly, the use of a singular term like ‘the set of elephants’ increases

one’s expressive resources without increasing one’s ontological commitments. (This is not to

say that ‘Bruno is a member of the set of elephants’ carries no commitment to the set of

elephants. It certainly does. The point is that such commitment was already presupposed by

relevant uses of the term ‘elephant’. For it is nothing over and above commitment to there

being a definite fact of the matter about what elephants there are: for the set of elephants to

exist just is for there to be a definite fact of the matter about what elephants there are.)

Other liberalists accept that there is an ontological gap between the existence of Bruno and

the existence of his singleton but deny that the gap is a substantive one.32 These liberalists

accept that ‘Bruno’s singleton is an elephant-singleton’ carries an ontological commitment

not carried by ‘Bruno is an elephant’, namely a commitment to sets. But they argue that

sets are ‘lightweight’ objects whose existence does not make any substantive demand on

the world. Perhaps the existence of Bruno’s singleton amounts to nothing more than the

coherence or legitimacy of some set theory which asserts the existence of this set. Or perhaps
31This is the view of AR.
32This is the view of ØL.
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it amounts to nothing more than an ability to refer to the set, make true predications of

it, and distinguish it from other sets. Regardless of the details, liberalists of this sort insist

that, if a legitimate mathematical practice endorses the truth of a sentence whose logical form

reveals a commitment to sets, then no additional contribution from the world is needed to

guarantee the existence of sets.

Let’s put aside internal disagreements among liberalists and focus on their common con-

viction that there is no substantial ontological gap between there being a definite fact of the

matter about what F s there are and the existence of a set of all F s. We have seen that this

conviction, when applied to Russell’s Paradox, yields the conclusion that there can be no

definite fact of the matter about what sets there are. (For if there were, there would be a

Russell set, which would yield a contradiction.) This conclusion should come as no surprise

to liberalists. For the liberalist view makes it impossible to draw a clean separation between

the question of how one might extend one’s expressive resources and the question of how

many sets exist. By increasing one’s expressive resources in the right sort of way, one is led to

recognize additional ontology. So insofar as one believes that the process of extending one’s

expressive resources is essentially open-ended, one should also think that the hierarchy of sets

is essentially open-ended—and therefore that there is no definite fact of the matter about

what sets there are.

The connection between type theory and set theory that has been developed in this paper

can be used to make some of the liberalist ideas more explicit. Let φ be a sentence of the set-

theoretic language Lα∈ (introduced in section 6.1), and let φ† be the type-theoretic sentence

that results from applying the †-translation. Then the liberalist may claim that there is no

substantial difference between the features of the world described by φ and φ†. She may claim,

for example, that there is no substantial difference between the feature of reality described

by the set-theoretic sentence ‘∃x ∈ V1(Bruno ∈ x)’ and the feature of reality described by

the type-theoretic sentence ‘∃x1(x1(Bruno))’. (This, of course, applies only to sentences in

Lα∈. But that is not something liberals are likely to see as a cost, since they think there is no

definite fact of the matter about what sets there are.)

For the non-liberalist, the connection between type theory and set theory can be expected
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to have a very different upshot. On any interesting interpretation of the type-theoretic hier-

archy, sentences such as ‘∃x ∈ V1(Bruno ∈ x)’ and ‘∃x1(x1(Bruno))’ will be seen as making

very different ontological demands on the world: only the former will be seen as requiring the

existence of sets. So the non-liberalist will see it as a mistake to think that the type-theoretic

and set-theoretic hierarchies constitute different perspectives on the same subject-matter. She

might instead take one of the attitudes alluded to earlier, and see the formal connection be-

tween the two hierarchies as evidence that one of the hierarchies should be eschewed in favor

of the other. As noted above, one possibility is for the non-liberalist to see the ideological

hierarchy as superior, on the grounds that it delivers expressive resources without ontological

extravagance. Another possibility is for her to conclude that the ideological hierarchy is too

good to be true, and conclude that it cannot be made sense of when taken at face value.

There is, however, a third—and more intriguing—possibility. The non-liberalist might

come to see the connection between type theory and set theory as a reason for moving in the

liberalist direction. For one might have thought that a big selling point of non-liberalism was

its tidy ontology: there is no need to countenance an open-ended hierarchy of sets, and no

reason to doubt the truth of Absolute Generality. But once one notices that Absolute

Generality can be used to motivate ascent into higher and higher levels of the ideological

hierarchy, one might come to see the supposed tidiness of non-liberalism as an illusion.

We noted in section 3 that Absolute Generality—together with the Principle of Se-

mantic Optimism and the Principle of Union—can be used to motivate ascent to languages of

type α for α an arbitrary ordinal. This entails that the type-theoretic hierarchy has at least

as many levels as there are ordinals. But it does not, by itself, deliver the conclusion that the

hierarchy is open-ended. By strengthening the Principle of Union, however, it is possible to

generate an argument for open-endedness:

• The Principle of Union (Strengthened Version)

Let C by any definite collection of type-theoretic languages. Then one should counte-

nance the legitimacy of the ‘union’ language LC , which results from pooling together

the resources of every language in C.
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The argument is straightforward. Suppose for reductio that the type-theoretic hierarchy is

not open-ended. There is, in other words, a definite collection of type-theoretic languages.

It follows from the Principle of Union that one should countenance the legitimacy of the

‘union’ language LT which results from pooling together the resources of every type-theoretic

language. Assuming Absolute Generality, it is impossible to state a generalized semantic

theory for LT in LT . But, by the Principle of Semantic Optimism, there should be a language

in which such a theory could be articulated. And the most natural way of doing so is by

countenancing the legitimacy of further types.

If this is right, then open-endedness is here to stay. One can try to move it from one’s

ontology to one’s ideology, but nothing of any real substance will have changed.33
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Hilbert, David, 1926: ‘Über das Unendliche.’ Mathematische Annalen, 95, pp. 161–190.

Translated as “On the Infinite” in van Heijenoort 1967.

Lewis, David, 1991: Parts of Classes. Oxford: Blackwell.

28



Linnebo, Øystein, 2003: ‘Plural Quantification Exposed.’ Noûs, 37(1), pp. 71–92.
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Appendices

A The plural hierarchy

In the main text we work on the assumption that the type-theoretic hierarchy is interpreted

conceptually: that type-1 variables stand for first-level concepts (i.e. concepts applying to

objects), type-2 variables stand for second-level concepts (i.e. concepts applying to first-

order concepts; or concepts applying to first-order concepts and individuals, if one thinks of

cumulativity as primitive rather than simulated), and so forth. But the hierarchy could also

be interpreted plurally : one could read type-1 variables as plural terms, type-2 variables as

‘super-plural’ terms, and so forth, all the way up.34

Some changes are needed to accommodate a plural interpretation of the type-theoretic

hierarchy. First the syntax of the language needs to be adjusted. On the conceptual inter-

pretation, variables of higher type stand for concepts, and are therefore of the same syntactic

category as predicates. Since predicates have argument-places, this means that variables of

higher type should also be thought of as having argument-places. On the plural interpreta-

tion, in contrast, variables of higher type are terms. Type-1 variables, for example, should be

thought of as sharing a syntactic category with the plural term ‘the horses’, rather than the

predicate ‘. . . is a horse’. Accordingly, the formula ‘x1(z0)’ should be thought of as syntacti-

cally analogous to ‘z0 is among the horses’ (or ‘Among(z0, the horses)’), not as syntactically

analogous to ‘Horse(z0)’. Pluralists should therefore think of ‘xβ+1(zβ)’ as a syntactic abbre-

viation for ‘Amongβ+2(zβ, xβ+1)’, where ‘Amongβ+2’ is a new logical predicate.

The plural interpretation requires an adjustment of the deductive system as well. There

are two main differences that need to be accounted for. The first concerns the question of

whether variables of higher-type can take ‘empty’ values. For instance, is there an ‘empty’

level-1 entity, that is, an entity x1 such that ∀z0 (¬x1(z0))? On the conceptual interpretation,

the answer is ‘yes’: there is a first-level concept with no instances. But on the plural inter-

pretation, the answer is ‘no’: it is not the case that there are some things such that nothing
34A plural interpretation of the finite types is discussed in Rayo 2006.
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is one of them. The pluralist should therefore adopt axioms which reflect facts of this sort.

She might, for instance, set forth an axiom ∀xα+1 ∃zα(xα+1(zα)) for every suitable α, and

restrict comprehension as suggested below.

The second difference concerns the question of whether to admit ‘singleton pluralities’.

Consider for instance the plural term ‘the things identical to Socrates’, or in lambda-notation:

(λu0(u0 = Socrates))1. It is natural to think that this plural term refers to Socrates and

nothing else. There is no need to posit as a referent some ‘singleton plurality’ which consists

of nothing but Socrates but which is somehow endowed with properties distinct from those

of the philosopher. Rather, the referent can simply be taken to be Socrates himself. (Note

that this uses cumulativity; otherwise a term of type 1 could not denote an object.)

This second difference requires a modification of the plural comprehension scheme to en-

sure that the ordinary ‘lambda-conversion’ is available only when the comprehension formula

is at least doubly instantiated, and that lambda-terms whose comprehension formula is singly

instantiated simply denote this single instance:35

(Comp′)


(∃≥2x

γ φ(xγ)→ (λxγ φ(xγ))γ+1(tδ)↔ φ(tδ))

∃yγ [∀uγ(yγ ≡ uγ ↔ φ(uγ))→ (λxγ φ(xγ))γ+1 ≡ yγ ]

where the former clause is subject to the proviso that φ(tδ) is well-formed.

Our comparison in Section 6 of the type-theoretic hierarchy with the set-theoretic hierar-

chy presupposed a conceptual interpretation of the hierarchy and a corresponding deductive

system. But we have seen that the plural interpretation calls for a slightly different de-

ductive system. This raises the question whether our comparison carries over to the plural

interpretation of the type-theoretic hierarchy.

Fortunately, versions of the original results do carry over to the plural case. Let V ≥2
α be

35What about the claim that Socrates is among the things identical to Socrates? On the current proposal
this claim is formalized as (λu0(u0 = Socrates))1(Socrates), which is false because the lambda-term denotes
Socrates, and in the intended model no entity applies to itself (or, in official language, ‘is among’ itself). Anyone
troubled by this quirk is invited to re-define the predicate ‘Among’ to stand for the reflexive closure of the
relation currently associated with that predicate, that is, to lay down: Amongβ+1(xα, yβ)↔ xα = yβ∨yβ(xα),
where α < β.
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the subset of Vα that is generated by iterating a restricted version of the powerset operation:

P≥2(x) = {z : z ⊆ x & ∃w∃v(w 6= v & w ∈ z & v ∈ z)}

(We will assume that there are at least two urelements, as this construction will otherwise

be trivial.) By induction on α we can then show that the translations ∗ and † map truths

about the plural hierarchy of level α to truths about V ≥2
α and vice versa. Moreover, it is

easy to show that the effect of the full powerset operation can be simulated by using only the

restricted powerset operation. In particular, for any limit ordinal λ, an isomorphic copy of

Vλ can be found as a subset of V ≥2
λ . It follows that Vλ is isomorphic to a sub-hierarchy of the

plural hierarchy of level λ. It should also be possible to provide an interpretation of Zermelo

set theory in the plural analogue of the type theory T λ+3, thus establishing a plural analogue

of Theorem 2.

It is also worth noting that—on the assumption that there are at least two urelements—

one can prove plural analogues of Theorems 4 and 5 from appendix B.

B Generalized Semantics

A fundamental tool in our constructions will be the ability to code ordered pairs.

Theorem 1 (n-tuples) Given any entities xγ1 , . . . , xγn , we can code for the ordered n-tuple

of these entities by means of a single entity xγ , where γ is the maximum of the γi. We will

designate this entity xγ as 〈xγ1 , . . . , xγn〉γ .

Proof and details will be provided in Section B.2.

Recall from Section 2 that a language of order α contains variables of all orders < α and

constants of all orders ≤ α.

Theorem 2 (Negative result) We cannot develop a generalized semantics for a language

of order α in another language of order α.
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Proof. The crucial observation is that, for α = β + 1 a successor ordinal, there are more

possible assignments of semantic value to a constant cα than there are entities of level β. This

cardinality claim is a higher-order version of Cantor’s Theorem. Assume for contradiction

that we have a collection of ordered pairs 〈xβ, yα〉α which codes an onto correlation of entities

of order β with entities of order α. Let ∆α be the entity consisting of all and only those xβ

such that xβ does not fall under the entity which this correlation associates with xβ. Since

the correlation has been assumed to be onto, there must be a δβ which is correlated with ∆α.

But then we get ∆α(δβ)↔ ¬∆α(δβ), which yields a contradiction.

To develop a generalized semantics for a language of order α = β + 1, one needs to

talk about arbitrary assignments of semantic value to constants cα of type α. But, by the

observation above, this requires variables of order ≥ α. This proves the theorem for the

special case in which α is a successor ordinal.

The case where α is a limit ordinal is also straightforward. In order to develop a generalized

semantics for a language of order α in a language of order α, one would have to represent

arbitrary assignments of semantic values to cα by means of some variable xγ where γ < α.

But by the cardinality result we know this to be impossible. a

Theorem 3 (Positive result) For any successor level α, we can develop a generalized se-

mantics for a language of order α in a language of order α+ 1. (A fortiori, for any limit level

λ, we can develop a generalized semantics for a language of order λ in a language of order

λ+ 2.)

A proof will be provided in the next section.

B.1 Generalized semantics for Lα

When investigating the semantics of a language Lα, we will always work relative to some

base theory which is strong enough to code the syntax of Lα. As usual, let peq be the Gödel

number of an expression e.

We need to talk about assignments to syntactic entities. There are two kinds of assign-

ment. All constants will be assigned a semantic value by a model. And all variables will be
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assigned a value by a variable assignment (or assignment for short). We will use primitive

predicates Asgnβ+1(Aβ) and Modα+1(Mα) for the notions of assignment and model respec-

tively. In Section B.3 we formulate axioms concerning these predicates which incorporate

the obvious requirements on entities that are to play the role of assignments and models:

namely that a model specify a domain and associate constants with entities of appropriate

level which are based on the domain, and that an assignment associate variables with entities

of appropriate level.36 We show in Section B.3 that, when the order of the language Lα is

a successor ordinal α = β + 1, the assignment can be chosen to be a type-β entity Aβ. The

fact that the type of the assignment can be chosen to be β rather than α will be crucial to

the construction below. By contrast, where α is a limit ordinal, the assignment cannot be of

a level lower than α. The model Mα can chosen to be of level α, but no lower, regardless of

whether α is a successor or a limit.

In Section B.3 we also define an interpretation operation [[·]]αMα which for any constant

c of the language Lα outputs the entity [[c]]αMα which the model Mα associates with c, and

another interpretation operation [[·]]β
Aβ

which for any variable v of the language outputs the

entity [[v]]β
Aβ

which the assignment Aβ assigns to v. Where there is no danger of confusion,

we use the undecorated notation [[t]].

Definition 1 Say that an assignment Bβ is a v-variant of an assignment Aβ iff Bβ is an

assignment such that for any variable u 6= v, we have [[u]]β
Aβ

= [[u]]β
Bβ

.

Definition 2 Consider a successor ordinal α = β+ 1. We define the notion of satisfaction in

a model Mα relative to an assignment Aβ as follows:

1. If φ is a formula of the form tγ(tγ11 , . . . , t
γn
n ) for an n-place term t of arguments of the

types indicated and where 1 ≤ n ≤ 3, then:

Sat〈pφq, Aβ〉 iff [[t]]〈[[tγ11 ]], . . . , [[tγnn ]]〉

2. If φ is a formula of the form tγ1 = tγ2 for two terms tγ1 and tγ2 of the same type, then:

Sat〈pφq, Aβ〉 iff [[tγ1 ]] = [[tγ2 ]]

36For bookkeeping reasons we do not require that the entities associated with the variables be based on the
domain in question. This is instead taken care of by clause 5 of Definition 1 below.
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3. If φ is a formula of the form ¬ψ, then:

Sat〈pφq, Aβ〉 iff it is not the case that Sat〈pψq, Aβ〉

4. If φ is a formula of the form ψ1 & ψ2, then:

Sat〈pφq, Aβ〉 iff Sat〈pψ1q, Aβ〉 and Sat〈pψ2q, Aβ〉

5. If φ is a formula of the form ∃v ψ for some variable v, then:

Sat〈pφq, Aβ〉 iff there is a v-variant Bβ of Aβ, which assigns to v an entity based

on the domain associated with Mα, such that Sat〈pψq, Bβ〉

Two brief remarks are in order. Each of clauses 1 and 2 is shorthand for several clauses,

which cover the cases of each term being either a constant or a variable, and, where the term

t in clause 1 is a constant, the cases of its being of adicity 1, 2, or 3. We choose not to allow

for constants of arbitrary finite adicity in order to keep the number of clauses finite and thus

be able to conjoin them in definitions given below.37 Secondly, the notion of an entity xγ

being ‘based on’ a domain D1
Mα is the obvious one: every object in the transitive closure of

xγ is in D1
Mα , where the notion of transitive closure is defined in Section B.3.

As observed by Tarski (1935), we can convert the implicit definition to an explicit one.38

Consider the result of formalizing the above definition, conjoining all of its clauses and re-

placing every occurrence of Sat〈pφq, Aβ〉 by Y α〈pφq, Aβ〉. The resulting formula has four free

variables, namely pφq,Aβ, Y α, and Mα. (Note that Mα occurs free in instances of clauses 1

and 2 where [[t]] is short for [[t]]Mα .) Let Φ(pφq, Aβ, Y α,Mα, ) abbreviate this formula. Let

True(pφq, Aβ,Mα) abbreviate the following formula:

∀Y α[Φ(pφq, Y α,Mα, Aβ)→ Y α〈pφq, Aβ〉]

Intuitively, True(pφq, Aβ,Mα) should be read as: φ is true in Mα under assignment Aβ.

Theorem 4 The formula True(pφq, Aβ,Mα) satisfies the recursion clauses set out in Defi-

nition 1.
37However, if one was willing to allow countably infinite conjunctions, one could lift this restriction and

allow for arbitrary finite adicity.
38As Tarski observes in fn. 1 on p. 175, the method for doing so goes back to Frege (1879) and Dedekind

(1888).
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Proof sketch. We need to verify an existential claim: that for any model Mα there is a Y α

such that for any Lα-formula φ and assignment Aβ we have Φ(pφq, Y α,Mα, Aβ). Once the

existential claim has been established, the remainder of the proof is routine.

To verify the existential claim, we begin by defining the notion of a good sequence of

length n (n ∈ ω). For fixed Mα, we shall say that GoodMα(xα, n) is true just in case the

following three conditions are met:

1. xα applies to the triple 〈0, φ,Aβ〉β just in case φ is an atomic formula of Lα, Aβ is an

assignment, and either of the following conditions obtains:

(a) φ is of the form tγ(tγ11 , . . . , t
γm
m ) (m ≤ 3) and [[t]]〈[[tγ11 ]], . . . , [[tγmm ]]〉.

(b) φ is of the form tγ1 = tγ2 and [[tγ1 ]] = [[tγ2 ]].

2. For 0 < k ≤ n, xα applies to the triple 〈k, φ,Aβ〉β just in case φ is an Lα-formula of

complexity k, Aβ is an assignment, and one of the following conditions obtains:

(a) φ is of the form ¬ψ, and xα fails to apply to the triple 〈k − 1, ψ,Aβ〉β.

(b) φ is of the form ψ1 & ψ2, and xα applies to triples 〈k1, ψ1, A
β〉β and 〈k2, ψ2, A

β〉β

for some k1, k2 < k, at least one of which immediately precedes k.

(c) φ is of the form ∃v ψ, and, for some v-variant Bβ of Aβ, which assigns to v an entity

based on the domain associated with Mα, xα applies to the triple 〈k − 1, ψ,Bβ〉β.

3. for k > n, xα applies to no triples of the form 〈k, φ,Aβ〉β.

One can use the comprehension scheme to show that there exists an xα such that GoodMα(xα, 0),

and to show that if there exists an xα such that GoodMα(xα, k), then there must also exist

an xα such that GoodMα(xα, k+1). By induction on the natural numbers, it follows that, for

every n, there is an xα such that GoodMα(xα, n). One can then let Y α consist of the pairs

〈φ,Aβ〉β such that, for some xα and some n ∈ ω, GoodMα(xα, n) and xα(〈n, φ,Aβ〉β). It is

now routine to verify that Y α witnesses the existential claim with which we began. a

This concludes our characterization of the notion of satisfaction in a model for the case

in which α = β + 1. What about the limit case? When α is a limit ordinal, assignments will
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have to be of order α. This means that the satisfaction predicate has to be of order α + 1.

So an explicit definition of satisfaction in a model under an assignment can only be given in

a language of order α+ 2.

More fine-grained results are possible if we consider various restricted languages. For

instance, we can let a basic language of order α be one with no non-logical constants of

order α. Then it is possible to show that one can to develop a generalized semantics for a

basic language of order α in a non-basic language of the same order.39 However, we will here

be concerned with higher-order languages in general, not with the special class of basic ones.

Our reason is that basic languages are unstable. Once variables of a certain level have been

admitted, it is artificial not to allow non-logical predicates applying to these variables. In

particular, on the plural interpretation there is already a top-level logical predicate applicable

to these variables, namely ‘Among’. So there is nothing wrong with top-level predicates per

se. This suggests that it should also be legitimate to introduce non-logical predicates of this

sort.

B.2 Ordered pairs

We shall assume that the theory of L1 (which is a sublanguage of the language Lα with which

we are concerned) contains the resources to code the ordered pair of any two individuals of

type 0 by means of some third individual of type 0. This assumption can, as is well known,

be met in a variety of different ways. (As is well known, a minimal requirement is that the

domain be infinite.) To fix ideas, we shall assume that the base theory contains enough set

theory to code ordered pairs of individuals in the familiar Wiener-Kuratowski fashion. So we

set forth the following definition:

OP 1(x0, y0, z0) ≡df z0 = {{x0, y0}, {x0}}

We will now show that this allows us to characterize a new predicate OP β+1(a0, xβ, yβ) for

each ordinal β between 0 and α. Intuitively, OP β+1(a0, xβ, yβ) says that yβ codes the ‘ordered
39See Rayo 2006, p. 244.
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pair’ composed of the individual a0 and the higher-order entity xβ.

The new predicates are characterized axiomatically. For each β between 0 and α, we set

forth an existence axiom for OP β+1:

∀a0∀xβ∃yβ OP β+1(a0, xβ, yβ)

and a family of pairing axioms for OP β+1, consisting of a separate axiom for each δ < β:40

OP β+1(a0, xβ, yβ)↔ ∀vδ
(
yβ(vδ)↔ ∃uδ(xβ(uδ) & OP β(a0, uδ, vδ))

)
Intuitively, this says that yβ is the collection of codes for ordered pairs of a0 and members uδ

of xβ.

Why should we believe these axioms? Where β is finite, the answer is straightforward: We

can give an explicit analysis of OP β+1(a0, xβ, yβ) from which the relevant pairing axioms fol-

low and such that the existence axiom is implied by the comprehension scheme for entities of

type β+ 1. For instance OP 2(a0, x1, y1) can be analyzed as ∀v0(y1(v0)↔ ∃u0(x1(u0) & v0 =

〈a0, u0〉)). If we were willing to adopt infinitary languages, then this analysis could be con-

tinued to infinite types as well, thus eliminating the need for the new primitive predicates

OP β+1 and the axioms governing these predicates. Although we won’t adopt this strategy, it

shows that the axioms adopted above are not ad hoc but can be motivated in much the same

way as the comprehension axioms described in Section 6. Analogous considerations apply to

the other primitive predicates adopted below and the axioms governing them.

It will be useful to introduce a notational abbreviation. For any formula φ, we let:

φ(〈a0, xβ〉β) ≡df ∃yβ(OP β+1(a0, xβ, yβ) & φ(xβ))

One can then prove the following by induction on β:

Lemma 1 〈a0, xβ〉β = 〈b0, yβ〉β ↔ (a0 = b0 & xβ = yβ)
40In fact, for the special case in which β = θ + 1, the pairing axiom corresponding to δ = θ is all we need.

The same goes for the axioms concerning Unionβ+1, Projβ+1, and Transγ+1 below.
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Once we have pairs of the form 〈a0, xβ〉β in place, it is possible to introduce pairs of the form

〈xβ, yβ〉β. The intuitive idea is that we let 〈xβ, yβ〉β = 〈0, xβ〉β ∪ 〈1, yβ〉β. Formally, for each

β between 0 and α, we introduce the following notational abbreviation:

φ(〈xβ, yβ〉β) ≡df ∃zβ(Unionβ+1(〈0, xβ〉β, 〈1, yβ〉β, zβ) & φ(zβ))

Here 0 and 1 are arbitrary individuals of type 0 such that 0 6= 1. Unionβ+1 is a new atomic

predicate, characterized axiomatically. For each β between 0 and α, we set forth an existence

axiom for Unionβ+1:

∀xβ∀yβ∃zβ Unionβ+1(xβ, yβ, zβ)

and a family of union axioms for Unionβ+1, one for each δ < β:

Unionβ+1(xβ, yβ, zβ)→ ∀wδ(zβ(wδ)↔ (xβ(wδ) ∨ yβ(wδ)))

Next, it will be useful to introduce a family of projection functions Projβ+1(a0, yβ, xβ)

(β < α). Intuitively, Projβ+1(a0, yβ, xβ) says that yβ = 〈a0, xβ〉β ∪ zβ, for some zβ whose

transitive closure includes no pairs of the form 〈a0, x0〉0. Formally, we give an axiomatic

characterization of the projection functions. For each β between 0 and α, we set forth an

existence axiom for Projβ+1:

∀a0∀yβ∃xβ (Projβ+1(a0, yβ, xβ))

and a family of projection axioms for Projβ+1, one for each δ < β:

Projβ+1(a0, yβ, xβ)→ ∀zδ(xβ(zδ)↔ yβ(〈a0, zδ〉δ))

This allows us to introduce a useful notational abbreviation. For any formula φ,

φ(πβ
a0(yβ)) ≡df ∃xβ(Projβ+1(a0, yβ, xβ) & φ(xβ))
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By induction on β, it is easy to show that πβ
a0(〈a0, xβ〉β) = xβ. Similarly, one can show that

if zβ is the union of 〈a0, xβ〉β and 〈b0, yβ〉β, then πβ
a0(zβ) = xβ and πβ

b0
(zβ) = yβ. This makes

it straightforward to prove:

Lemma 2 〈xβ, yβ〉β = 〈zβ, wβ〉β ↔ (xβ = zβ & yβ = wβ)

As usual, ordered n-tuples for finite n can be characterized on the basis of ordered pairs.

For n > 2, we set forth the following abbreviation:

〈xβ1 , . . . , . . . , x
β
n〉β ≡df 〈x

β
1 , 〈x

β
2 , . . . , x

β
n〉β〉β.

Theorem 1 is now immediate.

B.3 Assignments and models

We will now characterize primitive predicates Modα+1(Mα) and Asgnβ+1(Aβ) corresponding

to the notions of model and assignment, as well as the interpretation operations [[t]]αMα and

[[t]]β
Aβ

.

Intuitively, a model for Lα is an entity Mα of type α which codes a domain and an

interpretation for each constant cγi of Lα (γ ≤ α). It will be defined in such a way as to allow

for the following decodings:

1. The domain of the model will be coded by a level-1 entity D1
Mα , which will be defined

by way of the projection function, as follows:

D1
Mα = πα‘∀’(M

α).

2. The interpretation of a constant cγi of Lα (γ ≤ α) will be coded by a level-α entity

[[cγi ]]αMα , which will be defined by way of the projection function, as follows:

[[cγi ]]αMα = παcγi
(Mα).
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Four requirements need to be imposed. Firstly, the domain D1
Mα of Mα must be non-empty.

Secondly, Mα must represent the interpretation of a constant cγi as being based entirely on

individuals from D1
Mα (more precisely: whenever z0 is in the ‘transitive closure’ of [[cγi ]]αMα ,

z0 must be in D1
M ). Thirdly, we need to insist that [[cγi ]]αMα(zδ) fail to be the case whenever

δ ≥ γ. Finally, there must be no ‘empty’ constants of type 0.

We do this formally by way of the primitive predicate Modα+1(Mα), which is character-

ized axiomatically. We begin with an existence axiom: ∃xα Modα+1(xα). Next, we introduce

an axiom to guarantee that the domain of a model is non-empty:

Modα+1(xα)→ ∃z0 D1
xα(z0)

We now need to capture the fact that the transitive closure of [[cγi ]]αMα consists entirely of

individuals in D1
Mα . But to do so it is necessary to characterize transitive closure. We proceed

by introducing a family of new primitive predicates Transγ+1(xγ , y0) (γ ≤ α). Intuitively,

Transγ+1(xγ , y0) expresses the thought that y0 is in the transitive closure of xγ . Formally,

Transγ+1 is characterized axiomatically. For γ = 0, we set forth a single axiom:

Trans1(x0, y0)↔ x0 = y0.

For 0 < γ ≤ α, we set forth an axiom for each δ < γ:

Transγ+1(xγ , y0)↔ ∃zδ(xγ(zδ) & Transγ(zδ, y0)).

With the notion of transitive closure in place, we may introduce the following axiom to

capture the fact that the transitive closure of [[cγi ]]αMα consists entirely of individuals in D1
Mα :

Modα+1(xα)→ ∀z0(Transα+1([[cγi ]]αxα , z
0)→ D1

xα(z0))

Next, we need to ensure that [[cγi ]]αMα(zδ) fails to be the case whenever δ ≥ γ. This requires

42



an axiom for each δ such that γ ≤ δ < α:

Modα+1(xα)→ ∀zδ(¬[[cγi ]]αxα(zδ))

Finally, we need an axiom to ensure that there are no ‘empty’ constants of type 0:

Modα+1(xα)→ ∃z0([[c0
i ]]
α
xα = z0)

This completes our characterization of Modα+1(xα).

The next step is to characterize the notion of a variable assignment. Intuitively, an

assignment for Lα is an entity Aβ of type β (for α = β+ 1) which codes an interpretation for

each variable xγi of Lα (γ < α). As in the case of models, it will be defined in such a way as

to allow for the following decoding:

[[xγi ]]β
Aβ

= πβ
xγi

(Aβ).

Two requirements need to be imposed. Firstly, we need to insist that [[xγi ]]β
Aβ

(zδ) fail to be

the case whenever δ ≥ γ. Secondly, every variable of type 0 must receive an assignment.

Formally, this is done by way of the primitive predicate Asgnβ+1(Aβ), which is charac-

terized axiomatically. We begin with an existence axiom:

∃yβ Asgnβ+1(yβ)

Next, we need to ensure that [[xγi ]]β
Aβ

(zδ) fails to be the case whenever δ ≥ γ. This requires

an axiom for each δ greater or equal to γ but below β:

Asgnβ+1(yβ)→ ∀zδ(¬[[xγi ]]β
yβ

(zδ))

Finally, we need an axiom to ensure that every variable of type 0 receives an assignment:

Asgnβ+1(yβ)→ ∃z0([[x0
i ]]
β
yβ

= z0)
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