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Intrusion Recovery for Database-backed Web Applications
Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha Narula, and Nickolai Zeldovich

MIT CSAIL

ABSTRACT
WARP is a system that helps users and administrators of web appli-
cations recover from intrusions such as SQL injection, cross-site
scripting, and clickjacking attacks, while preserving legitimate user
changes. WARP repairs from an intrusion by rolling back parts of
the database to a version before the attack, and replaying subsequent
legitimate actions. WARP allows administrators to retroactively
patch security vulnerabilities—i.e., apply new security patches to
past executions—to recover from intrusions without requiring the
administrator to track down or even detect attacks. WARP’s time-
travel database allows fine-grained rollback of database rows, and
enables repair to proceed concurrently with normal operation of a
web application. Finally, WARP captures and replays user input at
the level of a browser’s DOM, to recover from attacks that involve
a user’s browser. For a web server running MediaWiki, WARP re-
quires no application source code changes to recover from a range
of common web application vulnerabilities with minimal user input
at a cost of 24–27% in throughput and 2–3.2 GB/day in storage.

Categories and Subject Descriptors: H.3.5 [Information Stor-
age and Retrieval]: Online Information Services—Web-based ser-
vices.

General Terms: Security.

1 INTRODUCTION
Many web applications have security vulnerabilities that have yet
to be discovered. For example, over the past 4 years, an average
of 3–4 previously unknown cross-site scripting and SQL injection
vulnerabilities were discovered every single day [27]. Even if a web
application’s code contains no vulnerabilities, administrators may
misconfigure security policies, making the application vulnerable to
attack, or users may inadvertently grant their privileges to malicious
code [8]. As a result, even well-maintained applications can and
do get compromised [4, 31, 33]. Furthermore, after gaining unau-
thorized access, an attacker could use web application functionality
such as Google Apps Script [7, 9] to install persistent malicious code,
and trigger it at a later time, even after the underlying vulnerability
has been fixed.

Despite this prevalence of vulnerabilities that allows adversaries
to compromise web applications, recovering from a newly discov-
ered vulnerability is a difficult and manual process. Users or admin-
istrators must manually inspect the application for signs of an attack
that exploited the vulnerability, and if an attack is found, they must
track down the attacker’s actions and repair the damage by hand.
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Worse yet, this time-consuming process provides no guarantees that
every intrusion was found, or that all changes by the attacker were
reverted. As web applications take on more functionality of tradi-
tional desktop applications, intrusion recovery for web applications
will become increasingly important.

This paper presents WARP1, a system that automates repair from
intrusions in web applications. When an administrator learns of a
security vulnerability in a web application, he or she can use WARP
to check whether that vulnerability was recently exploited, and to
recover from any resulting intrusions. Users and administrators
can also use WARP to repair from configuration mistakes, such as
accidentally giving permissions to the wrong user. WARP works
by continuously recording database updates, and logging informa-
tion about all actions, such as HTTP requests and database queries,
along with their input and output dependencies. WARP constructs
a global dependency graph from this logged information, and uses
it to retroactively patch vulnerabilities by rolling back parts of the
system to an earlier checkpoint, fixing the vulnerability (e.g., patch-
ing a PHP file, or reverting unintended permission changes), and
re-executing any past actions that may have been affected by the fix.
This both detects any intrusions that exploited the vulnerability and
reverts their effects.

To illustrate the extent of challenges facing WARP in recovering
from intrusions in a web application, consider the following worst-
case attack on a company’s Wiki site that is used by both employees
and customers, where each user has privileges to edit only certain
pages or documents. An attacker logs into the Wiki site and exploits
a cross-site scripting (XSS) vulnerability in the Wiki software to
inject malicious JavaScript code into one of the publicly accessible
Wiki pages. When Alice, a legitimate user, views that page, her
browser starts running the attacker’s code, which in turn issues
HTTP requests to add the attacker to the access control list for every
page that Alice can access, and to propagate the attack code to some
of those pages. The adversary now uses his new privileges to further
modify pages. In the meantime, legitimate users (including Alice)
continue to access and edit Wiki pages, including pages modified or
infected by the attack.

Although the Retro system previously explored intrusion recovery
for command-line workloads on a single machine [14], WARP is
the first system to repair from such attacks in web applications.
Recovering from intrusions such as the example above requires
WARP to address three challenges not answered by Retro, as follows.

First, recovering from an intrusion (e.g., in Retro) typically re-
quires an expert administrator to detect the compromise and to track
down the source of the attack, by analyzing database entries and
web server logs. Worse yet, this process must be repeated every time
a new security problem is discovered, to determine if any attackers
might have exploited the vulnerability.

Second, web applications typically handle data on behalf of many
users, only a few of which may have been affected by an attack.
For a popular web application with many users, reverting all users’
changes since the attack or taking the application offline for repair
is not an option.

1WARP stands for Web Application RePair.
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Third, attacks can affect users’ browsers, making it difficult to
track down the extent of the intrusion purely on the server. In our
example attack, when Alice (or any other user) visits an infected
Wiki page, the web server cannot tell if a subsequent page edit re-
quest from Alice’s browser was caused by Alice or by the malicious
JavaScript code. Yet an ideal system should revert all effects of the
malicious code while preserving any edits that Alice made from the
same page in her browser.

To address these challenges, WARP builds on the rollback-and-
reexecute approach to repair taken by Retro, but solves a new
problem—repair for distributed, web-based applications—using
three novel ideas. First, WARP allows administrators to retroac-
tively apply security patches without having to manually track down
the source of each attack, or even having to decide whether someone
already exploited the newfound vulnerability. Retroactive patching
works by re-executing past actions using patched application code.
If an action re-executes the same way as it did originally, it did not
trigger the vulnerability, and requires no further re-execution. Ac-
tions that re-execute differently on patched application code could
have been intrusions that exploited the original bug, and WARP re-
pairs from this potential attack by recursively re-executing any other
actions that were causally affected.

Second, WARP uses a time-travel database to determine de-
pendencies between queries, such as finding the set of legitimate
database queries whose results were influenced by the queries that an
adversary issued. WARP uses these dependencies to roll back just the
affected parts of the database during repair. Precise dependencies are
crucial to minimize the amount of rollback and re-execution during
repair; otherwise, recovering from a week-old attack that affected
just one user would still require re-executing a week’s worth of
work. Precise dependency analysis and rollback is difficult because
database queries operate on entire tables that contain information
about all users, instead of individual data objects related to a single
user. WARP addresses this problem by partitioning tables on popular
lookup keys and using partitions to determine dependencies at a
finer granularity than entire database tables. By tracking multiple
versions of a row, WARP can also perform repair concurrently with
the normal operation of the web application.

Third, to help users recover from attacks that involve client ma-
chines, such as cross-site scripting, WARP performs DOM-level
replay of user input. In our example, WARP’s repair process will
first roll back any database changes caused by Alice’s browser, then
open a repaired (and presumably no longer malicious) version of
the Wiki page Alice visited, and replay the inputs Alice originally
provided to the infected page. Operating at the DOM level allows
WARP to replay user input even if the underlying page changed (e.g.,
the attack’s HTML and JavaScript is gone), and can often preserve
legitimate changes without any user input. WARP uses a client-side
browser extension to record and upload events to the server, and
uses a browser clone on the server to re-execute them.

To evaluate our ideas in practice, we built a prototype of WARP,
and ported MediaWiki, a popular Wiki application, to run on WARP.
We show that an administrator using WARP can fully recover from
six different attacks on MediaWiki, either by retroactively applying
a security patch (for software vulnerabilities), or by undoing a past
action (for administrator’s mistakes). WARP requires no application
changes, incurs a 24–27% CPU and 2–3.2 GB/day storage cost on a
single server, and requires little user input.

In the rest of this paper, we start with an overview of WARP’s
design and assumptions in §2. We describe the key aspects of
WARP’s design—retroactive patching, the time-travel database, and
browser re-execution—in §3, §4, and §5 respectively. §6 presents our
prototype implementation, and §7 explains how all parts of WARP fit

together in the context of an example. We evaluate WARP in §8, and
compare it to related work in §9. §10 discusses WARP’s limitations
and future work, and §11 concludes.

2 OVERVIEW
The goal of WARP is to recover the integrity of a web application
after it has been compromised by an adversary. More specifically,
WARP’s goal is to undo all changes made by the attacker to the
system, including all indirect effects of the attacker’s changes on
legitimate actions of other users (e.g., through cross-site scripting
vulnerabilities), and to produce a system state as if all the legitimate
changes still occurred, but the adversary never compromised the
application.

WARP’s workflow begins with the administrator deciding that he
or she wants to make a retroactive fix to the system, such as applying
a security patch or changing a permission in the past. At a high level,
WARP then rolls back the system to a checkpoint before the intended
time of the fix, applies the fix, and re-executes actions that happened
since that checkpoint, to construct a new system state. This produces
a repaired system state that would have been generated if all of the
recorded actions happened on the fixed system in the first place. If
some of the recorded actions exploited a vulnerability that the fix
prevents, those actions will no longer have the same effect in the
repaired system state, effectively undoing the attack.

If the application is non-deterministic, there may be many pos-
sible repaired states, and WARP only guarantees to provide one of
them, which may not necessarily be the one closest to the pre-repair
state. In other words, non-deterministic changes unrelated to the
attack may appear as a result of repair, and non-determinism may
increase the number of actions re-executed during repair, but the
repaired state is guaranteed to be free of effects of attack actions.
Also, due to changes in system state during repair, some of the origi-
nal actions may no longer make sense during replay, such as when
a user edits a Wiki page created by the attacker and that page no
longer exists due to repair. These actions are marked as conflicts and
WARP asks the user for help in resolving them.

WARP cannot undo disclosures of private data, such as if an adver-
sary steals sensitive information from Wiki pages, or steals a user’s
password. However, when private data is leaked, WARP can still
help track down affected users. Additionally, in the case of stolen
credentials, administrators can use WARP to retroactively change
the passwords of affected users (at the risk of undoing legitimate
changes), or revert just the attacker’s actions, if they can identify the
attacker’s IP address.

The rest of this section first provides a short review of Retro, and
then discusses how WARP builds on the ideas from Retro to repair
from intrusions in web applications, followed by a summary of the
assumptions made by WARP.

2.1 Review of Retro
Repairing from an intrusion in Retro, which operates at the operating
system level, involves five steps. First, during normal execution,
Retro records a log of all system calls and periodically checkpoints
the file system. Second, the administrator must detect the intrusion,
and track down the initial attack action (such as a user accidentally
running a malware binary). Third, Retro rolls back the files affected
by the attack to a checkpoint before the intrusion. Fourth, Retro
re-executes legitimate processes that were affected by the rolled-
back file (e.g., any process that read the file in the past), but avoids
re-executing the attack action. Finally, to undo indirect effects of
the attack, Retro finds any other processes whose inputs may have
changed as a result of re-execution, rolls back any files they modified,
and recursively re-executes them too.
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Figure 1: Overview of WARP’s design. Components introduced or modified by WARP are shaded; components borrowed from Retro are striped. Solid
arrows are the original web application interactions that exist without WARP. Dashed lines indicate interactions added by WARP for logging during
normal execution, and dotted lines indicate interactions added by WARP during repair.

A naı̈ve system that re-executed every action since the attack
would face two challenges. First, re-execution is expensive: if
the attack occurred a week ago, re-executing everything may take
another week. Second, re-execution may produce different results,
for reasons that have nothing to do with the attack (e.g., because
some process is non-deterministic). A different output produced
by one process can lead to a conflict when Retro tries to re-execute
subsequent processes, and would require user input to resolve. For
example, re-executing sshd can generate a different key for an ssh
connection, which makes it impossible to replay that connection’s
network packets. Thus, while Retro needs some processes to produce
different outputs (e.g., to undo the effects of an attack), Retro also
needs to minimize re-execution in order to minimize conflicts that
require user input, and to improve performance.

To reduce re-execution, Retro checks for equivalence of inputs
to a process before and after repair, to decide whether to re-execute
a process. If the inputs to a process during repair are identical to
the inputs originally seen by that process, Retro skips re-execution
of that process. Thus, even if some of the files read by a process
may have been changed during repair, Retro need not re-execute a
process that did not read the changed parts of the file.

Retro’s design separates the overall logic of rollback, repair, and
recursive propagation (the repair controller) from the low-level
details of file system rollback and process re-execution (handled by
individual repair managers). During normal execution, managers
record information about checkpoints, actions, and dependencies
into a global data structure called an action history graph, and
periodically garbage-collect old checkpoints and action history graph
entries. A node in the action history graph logically represents the
history of some part of the system over time, such as all versions
of a certain file or directory. The action history graph also contains
actions, such as a process executing for some period of time or
issuing a system call. An action has dependencies to and from
nodes at a specific time, indicating the versions of a node that either
influenced or were influenced by that action. During repair, the
repair controller consults the action history graph, and invokes the
managers as needed for rollback and re-execution. We refer the
reader to Kim et al. [14] for further details.

2.2 Repairing web applications
WARP builds on Retro’s repair controller to repair from intrusions
in web applications. Figure 1 illustrates WARP’s design, and its
relation to components borrowed from Retro (in particular, the repair
controller, and the structure of the action history graph). WARP’s
design involves the web browser, HTTP server, application code,
and database. Each of these four components corresponds to a repair

manager in WARP, which records enough information during normal
operation to perform rollback and re-execution during repair.

To understand how WARP repairs from an attack, consider the
example scenario we presented in §1, where an attacker uses a cross-
site scripting attack to inject malicious JavaScript code into a Wiki
page. When Alice visits that page, her browser runs the malicious
code, and issues HTTP requests to propagate the attack to another
page and to give the attacker access to Alice’s pages. The attacker
then uses his newfound access to corrupt some of Alice’s pages. In
the meantime, other users continue using the Wiki site: some users
visit the page containing the attack code, other users visit and edit
pages corrupted by the attack, and yet other users visit unaffected
pages.

Some time after the attack takes place, the administrator learns
that a cross-site scripting vulnerability was discovered by the appli-
cation’s developers, and a security patch for one of the source files—
say, calendar.php—is now available. In order to retroactively
apply this security patch, WARP first determines which runs of the
application code may have been affected by a bug in calendar.php.
WARP then applies the security patch to calendar.php, and con-
siders re-executing all potentially affected runs of the application.
In order to re-execute the application, WARP records sufficient in-
formation during the original execution2 about all of the inputs to
the application, such as the HTTP request. To minimize the chance
that the application re-executes differently for reasons other than
the security patch, WARP records and replays the original return val-
ues from non-deterministic function calls. §3 discusses how WARP
implements retroactive patching in more detail.

Now consider what happens when WARP re-executes the appli-
cation code for the attacker’s initial request. Instead of adding the
attacker’s JavaScript code to the Wiki page as it did during the
original execution, the newly patched application code will behave
differently (e.g., pass the attacker’s JavaScript code through a saniti-
zation function), and then issue an SQL query to store the resulting
page in the database. This SQL query must logically replace the
application’s original query that stored an infected page, so WARP
first rolls back the database to its state before the attack took place.

After the database has been rolled back, and the new query has
executed, WARP must determine what other parts of the system were
affected by this changed query. To do this, during original execution
WARP records all SQL queries, along with their results. During
repair, WARP re-executes any queries it determines may have been
affected by the changed query. If a re-executed query produces
results different from the original execution, WARP re-executes the

2We use the terms “original execution” and “normal execution” in-
terchangeably.
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corresponding application run as well, such as Alice’s subsequent
page visit to the infected page. §4 describes the design of WARP’s
time-travel database in more detail, including how it determines
query dependencies, how it re-executes queries in the past, and how
it minimizes rollback.

When the application run for Alice’s visit to the infected page
is re-executed, it generates a different HTTP response for Alice’s
browser (with the attack now gone). WARP must now determine
how Alice’s browser would behave given this new page. Simply
undoing all subsequent HTTP requests from Alice’s browser would
needlessly undo all of her legitimate work, and asking Alice to
manually check each HTTP request that her browser made is not
practical either. To help Alice recover from such attacks, WARP
provides a browser extension that records all events for each open
page in her browser (such as HTTP requests and user input) and
uploads this information to the server. If WARP determines that
her browser may have been affected by an attack, it starts a clone
of her browser on the server, and re-executes her original input on
the repaired page, without having to involve her. Since Alice’s re-
executed browser will no longer issue the HTTP requests from the
XSS attack, WARP will recursively undo the effects of those requests
as well. §5 explains how WARP’s browser extension works in more
detail.

If a user’s actions depend on changes by the attacker, WARP
may be unable to replay the user’s original inputs in the browser
clone. For example, if the attacker created a new Wiki page, and a
curious user subsequently edited that page, WARP will not be able
to re-execute the user’s actions once the attack is undone. In this
case, WARP signals a conflict and asks the user (or administrator)
to resolve it. WARP cannot rely on users being always online, so
WARP queues the conflict, and proceeds with repair.

When the user next logs in, WARP redirects the user to a conflict
resolution page. To resolve a conflict, the user is presented with
the original page they visited, the newly repaired version of that
page, and the original action that the server is unable to replay on
the new page, and is asked to specify what actions they would like
to perform instead. For example, the user can ask WARP to cancel
that page visit altogether. Users or administrators can also use the
same mechanism to undo their own actions from the past, such as if
an administrator accidentally gave administrative privileges to a user.
§5 further discusses WARP’s handling of conflicts and user-initiated
undo.

2.3 Assumptions
To recover from intrusions, WARP makes two key assumptions. First,
WARP assumes that the adversary does not exploit any vulnerabilities
in the HTTP server, database, or the application’s language runtime,
does not cause the application code to execute arbitrary code (e.g.,
spawning a Unix shell), and does not corrupt WARP’s log. Most
web application vulnerabilities fall into this category [10], and §8
shows how WARP can repair from common attacks such as cross-site
scripting, SQL injection, cross-site request forgery, and clickjacking.

Second, to recover from intrusions that involve a user’s browser,
our prototype requires the user to install a browser extension that
uploads dependency information to WARP-enabled web servers.
In principle, the same functionality could be performed purely in
JavaScript (see §10), but for simplicity, our prototype uses a separate
extension. WARP’s server trusts each browser’s log information only
as much as it trusts the browser’s HTTP requests. This ensures that
a malicious user cannot gain additional privileges by uploading a
log containing user input that tries to issue different HTTP requests.

If one user does not have our prototype’s extension installed, but
gets compromised by a cross-site scripting attack, WARP will not

be able to precisely undo the effects of malicious JavaScript code
in that user’s browser. As a result, server-side state accessible to
that user (e.g., that user’s Wiki pages or documents) may remain
corrupted. However, WARP will still inform the user that his or her
browser might have received a compromised reply from the server
in the past. At that point, the user can manually inspect the set of
changes made to his data from that point onward, and cancel his or
her previous HTTP requests, if unwanted changes are detected.

3 RETROACTIVE PATCHING
To implement retroactive patching, WARP’s application repair man-
ager must be able to determine which runs of an application may
have been affected by a given security patch, and to re-execute them
during repair. To enable this, WARP’s application repair manager
interposes on the application’s language runtime (PHP in our current
prototype) to record any dependencies to and from the application,
including application code loaded at runtime, queries issued to the
database, and HTTP requests and responses sent to or from the
HTTP server.

3.1 Normal execution
During normal execution, the application repair manager records
three types of dependencies for the executing application code (along
with the dependency’s data, used later for re-execution). First, the
repair manager records an input dependency to the HTTP request
and an output dependency to the HTTP response for this run of
the application code (along with all headers and data). Second, for
each read or write SQL query issued by the application, the repair
manager records, respectively, input or output dependencies to the
database. Third, the repair manager records input dependencies on
the source code files used by the application to handle its specific
HTTP request. This includes the initial PHP file invoked by the
HTTP request, as well as any additional PHP source files loaded at
runtime through require or include statements.

In addition to recording external dependencies, WARP’s applica-
tion manager also records certain internal functions invoked by the
application code, to reduce non-determinism during re-execution.
This includes calls to functions that return the current date or time,
functions that return randomness (such as mt rand in PHP), and
functions that generate unique identifiers for HTTP sessions (such
as session start in PHP). For each of these functions, the ap-
plication manager records the arguments and return value. This
information is used to avoid re-executing these non-deterministic
functions during repair, as we will describe shortly.

3.2 Initiating repair
To initiate repair through retroactive patching, the administrator
needs to provide the filename of the buggy source code file, a patch
to that file which removes the vulnerability, and a time at which
this patch should be applied (by default, the oldest time available
in WARP’s log). In response, the application repair manager adds
a new action to WARP’s action history graph, whose re-execution
would apply the patch to the relevant file at the specified (past)
time. The application repair manager then requests that WARP’s
repair controller re-execute the newly synthesized action. WARP
will first re-execute this action (i.e., apply the patch to the file in
question), and then use dependencies recorded by the application
repair manager to find and re-execute all runs of the application that
loaded the patched source code file.

3.3 Re-execution
During re-execution, the application repair manager invokes the
application code in much the same way as during normal execution,
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with two differences. First, all inputs and outputs to and from the
application are handled by the repair controller. This allows the
repair controller to determine when re-execution is necessary, such
as when a different SQL query is issued during repair, and to avoid
re-executing actions that are not affected or changed.

Second, the application repair manager tries to match up calls to
non-deterministic functions during re-execution with their counter-
parts during the original run. In particular, when a non-deterministic
function is invoked during re-execution, the application repair man-
ager searches for a call to the same function, from the same caller
location. If a match is found, the application repair manager uses
the original return value in lieu of invoking the function. The repair
manager matches non-deterministic function calls from the same call
site in-order (i.e., two non-deterministic function calls that happened
in some order during re-execution will always be matched up to
function calls in that same order during the original run).

One important aspect of this heuristic is that it is strictly an
optimization. Even if the heuristic fails to match up any of the non-
deterministic function calls, the repair process will still be correct,
at the cost of increased re-execution (e.g., if the application code
generates a different HTTP cookie during re-execution, WARP will
be forced to re-execute all page visits that used that cookie).

4 TIME-TRAVEL DATABASE
The job of WARP’s time-travel database is to checkpoint and roll
back the application’s persistent data, and to re-execute past SQL
queries during repair. Its design is motivated by two requirements:
first, the need to minimize the number of SQL queries that have
to be re-executed during repair, and second, the need to repair a
web application concurrently with normal operation. This section
discusses how WARP addresses these requirements.

4.1 Reducing re-execution
Minimizing the re-execution of SQL queries during repair is com-
plicated by the fact that clients issue queries over entire tables, and
tables often contain data for many independent users or objects of
the same type.

There are two reasons why WARP may need to re-execute an
SQL query. First, an SQL query that modifies the database (e.g.,
an INSERT, UPDATE, or DELETE statement) needs to be re-executed
in order to re-apply legitimate changes to a database after rollback.
Second, an SQL query that reads the database (e.g., a SELECT state-
ment, or any statement with a WHERE clause) needs to be re-executed
if the data read by that statement may have changed as a result of
repair.

To minimize re-execution of write SQL queries, the database
manager performs fine-grained rollback, at the level of individual
rows in a table. This ensures that, if one row is rolled back, it may not
be necessary to re-execute updates to other rows in the same table.
One complication lies in the fact that SQL has no inherent way of
naming unique rows in a database. To address this limitation, WARP
introduces the notion of a row ID, which is a unique name for a row
in a table. Many web applications already use synthetic primary keys
which can serve as row IDs; in this case, WARP uses that primary
key as a row ID in that table. If a table does not already have a
suitable row ID column, WARP’s database manager transparently
adds an extra row id column for this purpose.

To minimize re-execution of SQL queries that read the database,
the database manager logically splits the table into partitions, based
on the values of one or more of the table’s columns. During repair,
the database manager keeps track of the set of partitions that have
been modified (as a result of either rollback or re-execution), and
avoids re-executing SQL queries that read from only unmodified

partitions. To determine the partitions read by an SQL query, the
database manager inspects the query’s WHERE clause. If the database
manager cannot determine what partitions a query might read based
on the WHERE clause, it conservatively assumes that the query reads
all partitions.

In our current prototype, the programmer or administrator must
manually specify the row ID column for each table (if they want to
avoid the overhead of an extra row id column created by WARP),
and the partitioning columns for each table (if they want to benefit
from the partitioning optimization). A partitioning column need not
be the same column as the row ID. For example, a Wiki application
may store Wiki pages in a table with four columns: a unique page ID,
the page title, the user ID of the last user who edited the page, and
the contents of that Wiki page. Because the title, the last editor’s user
ID, and the content of a page can change, the programmer would
specify the immutable page ID as the row ID column. However, the
application’s SQL queries may access pages either by their title or
by the last editor’s user ID, so the programmer would specify them
as the partitioning columns.

4.2 Re-executing multi-row queries
SQL queries can access multiple rows in a table at once, if the query’s
WHERE clause does not guarantee a unique row. Re-executing such
queries—where WARP cannot guarantee by looking at the WHERE
clause that only a single row is involved—poses two challenges.
First, in the case of a query that may read multiple rows, WARP
must ensure that all of those rows are in the correct state prior to
re-executing that query. For instance, if some of those rows have
been rolled back to an earlier version due to repair, but other rows
have not been rolled back since they were not affected, naı̈vely re-
executing the multi-row query can produce incorrect results, mixing
data from old and new rows. Second, in the case of a query that may
modify multiple rows, WARP must roll back all of those rows prior
to re-executing that query, and subsequently re-execute any queries
that read those rows.

To re-execute multi-row read queries, WARP performs continuous
versioning of the database, by keeping track of every value that ever
existed for each row. When re-executing a query that accesses some
rows that have been rolled back, and other rows that have not been
touched by repair, WARP allows the re-executed query to access the
old value of the untouched rows from precisely the time that query
originally ran. Thus, continuous versioning allows WARP’s database
manager to avoid rolling back and reconstructing rows for the sole
purpose of re-executing a read query on their old value.

To re-execute multi-row write queries, WARP performs two-phase
re-execution by splitting the query into two parts: the WHERE clause,
and the actual write query. During normal execution, WARP records
the set of row IDs of all rows affected by a write query. During
re-execution, WARP first executes a SELECT statement to obtain
the set of row IDs matching the new WHERE clause. These row
IDs correspond to the rows that would be modified by this new
write query on re-execution. WARP uses continuous versioning to
precisely roll back both the original and new row IDs to a time just
before the write query originally executed. It then re-executes the
write query on this rolled-back database.

To implement continuous versioning, WARP augments every table
with two additional columns, start time and end time, which
indicate the time interval during which that row value was valid.
Each row R in the original table becomes a series of rows in the
continuously versioned table, where the end time value of one
version of R is the start time value of the next version of R. The
column end time can have the special value∞, indicating that row
version is the current value of R. During normal execution, if an SQL
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query modifies a set of rows, WARP sets end time for the modified
rows to the current time, with the rest of the columns retaining their
old values, and inserts a new set of rows with start time set to
the current time, end time set to∞, and the rest of the columns
containing the new versions of those rows. When a row is deleted,
WARP simply sets end time to the current time. Read queries
during normal execution always access rows with end time =∞.
Rolling back a row to time T involves deleting versions of the row
with start time ≥ T and setting end time←∞ for the version
with the largest remaining end time.

Since WARP’s continuous versioning database grows in size as the
application makes modifications, the database manager periodically
deletes old versions of rows. Since repair requires that both the old
versions of database rows and the action history graph be available
for rollback and re-execution, the database manager deletes old rows
in sync with WARP’s garbage-collection of the action history graph.

4.3 Concurrent repair and normal operation
Since web applications are often serving many users, it’s undesirable
to take the application offline while recovering from an intrusion.
To address this problem, WARP’s database manager introduces the
notion of repair generations, identified by an integer counter, which
are used to denote the state of the database after a given number of
repairs. Normal execution happens in the current repair generation.
When repair is initiated, the database manager creates the next repair
generation (by incrementing the current repair generation counter
by one), which creates a fork of the current database contents. All
database operations during repair are applied to the next genera-
tion. If, during repair, users make changes to parts of the current
generation that are being repaired, WARP will re-apply the users’
changes to the next generation through re-execution. Changes to
parts of the database not under repair are copied verbatim into the
next generation. Once repair is near completion, the web server
is briefly suspended, any final requests are re-applied to the next
generation, the current generation is set to the next generation, and
the web server is resumed.

To implement repair generations, WARP augments all tables with
two additional columns, start gen and end gen, which indicate
the generations in which a row is valid. Much as with continuous
versioning, end gen =∞ indicates that the row has not been super-
seded in any later generation. During normal execution, queries exe-
cute over rows that match start gen ≤ current and end gen ≥
current . During repair, if a row with start gen < next and
end gen ≥ next is about to be updated or deleted (due to either re-
execution or rollback), the existing row’s end gen is set to current ,
and, in case of updates, the update is executed on a copy of the row
with start gen = next .

4.4 Rewriting SQL queries
WARP intercepts all SQL queries made by the application, and
transparently rewrites them to implement database versioning and
generations. For each query, WARP determines the time and genera-
tion in which the query should execute. For queries issued as part of
normal execution, WARP uses the current time and generation. For
queries issued as part of repair, WARP’s repair controller explicitly
specifies the time for the re-executed query, and the query always
executes in the next generation.

To execute a SELECT query at time T in generation G, WARP
restricts the query to run over currently valid rows by augmenting
its WHERE clause with AND start time ≤ T ≤ end time AND

start gen ≤ G ≤ end gen.
During normal execution, on an UPDATE or DELETE query at

time T (the current time), WARP implements versioning by mak-
ing a copy of the rows being modified. To do this, WARP sets

the end time of rows being modified in the current generation
to T , and inserts copies of the rows with start time ← T ,
end time ← ∞, start gen ← G, and end gen ← ∞, where
G = current . WARP also restricts the WHERE clause of such queries
to run over currently valid rows, as with SELECT queries above. On
an INSERT query, WARP sets start time, end time, start gen,
and end gen columns of the inserted row as for UPDATE and DELETE
queries above.

To execute an UPDATE or DELETE query during repair at time
T , WARP must first preserve any rows being modified that are
also accessible from the current generation, so that they continue
to be accessible to concurrently executing queries in the current
generation. To do so, WARP creates a copy of all matching rows,
with end gen set to current , sets the start gen of the rows to be
modified to next , and then executes the UPDATE or DELETE query as
above, except in generation G = next . Executing an INSERT query
during repair does not require preserving any existing rows; in this
case, WARP simply performs the same query rewriting as for normal
execution, with G = next .

5 BROWSER RE-EXECUTION
To help users recover from attacks that took place in their browsers,
WARP uses two ideas. First, when WARP determines that a past
HTTP response was incorrect, it re-executes the changed web page
in a cloned browser on the server, in order to determine how that
page would behave as a result of the change. For example, if a new
HTTP response no longer contains an adversary’s JavaScript code
(e.g., because the cross-site scripting vulnerability was retroactively
patched), re-executing the page in a cloned browser will not generate
the HTTP requests that the attacker’s JavaScript code may have
originally initiated, and will thus allow WARP to undo those requests.

Second, WARP performs DOM-level replay of user input when
re-executing pages in a browser. By recording and re-executing user
input at the level of the browser’s DOM, WARP can better capture
the user’s intent as to what page elements the user was trying to
interact with. A naı̈ve approach that recorded pixel-level mouse
events and key strokes may fail to replay correctly when applied to
a page whose HTML code has changed slightly. On the other hand,
DOM elements are more likely to be unaffected by small changes to
an HTML page, allowing WARP to automatically re-apply the user’s
original inputs to a modified page during repair.

5.1 Tracking page dependencies
In order to determine what should be re-executed in the browser
given some changes on the server, WARP needs to be able to correlate
activity on the server with activity in users’ browsers.

First, to correlate requests coming from the same web browser,
WARP’s browser extension assigns each client a unique client ID
value. The client ID also helps WARP keep track of log information
uploaded to the server by different clients. The client ID is a long
random value to ensure that an adversary cannot guess the client ID
of a legitimate user and upload logs on behalf of that user.

Second, WARP also needs to correlate different HTTP requests
coming from the same page in a browser. To do this, WARP intro-
duces the notion of a page visit, corresponding to the period of time
that a single web page is open in a browser frame (e.g., a tab, or a
sub-frame in a window). If the browser loads a new page in the same
frame, WARP considers this to be a new visit (regardless of whether
the frame navigated to a different URL or to the same URL), since
the frame’s page starts executing in the browser anew. In particular,
WARP’s browser extension assigns each page visit a visit ID, unique
within a client. Each page visit can also have a dependency on a
previous page visit. For example, if the user clicks on a link as part
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of page visit #1, the browser extension creates page visit #2, which
depends on page visit #1. This allows WARP to check whether page
visit #2 needs to re-execute if page visit #1 changes. If the user
clicks on more links, and later hits the back button to return to the
page from visit #2, this creates a fresh page visit #N (for the same
page URL as visit #2), which also depends on visit #1.

Finally, WARP needs to correlate HTTP requests issued by the
web browser with HTTP requests received by the HTTP server, for
tracking dependencies. To do this, the WARP browser extension
assigns each HTTP request a request ID, unique within a page visit,
and sends the client ID, visit ID, and request ID along with every
HTTP request to the server via HTTP headers.

On the server side, the HTTP server’s manager records de-
pendencies between HTTP requests and responses (identified by
a 〈client id , visit id , request id〉 tuple) and runs of application
code (identified by a 〈pid , count〉 tuple, where pid is the PID of
the long-lived PHP runtime process, and count is a unique counter
identifying a specific run of the application).

5.2 Recording events
During normal execution, the browser extension performs two tasks.
First, it annotates all HTTP requests, as described above, with HTTP
headers to help the server correlate client-side actions with server-
side actions. Second, it records all JavaScript events that occur
during each page visit (including timer events, user input events,
and postMessage events). For each event, the extension records
event parameters, including time and event type, and the XPath of
the event’s target DOM element, which helps perform DOM-level
replay during repair.

The extension uploads its log of JavaScript events for each page
visit to the server, using a separate protocol (tagged with the client
ID and visit ID). On the server side, WARP’s HTTP server records
the submitted information from the client into a separate per-client
log, which is subject to its own storage quota and garbage-collection
policy. This ensures that a single client cannot monopolize log
space on the server, and more importantly, cannot cause a server to
garbage-collect recent log entries from other users needed for repair.

Although the current WARP prototype implements client-side
logging using an extension, the extension does not circumvent any
of the browser’s privacy policies. All of the information recorded by
WARP’s browser extension can be captured at the JavaScript level
by event handlers, and in future work, we hope to implement an
extension-less version of WARP’s browser logging by interposing
on all events using JavaScript rewriting.

5.3 Server-side re-execution
When WARP determines that an HTTP response changed during
repair, the browser repair manager spawns a browser on the server
to re-execute the client’s uploaded browser log for the affected page
visit. This re-execution browser loads the client’s HTTP cookies,
loads the same URL as during original execution, and replays the
client’s original DOM-level events. The user’s cookies are loaded
either from the HTTP server’s log, if re-executing the first page for a
client, or from the last browser page re-executed for that client. The
re-executed browser runs in a sandbox, and only has access to the
client’s HTTP cookie, ensuring that it gets no additional privileges
despite running on the server. To handle HTTP requests from the
re-executing browser, the HTTP server manager starts a separate
copy of the HTTP server, which passes any HTTP requests to the
repair controller, as opposed to executing them directly. This allows
the repair controller to prune re-execution for identical requests or
responses.

During repair, WARP uses a re-execution extension in the server-
side browser to replay the events originally recorded by the user’s

browser. For each event, the re-execution extension tries to locate
the appropriate DOM element using its XPath. For keyboard input
events into text fields, the re-execution extension performs a three-
way text merge between the original value of the text field, the new
value of the text field during repair, and the user’s original keyboard
input. For example, this allows the re-execution extension to replay
the user’s changes to a text area when editing a Wiki page, even if
the Wiki page in the text area is somewhat different during repair.

If, after repair, a user’s HTTP cookie in the cloned browser differs
from the user’s cookie in his or her real browser (based on the
original timeline), WARP queues that client’s cookie for invalidation,
and the next time the same client connects to the web server (based
on the client ID), the client’s cookie will be deleted. WARP assumes
that the browser has no persistent client-side state aside from the
cookie. Repair of other client-side state could be similarly handled
at the expense of additional logging and synchronization.

5.4 Conflicts
During repair, the server-side browser extension may fail to re-
execute the user’s original inputs, if the user’s actions somehow
depended on the reverted actions of the attacker. For example, in the
case of a Wiki page, the user may have inadvertently edited a part of
the Wiki page that the attacker modified. In this situation, WARP’s
browser repair manager signals a conflict, stops re-execution of that
user’s browser, and requires the user (or an administrator, in lieu of
the user) to resolve the conflict.

Since users are not always online, WARP queues the conflict
for later resolution, and proceeds with repair, assuming, for now,
that subsequent requests from that user’s browser do not change.
When the user next logs into the web application (based on the
client ID), the application redirects the user to a conflict resolution
page, which tells the user about the page on which the conflict arose,
and the user’s input which could not be replayed. The user must
then indicate how the conflict should be resolved. For example, the
user can indicate that they would like to cancel the conflicted page
visit altogether (i.e., undo all of its HTTP requests), and apply the
legitimate changes (if any) to the current state of the system by hand.

While WARP’s re-execution extension flags conflicts that arise
during replay of input from the user, some applications may have
important information that must be correctly displayed to the user.
For example, if an online banking application displayed $1,000 as
the user’s account balance during the original execution, but during
repair it is discovered that the user’s balance should have been
$2,000, WARP will not raise a re-execution conflict. An application
programmer, however, can provide a UI conflict function, which,
given the old and new versions of a web page, can signal a conflict
even if all of the user input events replay correctly. For the example
applications we evaluated with WARP, we did not find the need to
implement such conflict functions.

5.5 User-initiated repair
In some situations, users or administrators may want to undo their
own past actions. For example, an administrator may have acciden-
tally granted administrative privileges to a user, and later may want
to revert any actions that were allowed due to this mis-configuration.
To recover from this mistake, the administrator can use WARP’s
browser extension to specify a URL of the page on which the mis-
take occurred, find the specific page visit to that URL which led
to the mistake, and request that the page visit be canceled. Our
prototype does not allow replacing one past action with another,
although this is mostly a UI limitation.

Allowing users to undo their own actions runs the risk of creating
more conflicts, if other users’ actions depended on the action in ques-
tion. To prevent cascading conflicts, WARP prohibits a regular user
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Component Lines of code
Firefox extension 2,000 lines of JavaScript / HTML
Apache logging module 900 lines of C
PHP runtime / SQL rewriter 1,400 lines of C and PHP
PHP re-execution support 200 lines of Python
Repair managers: 4,300 lines of Python, total

Retro’s repair controller 400 lines of Python
PHP manager 800 lines of Python
Apache manager 300 lines of Python
Database manager 1,400 lines of Python and PHP
Firefox manager 400 lines of Python
Retroactive patching manager 200 lines of Python
Others 800 lines of Python

Table 1: Lines of code for different components of the WARP prototype,
excluding blank lines and comments.

(as opposed to an administrator) from initiating repair that causes
conflicts for other users. WARP’s repair generation mechanism al-
lows WARP to try repairing the server-side state upon user-initiated
repair, and to abort the repair if any conflicts arise. The only excep-
tion to this rule is if the user’s repair is a result of a conflict being
reported to that user on that page, in which case the user is allowed
to cancel all actions, even if it propagates a conflict to another user.

6 IMPLEMENTATION
We have implemented a prototype of WARP which builds on Retro.
Our prototype works with the Firefox browser on the client, and
Apache, PostgreSQL, and PHP on the server. Table 1 shows the
lines of code for the different components of our prototype.

Our Firefox extension intercepts all HTTP requests during normal
execution and adds WARP’s client ID, visit ID, and request ID
headers to them. It also intercepts all browser frame creations, and
adds an event listener to the frame’s window object. This event
listener gets called on every event in the frame, and allows us to
record the event. During repair, the re-execution extension tries
to match up HTTP requests with requests recorded during normal
execution, and adds the matching request ID header when a match
is found. Our current conflict resolution UI only allows the user to
cancel the conflicting page visit; other conflict resolutions must be
performed by hand. We plan to build a more comprehensive UI, but
canceling has been sufficient for now.

In our prototype, the user’s client-side browser and the server’s
re-execution browser use the same version of Firefox. While this
has simplified the development of our extension, we expect that
DOM-level events are sufficiently standardized in modern browsers
that it would be possible to replay events across different browsers,
such as recent versions of Firefox and Chrome. We have not verified
this to date, however.

Our time-travel database and repair generations are implemented
on top of PostgreSQL using SQL query rewriting. After the appli-
cation’s database tables are installed, WARP extends the schema
of all the tables to add its own columns, including row id if no
existing column was specified as the row ID by the programmer. All
database queries are rewritten to update these columns appropriately
when the rows are modified. The approach of using query rewriting
was chosen to avoid modifying the internals of the Postgres server,
although an implementation inside of Postgres would likely have
been more efficient.

To allow multiple versions of a row from different times or gener-
ations to exist in the same table, WARP modifies database uniqueness
constraints and primary keys specified by the application to include
the end ts and end gen columns. While this allows multiple ver-
sions of the same row over time to co-exist in the same table, WARP
must now detect dependencies between queries through uniqueness
violations. In particular, WARP checks whether the success (or

failure) of each INSERT query would change as a result of other
rows inserted or deleted during repair, and rolls back that row if so.
WARP needs to consider INSERT statements only for partitions under
repair. Our time-travel database implementation does not support
foreign keys, so it disables them. We plan to implement foreign
key constraints in the future in a database trigger. Our design is
compatible with multi-statement transactions; however, our current
implementation does not support them, and we did not need them
for our current applications.

WARP extends Apache’s PHP module to log HTTP requests that
invoke PHP scripts. WARP intercepts a PHP script’s calls to database
functions, mt rand, date and time functions, and session start,
by rewriting all scripts to call a wrapper function that invokes the
wrapped function and logs the arguments and results.

7 PUTTING IT ALL TOGETHER
We now illustrate how different components of WARP work together
in the context of a simple Wiki application. In this case, no attack
takes place, but most of the steps taken by WARP remain the same
as in a case with an attack.

Consider a user who, during normal execution, clicks on a link
to edit a Wiki page. The user’s browser issues an HTTP request to
edit.php. WARP’s browser extension intercepts this request, adds
client ID, visit ID, and request ID HTTP headers to it, and records
the request in its log (§5.1). The web server receives this request and
dispatches it to WARP’s PHP module. The PHP module assigns this
request a unique server-side request ID, records the HTTP request
information along with the server-side request ID, and forwards the
request to the PHP runtime.

As WARP’s PHP runtime executes edit.php, it intercepts three
types of operations. First, for each non-deterministic function call, it
records the arguments and the return value (§3.1). Second, for each
operation that loads an additional PHP source file, it records the file
name (§3.1). Third, for each database query, it records the query,
rewrites the query to implement WARP’s time-travel database, and
records the result set and the row IDs of all rows modified by the
query (§4).

Once edit.php completes execution, the response is recorded
by the PHP module and returned to the browser. When the browser
loads the page, WARP’s browser extension attaches handlers to
intercept user input, and records all intercepted actions in its log
(§5.2). The WARP browser extension periodically uploads its log to
the server.

When a patch fixing a vulnerability in edit.php becomes avail-
able, the administrator instructs WARP to perform retroactive patch-
ing. The WARP repair controller uses the action history graph to
locate all PHP executions that loaded edit.php and queues them
for re-execution; the user edit action described above would be
among this set.

To re-execute this page in repair mode, the repair controller
launches a browser on the server, identical to the user’s browser,
and instructs it to replay the user session. The browser re-issues the
same requests, and the WARP browser extension assigns the same
IDs to the request as during normal execution (§5.3). The WARP
PHP module forwards this request to the repair controller, which
launches WARP’s PHP runtime to re-execute it.

During repair, the PHP runtime intercepts two types of operations.
For non-deterministic function calls, it checks whether the same
function was called during the original execution, and if so, re-uses
the original return value (§3.3). For database queries, it forwards the
query to the repair controller for re-execution.

To re-execute a database query, the repair controller determines
the rows and partitions that the query depends on, rolls them back
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Attack type CVE Description Fix

Reflected XSS 2009-0737 The user options (wgDB*) in the live web-based installer
(config/index.php) are not HTML-escaped.

Sanitize all user options with htmlspecialchars() (r46889).

Stored XSS 2009-4589 The name of contribution link (Special:Block?ip) is not
HTML-escaped.

Sanitize the ip parameter with htmlspecialchars() (r52521).

CSRF 2010-1150 HTML/API login interfaces do not properly handle an unin-
tended login attempt (login CSRF).

Include a random challenge token in a hidden form field for every
login attempt (r64677).

Clickjacking 2011-0003 A malicious website can embed MediaWiki within an
iframe.

Add X-Frame-Options:DENY to HTTP headers (r79566).

SQL injection 2004-2186 The language identifier, thelang, is not properly sanitized in
SpecialMaintenance.php.

Sanitize the thelang parameter with wfStrencode().

ACL error — Administrator accidentally grants admin privileges to a user. Revoke the user’s admin privileges.

Table 2: Security vulnerabilities and corresponding fixes for MediaWiki. Where available, we indicate the revision number of each fix in MediaWiki’s
subversion repository, in parentheses.

to the right version (for a write operation), rewrites the query to
support time-travel and generations, executes the resulting query,
and returns the result to the PHP runtime (§4).

After a query re-executes, the repair controller uses the action
history graph to find other database queries that depended on the
partitions affected by the re-executed query (assuming it was a write).
For each such query, the repair controller checks whether their return
values would now be different. If so, it queues the page visits that
issued those queries for re-execution.

After edit.php completes re-execution, the HTTP response is
returned to the repair controller, which forwards it to the re-executing
browser via the PHP module. Once the response is loaded in the
browser, the WARP browser extension replays the original user
inputs on that page (§5.3). If conflicts arise, WARP flags them for
manual repair (§5.4).

WARP’s repair controller continues repairing pages in this manner
until all affected pages are re-executed. Even though no attack took
place in this example, this re-execution algorithm would repair from
any attack that exploited the vulnerability in edit.php.

8 EVALUATION

In evaluating WARP, we answer several questions. §8.1 shows what
it takes to port an existing web application to WARP. §8.2 shows
what kinds of attacks WARP can repair from, what attacks can be
detected and fixed with retroactive patching, how much re-execution
may be required, and how often users need to resolve conflicts. §8.3
shows the effectiveness of WARP’s browser re-execution in reducing
user conflicts. §8.4 compares WARP with the state-of-the-art work
in data recovery for web applications [1]. Finally, §8.5 measures
WARP’s runtime cost.

We ported a popular Wiki application, MediaWiki [21], to use
WARP, and used several previously discovered vulnerabilities to
evaluate how well WARP can recover from intrusions that exploit
those bugs. The results show that WARP can recover from six
common attack types, that retroactive patching detects and repairs
all tested software bugs, and that WARP’s techniques reduce re-
execution and user conflicts. WARP’s overheads are 24–27% in
throughput and 2–3.2 GB/day of storage.

8.1 Application changes
We did not make any changes to MediaWiki source code to port it
to WARP. To choose row IDs for each MediaWiki table, we picked
a primary or unique key column whose value MediaWiki assigns
once during creation of a row and never overwrites. If there is no
such column in a table, WARP adds a new row id column to the
table, transparent to the application. We chose partition columns for
each table by analyzing the typical queries made by MediaWiki and
picking the columns that are used in the WHERE clauses of a large

number of queries on that table. In all, this required a total of 89
lines of annotation for MediaWiki’s 42 tables.

8.2 Recovery from attacks
To evaluate how well WARP can recover from intrusions, we con-
structed six worst-case attack scenarios based on five recent vul-
nerabilities in MediaWiki and one configuration mistake by the
administrator, shown in Table 2. After each attack, users browse the
Wiki site, both reading and editing Wiki pages. Our scenarios pur-
posely create significant interaction between the attacker’s changes
and legitimate users, to stress WARP’s recovery aspects. If WARP
can disentangle these challenging attacks, it can also handle any
simpler attack.

In the stored XSS attack, the attacker injects malicious JavaScript
code into a MediaWiki page. When a victim visits that Wiki page,
the attacker’s JavaScript code appends text to a second Wiki page
that the victim has access to, but the attacker does not. The SQL
injection and reflected XSS attacks are similar in design. Successful
recovery from these three attacks requires deleting the attacker’s
JavaScript code; detecting what users were affected by that code;
undoing the effects of the JavaScript code in their browsers (i.e.,
undoing the edits to the second page); verifying that the appended
text did not cause browsers of users that visited the second page to
misbehave; and preserving all users’ legitimate actions.

The CSRF attack is a login CSRF attack, where the goal of the
attacker is to trick the victim into making her edits on the Wiki under
the attacker’s account. When the victim visits the attacker’s site,
the attack exploits the CSRF vulnerability to log the victim out of
the Wiki site and log her back in under the attacker’s account. The
victim then interacts with the Wiki site, believing she is logged in as
herself, and edits various pages. A successful repair in this scenario
would undo all of the victim’s edits under the attacker’s account, and
re-apply them under the victim’s own account.

In the clickjacking attack, the attacker’s site loads the Wiki site
in an invisible frame and tricks the victim into thinking she is inter-
acting with the attacker’s site, while in fact she is unintentionally
interacting with the Wiki site, logged in as herself. Successful repair
in this case would undo all modifications unwittingly made by the
user through the clickjacked frame.

We used retroactive patching to recover from all the above attacks,
with patches implementing the fixes shown in Table 2.

Finally, we considered a scenario where the administrator of
the Wiki site mistakenly grants a user access to Wiki pages she
should not have been given access to. At a later point of time, the
administrator detects the misconfiguration, and initiates undo of
his action using WARP. Meanwhile, the user has used her elevated
privileges to edit pages that she should not have been able to edit in
the first place. Successful recovery, in this case, would undo all the
modifications by the unprivileged user.
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Attack scenario Initial repair Repaired? # users with conflicts
Reflected XSS Retroactive patching � 0
Stored XSS Retroactive patching � 0
CSRF Retroactive patching � 0
Clickjacking Retroactive patching � 3
SQL injection Retroactive patching � 0
ACL error Admin-initiated � 1

Table 3: WARP repairs the attack scenarios listed in Table 2. The initial
repair column indicates the method used to initiate repair.

For each of these scenarios we ran a workload with 100 users. For
all scenarios except the ACL error scenario, we have one attacker,
three victims that were subject to attack, and 96 unaffected users. For
the ACL error scenario, we have one administrator, one unprivileged
user that takes advantage of the administrator’s mistake, and 98 other
users. During the workloads, all users login, read, and edit Wiki
pages. In addition, in all scenarios except the ACL error, the victims
visit the attacker’s web site, which launches the attack from their
browser.

Table 3 shows the results of repair for each of these scenarios.
First, WARP can successfully repair all of these attacks. Second,
retroactive patching detects and repairs from intrusions due to all five
software vulnerabilities; the administrator does not need to detect or
track down the initial attacks. Finally, WARP has few user-visible
conflicts. Conflicts arise either because a user was tricked by the
attacker into performing some browser action, or because the user
should not have been able to perform the action in the first place.
The conflicts in the clickjacking scenario are of the first type; we
expect users would cancel their page visit on conflict, since they did
not mean to interact with the MediaWiki page on the attack site. The
conflict in the ACL error scenario is of the second type, since the
user no longer has access to edit the page; in this case, the user’s
edit has already been reverted, and the user can resolve the conflict
by, perhaps, editing a different page.

8.3 Browser re-execution effectiveness
We evaluated the effectiveness of browser re-execution in WARP
by considering three types of attack code, for an XSS attack. The
first is a benign, read-only attack where the attacker’s JavaScript
code runs in the user’s browser but does not modify any Wiki pages.
The second is an append-only attack, where the malicious code
appends text to the victim’s Wiki page. Finally, the overwrite attack
completely corrupts the victim’s Wiki page.

We ran these attacks under three configurations of the client
browser: First, without WARP’s browser extension; second, with
WARP’s browser extension but without WARP’s text merging for
user input; and third, with WARP’s complete browser extension. Our
experiment had one attacker and eight victims. Each user logged
in, visited the attack page to trigger one of the three above attacks,
edited Wiki pages, and logged out.

Table 4 shows the results when WARP is invoked to retroactively
patch the XSS vulnerability. Without WARP’s browser extension,
WARP cannot verify whether the attacker’s JavaScript code was
benign or not, and raises a conflict for every victim of the XSS
attack. With the browser extension but without text-merging, WARP
can verify that the read-only attack was benign, and raises no conflict,
but cannot re-execute the user’s page edits if the attacker did modify
the page slightly, raising a conflict in that scenario. Finally, WARP’s
full browser extension is able to re-apply the user’s page edits despite
the attacker’s appended text, and raises no conflict in that situation.
When the attacker completely corrupts the page, applying user’s
original changes in the absence of the attack is meaningless, and a
conflict is always raised.

Attack action Number of users with conflict
No extension No text merge WARP

read-only 8 0 0
append-only 8 8 0
overwrite 8 8 8

Table 4: Effectiveness of WARP UI repair. Each entry indicates whether
a user-visible conflict was observed during repair. This experiment
involved eight victim users and one attacker.

Bug causing corruption Akkuş and Goel [1] WARP
FP User input FP User input

Drupal – lost voting info 89 / 0 Yes 0 No
Drupal – lost comments 95 / 0 Yes 0 No
Gallery2 – removing perms 82 / 10 Yes 0 No
Gallery2 – resizing images 119 / 0 Yes 0 No

Table 5: Comparison of WARP with Akkuş and Goel’s system [1]. FP
reports false positives. Akkuş and Goel can also incur false negatives,
unlike WARP. False positives are reported for the best dependency policy
in [1] that has no false negatives for these bugs, although there is no
single best policy for that system. The numbers shown before and after
the slash are without and with table-level white-listing, respectively.

8.4 Recovery comparison with prior work
Here we compare WARP with state-of-the-art work in data recovery
for web applications by Akkuş and Goel [1]. Their system uses taint
tracking in web applications to recover from data corruption bugs. In
their system, the administrator identifies the request that triggered the
bug, and their system uses several dependency analysis policies to do
offline taint analysis and compute dependencies between the request
and database elements. The administrator uses these dependencies
to manually undo the corruption. Each specific policy can output
too many dependencies (false positives), leading to lost data, or too
few (false negatives), leading to incomplete recovery.

Akkuş and Goel used five corruption bugs from popular web
applications to evaluate their system. To compare WARP with their
system, we evaluated WARP with four of these bugs—two each in
Drupal and Gallery2. The remaining bug is in Wordpress, which
does not support our Postgres database. Porting the buggy versions
of Drupal and Gallery2 to use WARP did not require any changes to
source code. We replicated each of the four bugs under WARP. Once
we verified that the bugs were triggered, we retroactively patched
the bug. Repair did not require any user input, and after repair, the
applications functioned correctly without any corrupted data.

Table 5 summarizes this evaluation. WARP has three key ad-
vantages over Akkuş and Goel’s system. First, unlike their system,
WARP never incurs false negatives and always leaves the application
in an uncorrupted state. Second, WARP only requires the administra-
tor to provide the patch that fixes the bug, whereas Akkuş and Goel
require the administrator to manually guide the dependency analy-
sis by identifying requests causing corruption, and by whitelisting
database tables. Third, unlike WARP, their system cannot recover
from attacks on web applications, and cannot recover from problems
that occur in the browser.

Workload
Page visits / second Data stored per page visit

No WARP
During Browser App. DBWARP repair

Reading 8.46 6.43 4.50 0.22 KB 1.49 KB 2.00 KB
Editing 7.19 5.26 4.00 0.21 KB 1.67 KB 5.46 KB

Table 6: Overheads for users browsing and editing Wiki pages in Media-
Wiki. The first numbers are page visits per second without WARP, with
WARP installed, and with WARP while repair is concurrently underway.
A single page visit in MediaWiki can involve multiple HTTP and SQL
queries. Data stored per page visit includes all dependency information
(compressed) and database checkpoints.
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Attack scenario Number of re-executed actions Original Repair time breakdown
Page visits App. runs SQL queries exec. time Total Init Graph Firefox DB App. Ctrl Idle

Reflected XSS 14 / 1,011 13 / 1,223 258 / 24,746 180.04 17.87 2.44 0.13 1.21 1.24 2.45 8.99 1.41
Stored XSS 14 / 1,007 15 / 1,219 293 / 24,740 179.22 16.74 2.64 0.12 1.12 0.98 2.45 8.23 1.20
SQL injection 22 / 1,005 23 / 1,214 524 / 24,541 177.82 29.70 2.41 0.16 1.65 0.05 4.16 17.25 4.01
ACL error 13 / 1,000 13 / 1,216 185 / 24,326 176.52 10.75 0.54 0.49 1.04 0.03 2.25 6.04 0.35
Reflected XSS 14 / 1,011 14 / 1,223 1,800 / 24,741 178.21 66.67 2.50 14.46 1.27 26.13 2.23 14.12 5.97(victims at start)
CSRF 1,005 /1,005 1,007 / 1,217 19,799 / 24,578 174.97 1,644.53 159.99 0.46 52.01 0.70 174.04 1,222.05 35.27
Clickjacking 1,011 /1,011 995 / 1,216 23,227 / 24,641 174.31 1,751.74 162.49 0.45 52.19 0.75 171.18 1,320.89 43.78

Table 7: Performance of WARP in repairing attack scenarios described in Table 2 for a workload with 100 users. The “re-executed actions” columns
show the number of re-executed actions out of the total number of actions in the workload. The execution times are in seconds. The “original execution
time” column shows the CPU time taken by the web application server, including time taken by database queries. The “repair time breakdown” columns
show, respectively, the total wall clock repair time, the time to initialize repair (including time to search for attack actions), the time spent loading nodes
into the action history graph, the CPU time taken by the re-execution Firefox browser, the time taken by re-executed database queries that are not part
of a page re-execution, time taken to re-execute page visits including time to execute database queries issued during page re-execution, time taken by
WARP’s repair controller, and time for which the CPU is idle during repair.

Attack scenario Number of re-executed actions Original Repair time breakdown
Page visits App. runs SQL queries exec. time Total Init Graph Firefox DB App. Ctrl Idle

Reflected XSS 14 / 50,011 14 / 60,023 281 / 1,222,656 8,861.55 48.28 11.34 10.89 1.33 0.52 2.23 21.30 0.67
Stored XSS 32 / 50,007 33 / 60,019 733 / 1,222,652 8,841.67 56.50 11.49 11.10 2.10 0.04 5.58 23.98 2.22
SQL injection 26 / 50,005 27 / 60,014 578 / 1,222,495 8,875.06 273.40 14.57 15.98 7.37 0.09 4.85 118.18 112.36
ACL error 11 / 50,000 11 / 60,016 133 / 1,222,308 8,879.55 41.81 9.20 10.25 1.07 0.08 1.74 19.10 0.37

Table 8: Performance of WARP in attack scenarios for workloads of 5,000 users. See Table 7 for a description of the columns.

8.5 Performance evaluation
In this subsection, we evaluate WARP’s performance under different
scenarios. In these experiments, we ran the server on a 3.07 GHz
Intel Core i7 950 machine with 12 GB of RAM. WARP’s repair
algorithm is currently sequential. Running it on a machine with
multiple cores makes it difficult to reason about the CPU usage
of various components of WARP; so we ran the server with only
one core turned on and with hyperthreading turned off. However,
during normal execution, WARP can take full advantage of multiple
processor cores when available.

Logging overhead. We first evaluate the overhead of using WARP
by measuring the performance of MediaWiki with and without
WARP for two workloads: reading Wiki pages, and editing Wiki
pages. The clients were 8 Firefox browsers running on a machine
different from the server, sending requests as fast as possible; the
server experienced 100% CPU load. The client and server machines
were connected with a 1 Gbps network.

Table 6 shows the throughput of MediaWiki with and without
WARP, and the size of WARP’s logs. For the reading and editing
workloads, respectively, WARP incurs throughput overheads of 24%
and 27%, and storage costs of 3.71 KB and 7.34 KB per page visit
(or 2 GB/day and 3.2 GB/day under continuous 100% load). Many
web applications already store similar log information; a 1 TB drive
could store about a year’s worth of logs at this rate, allowing repair
from attacks within that time period. We believe that this overhead
would be acceptable to many applications, such as a company’s Wiki
or a conference reviewing web site.

To evaluate the overhead of WARP’s browser extension, we mea-
sured the load times of a Wiki page in the browser with and without
the WARP extension. This experiment was performed with an un-
loaded MediaWiki server. The load times were 0.21 secs and 0.20
secs with and without the WARP extension respectively, showing
that the WARP browser extension imposes negligible overhead.

Finally, WARP indexes its logs to support incremental loading
of its dependency graph during repair. In our current prototype,
for convenience, indexing is implemented as a separate step after
normal execution. This indexing step takes 24–28 ms per page visit

for the workloads we tested. If done during normal execution, this
would add less than an additional 12% overhead.

Repair performance. We evaluate WARP’s repair performance
by considering four scenarios. First, we consider a scenario where a
retroactive patch affects a small, isolated part of the action history
graph. This scenario evaluates WARP’s ability to efficiently load and
redo only the affected actions. To evaluate this scenario, we used
the XSS, SQL injection, and ACL error workloads from §8.2 with
100 users, and victim page visits at the end of the workload. The
results are shown in the first four rows of Table 7. The re-executed
actions columns show that WARP re-executes only a small fraction
of the total number of actions in the workload, and a comparison of
the original execution time and total repair time columns shows that
repair in these scenarios takes an order of magnitude less time than
the original execution time.

Second, we evaluate a scenario where the patch affects a small
part of the action history graph as before, but the affected actions
in turn may affect several other actions. To test this scenario, we
used the reflected XSS workload with 100 users, but with victims at
the beginning of the workload, rather than at the end. Re-execution
of the victims’ page visits in this case causes the database state to
change, which affects non-victims’ page visits. This scenario tests
WARP’s ability to track database dependencies and selectively re-
execute database queries without having to re-execute non-victim
page visits. The results for this scenario are shown in the fifth row
of Table 7.

A comparison of the results for both the reflected XSS attack sce-
narios shows that WARP re-executes the same number of page visits
in both cases, but the number of database queries is significantly
greater when victims are at the beginning. These extra database
queries are queries from non-victim page visits which depend on the
database partitions that changed as a result of re-executing victim
pages. These queries are of two types: SELECT queries that need
to be re-executed to check whether their result has changed, and
UPDATE queries that need to be re-executed to update the rolled-back
database rows belonging to the affected database partitions. From
the repair time breakdown columns, we see that the graph loading
for these database query actions and their re-execution are the main
contributors to the longer repair time for this scenario, as compared
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to when victims were at the end of the workload. Furthermore,
we see that the total repair time is about one-third of the time for
original execution, and so WARP’s repair is significantly better than
re-executing the entire workload.

Third, we consider a scenario where a patch requires all actions
in the history to be re-executed. We use the CSRF and clickjacking
attacks as examples of this scenario. The results are shown in the
last two rows of Table 7. WARP takes an order of magnitude more
time to re-execute all the actions in the graph than the original
execution time. Our unoptimized repair controller prototype is
currently implemented in Python, and the step-by-step re-execution
of the repaired actions is a significant contributor to this overhead.
We believe implementing WARP in a more efficient language, such
as C++, would significantly reduce this overhead.

Finally, we evaluate how WARP scales to larger workloads. We
measure WARP’s repair performance for XSS, SQL injection, and
ACL error workloads, as in the first scenario, but with 5,000 users
instead of 100. The results for this experiment are shown in Table 8.
The number of actions affected by the attack remain the same, and
only those actions are re-executed as part of the repair. This indicates
WARP successfully avoids re-execution of requests that were not
affected by the attack. Differences in the number of re-executed
actions (e.g., in the stored XSS attack) are due to non-determinism
introduced by MediaWiki object caching. We used a stock Media-
Wiki installation for our experiments, in which MediaWiki caches
results from past requests in an objectcache database table. Dur-
ing repair, MediaWiki may invalidate some of the cache entries,
resulting in more re-execution.

The repair time for the 5,000-user workload is only 3× the repair
time for 100 users, for all scenarios except SQL injection, despite
the 50× increase in the overall workload. This suggests that WARP’s
repair time does not increase linearly with the size of the workload,
and is mostly determined by the number of actions that must be
re-executed during repair. The SQL injection attack had a 10×
increase in repair time because the number of database rows affected
by the attack increases linearly with the number of users. The attack
injects the SQL query UPDATE pagecontent SET old text =
old text || ‘attack’, which modifies every page. Recovering
from this attack requires rolling back all the users’ pages, and the
time to do that increases linearly with the total number of users.

Concurrent repair overhead. When repair is ongoing, WARP
allows the web application to continue normal operation using repair
generations. To evaluate repair generations, we measured the per-
formance of MediaWiki for the read and edit workloads from §8.5
while repair is underway for the CSRF attack.

The results are shown in the “During repair” column of Table 6.
They demonstrate that WARP allows MediaWiki to be online and
functioning normally while repair is ongoing, albeit at a lower
performance—with 24% to 30% lower number of page visits per
second than if there were no repair in progress. The drop in perfor-
mance is due to both repair and normal execution sharing the same
machine resources. This can be alleviated if dedicated resources
(e.g., a dedicated processor core) were available for repair.

9 RELATED WORK

The two closest pieces of work related to WARP are the Retro in-
trusion recovery system [14] and the web application data recovery
system by Akkuş and Goel [1].

While WARP builds on ideas from Retro, Retro focuses on shell-
oriented Unix applications on a single machine. WARP extends
Retro with three key ideas to handle web applications. First, Retro

requires an intrusion detection system to detect attacks, and an ex-
pert administrator to track down the root cause of every intrusion;
WARP’s retroactive patching allows an administrator to simply sup-
ply a security patch for the application’s code. Second, Retro’s
file- and process-level rollback and dependency tracking cannot per-
form fine-grained rollback and dependency analysis for individual
SQL queries that operate on the same table, and cannot perform on-
line repair, and WARP’s time-travel database can.3 Third, repairing
any network I/O in Retro requires user input; in a web application,
this would require every user to resolve conflicts at the TCP level.
WARP’s browser re-execution eliminates the need to resolve most
conflicts, and presents a meaningful UI for true conflicts that require
user input.

Akkuş and Goel’s data recovery system uses taint tracking to ana-
lyze dependencies between HTTP requests and database elements,
and thereby recover from data corruption errors in web applications.
However, it can only recover from accidental mistakes, as opposed
to malicious attacks (in part due to relying on white-listing to reduce
false positives), and requires administrator guidance to reduce false
positives and false negatives. WARP can fully recover from data
corruptions due to bugs as well as attacks, with no manual interven-
tion (except when there are conflicts during repair). §8.4 compared
WARP to Akkuş and Goel’s system in more detail.

Provenance-aware storage systems [24, 26] record dependency
information similar to WARP, and can be used by an administra-
tor to track down the effects of an intrusion or misconfiguration.
Margo and Seltzer’s browser provenance system [20] shows how
provenance information can be extended to web browsers. WARP
similarly tracks provenance information across web servers and
browsers, and aggregates this information at the server, but WARP
also records sufficient information to re-execute browser events and
user input in a new context during repair. However, our WARP pro-
totype does not help users understand the provenance of their own
data.

Ibis [28] and PASSv2 [25] show how to incorporate provenance
information across multiple layers in a system. While WARP only
tracks dependencies at a fixed level (SQL queries, HTTP requests,
and browser DOM events), we hope to adopt ideas from these sys-
tems in the future, to recover from intrusions that span many layers
(e.g., the database server or the language runtime).

WARP’s idea of retroactive patching provides a novel approach to
intrusion detection, which can be used on its own to detect whether
recently patched vulnerabilities have been exploited before the patch
was applied. Work on vulnerability-specific predicates [13] is similar
in its use of re-execution (at the virtual machine level), but requires
writing specialized predicates for each vulnerability, whereas WARP
only requires the patch itself.

Much of the work on intrusion detection and analysis [5, 11,
15, 16, 18, 32] is complementary to WARP, and can be applied in
parallel. When an intrusion is detected and found using an existing
intrusion detection tool, the administrator can use WARP to recover
from the effects of that intrusion in a web application.

Polygraph [19] recovers from compromises in a weakly consistent
replication system. Unlike WARP, Polygraph does not attempt to
preserve legitimate changes to affected files, and does not attempt
to automate detection of compromises. Polygraph works well for
applications that do not operate on multiple files at once. In contrast,
WARP deals with web applications, which frequently access shared
data in a single SQL database.

Tracking down and reverting malicious actions has been explored
in the context of databases [2, 17]. WARP cannot rely purely on

3One of Retro’s scenarios involved database repair, but it worked by
rolling back the entire database file, and re-executing every SQL query.
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database transaction dependencies, because web applications tend
to perform significant amounts of data processing in the application
code and in web browsers, and WARP tracks dependencies across
all those components. WARP’s time-travel database is in some ways
reminiscent of a temporal database [29, 30]. However, unlike a
temporal database, WARP has no need for more complex temporal
queries; supports two time-like dimensions (wall-clock time and
repair generations); and allows partitioning rows for dependency
analysis.

Many database systems exploit partitioning for performance;
WARP uses partitioning for dependency analysis. The problem
of choosing a suitable partitioning has been addressed in the context
of minimizing distributed transactions on multiple machines [3], and
in the context of index selection [6, 12]. These techniques might be
helpful in choosing a partitioning for tables in WARP.

Mugshot [22] performs deterministic recording and replay of
JavaScript events, but cannot replay events on a changed web page.
WARP must replay user input on a changed page in order to re-
apply legitimate user changes after effects of the attack have been
removed from a page. WARP’s DOM-level replay matches event
targets between record and replay even if other parts of the page
differ.

10 DISCUSSION AND LIMITATIONS
While our prototype depends on a browser extension to record client-
side events and user input, we believe it would be possible to do so
in pure JavaScript as well. In future work, we plan to explore this
possibility, perhaps leveraging Caja [23] to wrap existing JavaScript
code and record all browser events and user input; the browser’s
same-origin policy already allows JavaScript code to perform all of
the necessary logging. We also plan to verify that DOM-level events
recorded in one browser can be re-executed in a different standards-
compliant browser. In the meantime, we note that operators of
complex web applications often already have an infrastructure of
virtual machines and mobile phone emulators for testing across
browser platforms, and a similar infrastructure could be used for
WARP’s repair.

The client-side logs, uploaded by WARP’s extension to the server,
can contain sensitive information. For example, if a user enters a
password on one of the pages of a web application, the user’s key
strokes will be recorded in this log, in case that page visit needs to be
re-executed at a later time. Although this information is accessible to
web applications even without WARP, applications might not record
or store this information on their own, and WARP must safeguard
this additional stored information from unintended disclosure.

In future work, we plan to explore ways in which WARP-aware
applications can avoid logging known-sensitive data, such as pass-
words, by modifying replay to assume that a valid (or invalid) pass-
word was supplied, without having to re-enter the actual password.
The logs can also be encrypted so that the administrator must provide
the corresponding decryption key to initiate repair. An alternative
design—storing the logs locally on each client machine and rely-
ing on client machines to participate in the repair process—would
prevent a single point of compromise for all logs, but would make
complete repair a lengthy process, since each client machine will
have to come online to replay its log.

WARP’s current design cannot re-execute mashup web applica-
tions (i.e., those involving multiple web servers), since the event logs
for each web application’s frame would be uploaded to a different
web server. We plan to explore re-execution of such multi-origin
web applications, as long as all of the web servers involved in the
mashup support WARP. The approach we imagine taking is to have
the client sign each event that spans multiple origins (such as a

postMessage between frames) with a private key corresponding
to the source origin. This would allow WARP re-executing at the
source origin’s server to convince WARP on the other frame’s origin
server that it should be allowed to initiate re-execution for that user.

Retroactive patching by itself cannot be used to recover from at-
tacks that resulted from leaked credentials. For example, an attacker
can use an existing XSS vulnerability in an application to steal a
user’s credentials and use them to impersonate the user and perform
unauthorized actions. Retroactive patching of the XSS vulnerability
cannot distinguish the actions of the attacker’s browser from legiti-
mate actions of the user’s browser, as both used the same credentials.
However, if the user is willing to identify the legitimate browsers,
WARP can undo the actions performed by the attacker’s browser.

We plan to explore tracking dependencies at multiple levels of
abstraction, borrowing ideas from prior work [14, 25, 28]. This
may allow WARP to recover from compromises in lower layers of
abstraction, such as a database server or the application’s language
runtime. We also hope to extend WARP’s undo mechanism higher
into the application, to integrate with application-level undo features,
such as MediaWiki’s revert mechanism.

In our current prototype, we instrument the web application server
to log HTTP requests and database queries. This requires that the
application server be fully trusted to not tamper with WARP logging,
and requires modification of the application server software, which
may not always be possible. It also does not support replicated web
application servers, as the logs for a replica contain the local times at
that replica, which are not directly comparable to local times at other
replicas. In future work, we plan to explore an alternative design
with WARP proxies in front of the application’s HTTP load balancer
and the database, and perform logging in those proxies. This design
addresses the above limitations, but can lead to more re-execution
during repair, as it does not capture the exact database queries made
for each HTTP request.

We also plan to explore techniques to further reduce the number
of application runs re-executed due to retroactive patching, by deter-
mining which runs actually invoked the patched function, instead of
the runs that just loaded the patched file.

Our current prototype assumes that the application code does not
change, other than through retroactive patching. While this assump-
tion is unrealistic, fixing it is straightforward. WARP’s application
repair manager would need to record each time the application’s
source code changed. Then, during repair, the application manager
would roll back these source code changes (when rolling back to a
time before these changes were applied), and would re-apply these
patches as the repaired timeline progressed (in the process merging
these original changes with any newly supplied retroactive patches).

11 SUMMARY
This paper presented WARP, an intrusion recovery system for web
applications. WARP introduced three key ideas to make intrusion
recovery practical. Retroactive patching allows administrators to
recover from past intrusions by simply supplying a new security
patch, without having to even know if an attack occurred. The time-
travel database allows WARP to perform precise repair of just the
affected parts of the system. Finally, DOM-level replay of user input
allows WARP to preserve legitimate changes with no user input
in many cases. A prototype of WARP can recover from attacks,
misconfigurations, and data loss bugs in three applications, without
requiring any code changes, and with modest runtime overhead.
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