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We study in this paper a series of Gutzwiller projected wave functions for S = 1 spin chains obtained
from a fermionic mean-field theory for general S > 1/2 spin systems [Liu, Zhou, and Ng, Phys. Rev. B 81,
224417 (2010)] applied to the bilinear-biquadratic (J -K) model. The free-fermion mean-field states before the
projection are 1D paring states. By comparing the energies and correlation functions of the projected pairing
states with those obtained from known results, we show that the optimized Gutzwiller projected wave functions
are very good trial ground-state wave functions for the antiferromagnetic bilinear-biquadratic model in the
regime K < J (−3π/4 < θ < π/4). We find that different topological phases of the free-fermion paring states
correspond to different spin phases: the weak pairing (topologically nontrivial) state gives rise to the Haldane
phase, whereas the strong pairing (topologically trivial) state gives rise to the dimer phase. In particular, the
mapping between the Haldane phase and Gutwziller wave function is exact at the Affleck-Kennedy-Lieb-Tasaki
(AKLT) point K/J = 1/3 [θ = tan−1 (1/3)]. The transition point between the two phases determined by the
optimized Gutzwiller projected wave function is in good agreement with the known result. The effect of Z2 gauge
fluctuations above the mean-field theory is analyzed.

DOI: 10.1103/PhysRevB.85.195144 PACS number(s): 75.10.Pq, 75.10.Kt, 75.40.Mg, 71.10.Hf

I. INTRODUCTION

Slave-boson mean-field theory is now accepted as a
powerful tool in identifying exotic states in strongly correlated
electron systems.1–3 At half-filling, the slave boson approach
reduces to a fermionic representation for the S = 1/2 spins
where mean-field theories can be built and a correspond-
ing trial ground-state wave function can be constructed
through the Gutzwiller projection technique.4 The approach
has generated a large variety of wave functions used to
describe different resonant valence bond (RVB) states of
frustrated Heisenberg systems including quantum spin-liquid
states.2–6

In a recent paper,7 several of us have generalized the
fermionic representation to S > 1/2 spin systems and have
shown that a simple mean-field theory produces results that are
in agreement with Haldane conjecture for the one-dimensional
Heisenberg model. A natural question is how about the
Gutzwiller projected wave function obtained from these
mean-field states? Are they close to the corresponding real
ground-state wave function? How about more complicated
spin models? Here, we shall provide a partial answer to
these questions by studying the Gutzwiller projected wave
function obtained from the mean-field states of the S = 1
bilinear-biquadratic Heisenberg model8–10

H =
∑
〈i,j〉

[JSi · Sj + K(Si · Sj )2], (1)

where Si are spin operators and j = i + 1 in one dimension.
In some literature, the above Hamiltonian is parameterized
as H = √

J 2 + K2
∑

〈i,j〉[cos θSi · Sj + sin θ (Si · Sj )2] with
tan θ = K/J , where θ is restricted to −3π/2 < θ � π/2. We
shall use both notations in this paper.

The S = 1 bilinear-biquadratic Heisenberg model has
attracted much interest. At K/J = 0 (θ = 0) the Haldane
conjecture predicts that the ground state of integer-spin
antiferromagnetic Heisenberg model (AFHM) is disordered
with gapped excitations.11 Later, it was shown by Affleck,
Kennedy, Lieb, and Tasaki (AKLT) that the point K/J = 1/3
[θ = tan−1 (1/3)] is exactly solvable12 and the resulting state
is a translation invariant valence-bond-solid state.13 The S = 1
AKLT state together with all states in the so-called Haldane
phase are topologically nontrivial in the sense that they
cannot be deformed into the trivial Sz = 0 trivial product state
without a phase transition. People have been trying to use
hidden symmetry breaking,14 or equivalently, a nonlocal string
order,15 to characterize the nontrivial order in the Haldane
phase. But those characterizations are not satisfactory since the
Haldane phase is separated from the Sz = 0 trivial product state
even when we break all the spin rotation symmetry, in which
case there is no hidden symmetry breaking and/or nonlocal
string order.16,17 It turns out that the nontrivial order in the
Haldane phase, called symmetry-protected topological order,
is described by symmetric local unitary transformation and the
projective representation of the symmetry group.18–20

The phase diagram of one dimensional S = 1 bilinear-
biquadratic model is given in Fig. 1. The region K < J

(−3π/4 < θ < π/4) is gapped and contains two phases,
the the Haldane phase (−π/4 < θ < π/4) and the dimer
phase (−3π/4 < θ < −π/4). The question we shall address
in this paper is whether the above phase diagram can be
(partially) reproduced by using simple Gutzwiller projected
wave function obtained from the fermionic mean-field theory.
We shall show in the following that the optimized projected
mean-field wave functions are very close to the true ground
states for the 1D antiferromagnetic bilinear-biquadratic model
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FIG. 1. (Color online) The phase diagram of the S = 1 bilinear-
biquadratic model in one dimension. The region −3π/4 < θ � π/4
is of our interest. Red dotted points are studied and the results are
summarized in Table I.

in the regime K/J � 1 (−3π/4 < θ � π/4). In particular, the
optimized projected mean-field state is the exact ground state
at the AKLT point K = 1/3 [θ = tan−1 (1/3)]. The mean-field
state is a pairing state of free fermions, which can be a trivial
or a nontrivial topological phase, which are classified as weak
and strong pairing states by their different winding numbers.7

The nature of the topological phase of the mean-field state is
found to be important in distinguishing between Haldane and
dimer phases. We find that after Gutzwiller projection the
weak pairing states become the Haldane phase whereas the
strong pairing states become the dimer phase. A long-ranged
spin-Peierls order emerges in the strong pairing states after
Gultzwiller projection although the spin-Peierls correlation is
short ranged at mean-field level.

Above results can be understood from the fermionic mean-
field theory when Z2 gauge fluctuations are taken into account.
We find that the Z2 instantons behave differently in the weak
pairing region and strong pairing region. Thus the Haldane
phase and the dimer phase can also be distinguished by their
different effective Z2 gauge theories.

The paper is organized as follows: in Sec. II, we review
the fermionic representation for S = 1 spins and introduce
the mean-field theory for the bilinear-biquadratic model. The
Gutzwiller projected mean-field wave function are introduced
in Sec. III as trial ground-state wave function for the bilinear-
biquadratic model. Using variational Monte-Carlo (VMC)
technique,4 we find that the projected mean-field wave function
after optimization are very close to the true ground states of the
1D antiferromagnetic bilinear-biquadratic model in the regime
K/J � 1 (−3π/4 < θ � π/4). We show, in particular, that
the optimized projected mean-field state is the exact ground
state at the AKLT point K = 1/3 [θ = tan−1 (1/3)]. Based
on mean-field theory, we construct in Sec. IV the effective
low-energy theories for the bilinear-biquadratic model. The
paper is concluded in Sec. V with some general comments.
The mapping between the mean-field zero-energy Majorana
end states in the weak-coupling phase and spin-1/2 end states
of open spin chains in the Haldane phase is established in
Appendix.

II. FERMIONIC REPRESENTATION AND MEAN-FIELD
THEORY FOR SPIN S = 1 BILINEAR-BIQUADRATIC

MODEL

The fermionic representation for S = 1 spins is a general-
ization of the fermionic representation for S = 1/2 spins. In
this representation, three fermionic spinon operators c1,c0,c−1

are introduced to represent the Sz = 1,0,−1 states at each
site, and the spin operator is given as Sα = ∑

m,n c
†
mIα

mncn,
where Iα is the 3 × 3 matrix representation for S = 1 angular
momentum operator with α = x,y,z and m,n = 1,0,−1. As
in usual slave particle method, a particle number constraint
N̂i = ∑

m c
†
micmi = 1 (m = −1,0,1) has to be imposed on

each lattice site i to ensure a one-to-one mapping between
the spin and fermion states.

With the single occupation constraint imposed the bilinear-
biquadratic Heisenberg model (1) can be written as an
interacting fermion model,7,9,21

H = −
∑
〈i,j〉

[J χ̂
†
ij χ̂ij + (J − K)�̂†

ij �̂ij ], (2)

where χ̂ij = ∑
m c

†
micmj is the fermion hopping operator and

�̂ij = c1ic−1j − c0ic0j + c−1ic1j is the spin singlet pairing op-
erator. A mean-field theory for this interacting fermion model
can be obtained by introducing the mean-field parameters
χij = 〈χ̂ij 〉, �ij = 〈�̂ij 〉, and the time averaged Lagrangian
multiplier λi to decouple the model into a fermion bilinear
model:7

Hmf = −J
∑

〈i,j〉,m
(χij c

†
mjcmi + H.c.)

+ (J − K)
∑
〈i,j〉

[�ij (c†−1j c
†
1i − c

†
0j c

†
0i + c

†
1j c

†
−1i) + H.c.]

+
∑
i,m

λic
†
micmi + const. (3)

It is interesting also to introduce the cartesian coordinate op-
erators, cx = 1√

2
(c−1 − c1), cy = i√

2
(c−1 + c1),cz = c0 (these

operators annihilate the states, |x〉 = 1√
2
(|−1〉 − |1〉), |y〉 =

i√
2
(|−1〉 + |1〉),|z〉 = |0〉, respectively). In this representation,

the operators χ̂ij and �̂ij becomes

χ̂ij = c
†
xicxj + c

†
yicyj + c

†
ziczj ,

(4)
�̂ij = −(cxicxj + cyicyj + cziczj ),

and the mean-field Hamiltonian reduces to three copies of
Kitaev’s Majorana chain model.22 This representation will be
used in our later discussion.

The mean-field Hamiltonian Hmf can be diagonalized
by the standard Bogoliubov-de Gennes (B-dG) transfor-
mation. We shall consider periodic/antiperiodic boundary
condition here. (The case of open-boundary condition is
discussed in Appendix.) In this case, the system is trans-
lational invariant and χij = χ, �ij = �, λi = λ become
site-independent. The mean-field Hamiltonian is diagonal in
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momentum space:

Hmf =
∑

k

[ ∑
m

χkc
†
mkcmk

−
[
�k

(
c
†
1kc

†
−1−k − 1

2
c
†
0kc

†
0−k

)
+ H.c.

]]
+ const

=
∑
m,k

Ekβ
†
mkβmk + E0, (5)

where χk = λ − 2Jχ cos k and �k = −2i(J − K)� sin k.
βmk’s are related to cm′k,c

+
m′k’s by the Bogoliubov transfor-

mation:

β1k = ukc1k − v∗
k c

†
−1−k,

β
†
−1−k = vkc1k + ukc

†
−1−k, (6)

β0k = ukc0k + vkc
†
0−k,

where uk = cos θk

2 ,vk = i sin θk

2 , tan θk = i�k

χk
, and Ek =√

|χk|2 + |�k|2. The mean-field dispersion is gapped when
� �= 0 except at the phase transition point λ − 2|Jχ | = 0.

The ground state of Hmf is the vacuum state of the
Bogoliubov particles βmk’s. The parameters χ and � are
determined self-consistently in mean-field theory, with λ is
determined by the averaged particle number constraint, i.e.,

χ = 〈χ̂ii+1〉, � = 〈�̂ii+1〉, 〈N̂i〉 = 1, (7)

where 〈· · ·〉 denotes ground-state averages. We shall see later
that the self-consistently determined mean-field parameters
are not optimal in constructing Gutzwiller projected wave
function. It is more fruitful to treat χ, �, and λ as variational
parameters in the trial Hamiltonian (3) that generates a trial
mean-field ground state |ψtrial〉. The Gutzwiller projected
mean-field state PG|ψtrial〉 will be used as a trial wave function
for the spin model (1). The optimal mean-field parameters are
determined by minimizing the energy of the projected wave
function 〈ψtrial|P †

GHPG|ψtrial〉/〈ψtrial|P †
GPG|ψtrial〉.

It was shown in Refs. 7 and 22 that the (trial) mean-field
ground state described by Eq. (5) has nontrivial winding
number if the mean-field parameters satisfy the condition

� �= 0, − 2|Jχ | < λ < 2|Jχ |. (8)

An important consequence of nontrivial winding number is
that topologically protected Majorana zero modes will exist
at the boundaries of an open chain in mean-field theory. The
mean-field states satisfying Eq. (8) are called weak pairing
states. The winding number vanishes if � �= 0 and |λ| > 2|Jχ |
and these states are called strong pairing states.23 We shall
show later that the weak pairing states become the Haldane
phase, while the strong pairing states become the dimer phase
after Gutzwiller projection. In later discussion, we will mainly
focus on the antiferromagnetic interaction case J > 0. To
simplify notation, we shall set J = 1 in the following. The
value of J will be defined again only in exceptional cases.

III. GUTZWILLER PROJECTED WAVE FUNCTION

The Gutzwiller projection for S = 1 systems is in principle
the same as Gutzwiller projection for S = 1/2 systems. In the

mean-field ground-state wave function, the particle number
constraint is satisfied only on average and the purpose of the
Gutzwiller projection is to remove all state components with
occupancy Ni �= 1 for some sites i, and thus projecting the
wave function into the subspace with exactly one fermion per
site.

There are however a few important technical difference
between spin-1/2 and spin-1 systems. First of all, S = 1/2
systems are particle-hole symmetric and the particle number
constraint is invariant under particle-hole transformation. As a
result, we can always set λ = 0 in the trial wave function. This
is not the case for S = 1 models where the particle number
constraint is not invariant under particle-hole transformation.
Consequently, λ �= 0, in general, and should be treated as a
parameter determined variationally. Notice that λ determines
the topology of the mean-field state and the corresponding
Gutzwiller projected states as we shall see in the following.

The second important difference between spin-1/2 and
spin-1 systems is that a singlet ground state for S = 1 systems
is composed of configurations with different Sz distribution
(n1,n0,n−1) = (n1,L − 2n1,n1), where nm is the number of
spins with Sz = m in a spin configuration and L is the
number of sites in the spin chain. It is clear that n1 can
take any value between 0 and [L/2] where [L/2] = L/2 if
L is even and [L/2] = (L − 1)/2 if L is odd. On the contrary
n1/2 = n−1/2 = L/2 is fixed for spin-1/2 systems. As a result,
L is always even for spin-1/2 singlet states, but can be even
or odd for spin-1 singlet states. For even L, n0 is even and
the Gutzwiller projected wave function is a straightforward
projection of the mean-field ground state, which is a paired
BCS state. For odd L, n0 is odd. This means there is one Sz = 0
fermion mode (c0) remaining unpaired in the ground state. The
projection is similar to the even L case except that we have to
keep in mind the occupied free fermion mode. The situation
for open spin chains is further complicated by the existence of
Majorana end modes, which is discussed in Appendix.

The above condition results in a natural choice of boundary
condition in constructing the Gutzwiller projected wave func-
tion. To see this, we first note that the values of allowed fermion
momentum k in periodic and antiperiodic boundary conditions
are different. They are given by k = 2Mπ

L
[ (2M+1)π

L
] under peri-

odic (antiperiodic) boundary conditions, where M take values
M = −[L−1

2 ],−[L−1
2 ] + 1, . . . ,[L

2 ]. The energy spectrum Ek

is doubly degenerate except at the points k = 0, which exists
only under periodic boundary condition (for both even or odd
L), and k = π , which exists under periodic boundary condition
for even L and under antiperiodic boundary condition for
odd L. Notice that at these two points, �k = −2i� sin k

vanishes and they are natural candidates for constructing a
singly occupied fermion state. All other momentum k’s are
paired at the ground state. The energies at these two points are
given by E0(π) = λ − (+)2χ . Notice that E0 < 0 and Eπ > 0
in the weak pairing phase (we choose a gauge where χ > 0)
whereas both E0,π > 0 in the strong pairing phase.

We now consider the weak pairing phase. In this case, a
lowest-energy state is formed for chains with odd L when
the k = 0 state is occupied, i.e., periodic boundary condition
is preferred. On the other hand, for chains with even L an
antiperiodic boundary condition is preferred so that the k = 0
state is not available and a paired BCS state is naturally formed.
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Next, we consider the strong pairing phase. Suppose L is
even. Under antiperiodic boundary condition, all the fermions
are paired in the ground state. Under periodic boundary
condition, since E0,π > 0, the unpaired fermion modes at
k = 0 and k = π are unoccupied. The remaining fermions are
paired. Both of the two boundary conditions are allowed. When
L is odd, the ground state is not a spin singlet and behaves
differently.24 In later discussion about the strong pairing phase,
we will mainly consider the case where L is even.

The above result suggests that the weak-pairing ground
state is unique, whereas the strong-pairing ground state is
doubly degenerate. To see this, we note that for a closed chain,
the existence or absence of π flux through the ring (which
corresponds to the antiperiodic boundary condition or the pe-
riodic boundary condition for fermions, respectively) usually
result in two degenerate time-reversal invariant fermion states.
However, as shown above, for a chain with fixed L, we cannot
choose boundary condition freely for the Gutzwiller projected
state in the weak-coupling phase, whereas both boundary
conditions are available in the strong-coupling phase.

In the following, we shall report our numerical results for
the antiferromagnetic bilinear-biquadratic Heisenberg model
in the parameter range K < J (−3π/4 < θ � π/4). As in
S = 1/2 case, the optimization of energy of the projected
wave function is carried out using a variational Monte Carlo
method (VMC). We set the length of the chain to be L = 100,
and has taken 106 MC steps in our numerical work. We note
that because of the difference between S = 1/2 and S = 1
systems as discussed above, the VMC for spin-1/2 Gutzwiller
projection procedure has to be modified for S = 1 models. We
shall not go into these technical details in this paper. We shall
first report in Sec. III A our overall numerical results and phase
diagram which are in good agreements with known results
as long as the ground state is a spin singlet. Our Gutzwiller
projected wave function provides a good description of the
system even around the critical point K = −1 (θ = −π/4)
between the Haldane and dimer phases. In Sec. III B, we
illustrate analytically that a projected BCS state becomes the
exact ground state of the model at the AKLT point K = 1/3
[θ = tan−1 (1/3)].

A. Overall results and phase diagram

Our numerical results of Gutzwiller projection for the
bilinear-biquadratic Heisenberg model is summarized in
Table I. The ground-state energy computed from the (op-
timized) Gutzwiller projected wave function is compared
with the exact result or results obtained from the “infinite
time-evolving block decimation” algorithm.25 Here, the unit
of energy is set as |J |, except at the point (J,K) = (0,−1),
(θ = −π/2) where the energy is measured by |K|.

From Table I, we see that agreement in energy is better than
0.8% in the range J = 1,−∞� K � 1 (−π/2 � θ � π/4).26

The optimized parameters given in the table suggests that
the system is in the weak pairing phase when −1 < K < 1
(−π/4 < θ < π/4) and is the strong pairing phase otherwise.
The critical point at K ∼ −1 (θ = −π/4) will be studied
more carefully in the following. To understand the nature
of the weak- and strong-pairing phases, we first study the
spin-spin or dimer-dimer correlation functions at K = 0
and −2.

At K = 0, the self-consistent mean-field solution gives
χ = 0.5671,�/χ = 1.3447,λ/χ = 1.3594. The energy of
corresponding Gutzwiller projected wave function is Eg =
−1.3984 ± 0.0004 per site, which is already quite close to
the known ground-state energy Eg = −1.401527,28 with a
difference ∼0.2%. The correlation length determined from
a fitting to the spin-spin correlation function is roughly 3.25
units of lattice constant, which is smaller than the value 6.03
given in literature.27–29

Our result can be further improved by optimizing the
parameters χ,�,λ. The optimal parameters we obtain are
χ = 1,� = 0.9767,λ = 1.7810 (here, we normalize χ = 1
because the wave function before the projection is only
dependent on �/χ and λ/χ ). The energy of the projected
state is Eg = −1.4001 ± 0.0004 which is further improved
by 0.1%. The spin-spin correlation function is plotted in
Fig. 2. The correlation 〈Sz

i S
z
i+r〉 matches very well with

〈Sx
i Sx

i+r〉, indicating the rotational invariance of the projected
wave function. The correlation length determined from the
optimized wave function is 5.92 lattice constants, which is
very close to the accepted value 6.03.

TABLE I. Comparison of the energies obtained from VMC (with L = 100) and those from other methods. All of the points studied in this
table are marked in the phase diagram in Fig. 1. The points (1,1)ULS, (1, 1

3 )AKLT, (1,−1)TB, (0,−1)SU(3) are exactly solvable. The comparison
energy of the rest points are obtained with the “infinite time-evolving block decimation” algorithm.25 In the last line we list the optimal
variational parameters (χ,�,λ) obtained by VMC.

(J,K) (1,1)ULS (1, 1
3 )AKLT (1,0)Heisenberg (1,−1)TB (1,−2) (1,−3) (0,−1)SU(3) (−1,−3) (−1,−2)

comparison 0.2971a − 2
3

b −1.4015c −4d −6.7531 −9.5330 −2.7969e −7.3518 −4.5939
VMC 0.2997f − 2

3 −1.4001 −3.9917 −6.7372 −9.5103 −2.7953g −7.2901 −4.4946
±0.0004 ±7 × 10−15 ±0.0004 ±0.0012 ±0.0023 ±0.0034 ±0.0005 ±0.0038 ±0.0028

(χ,�,λ) (1,0,1) (1, 3
2 ,0) (1,0.98,1.78) (1,1.11,2.00) (1,1.15,2.07) (1,1.79,2.22) (0,1,0.14) (0,1,0.21) (0,1,0.12)

aReference 38.
bReference 12.
cReference 27.
dReference 30.
fDue to the SU (3) symmetry, the particle number of cx,cy,cz should be equal. To this end, we have set L = 99.
eReference 41.
gThe unit of the energy is |K|, which is normalized to 1.
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FIG. 2. (Color online) The spin-spin correlation function Cα(r) =
〈Sα

i Sα
i+r〉 in the optimized projected wave function |1,0.9767,1.7810〉

at K = 0. The staggered sign (−1)r shows the short-range anti-
ferromagnetic order of the ground state. The error bar of Cx(r) is
smaller then that of Cz(r), because in calculating the former, more
spin configurations are involved. The dashed lines are exponential
fitting of the data. The fitting shows that the correlation length is
about 5.92 units of lattice constant.

A trademark for the Haldane phase is the existence of
spin-1/2 end states. Indeed, end Majorana fermion states are
observed to exist in the weak-pairing phase of the fermionic
mean-field theory.7 The question is whether these Majorana
end states become spin-1/2 end states after Gutzwiller projec-
tion. This question is discussed in Appendix where we show
how the Majorana fermion end states turn into spin-1/2 end
states after Gutzwiller projection.

Next, we consider K = −2. In this case, the mean-field
solution has χ = 0,�= 0.9203, λ = 0.9110, and the energy
of the projected mean-field state is Eg = −6.6691 ± 0.0023.
The energy can be lowered by optimizing the mean-field
parameters. The optimal parameters found from the VMC
are χ = 1, � = 1.1532, λ = 2.0661 with energy Eg =
−6.7372 ± 0.0023. The Gutzwiller projected wave function
is obviously translationally invariant and does not explicitly
break the translation symmetry. To see that the state described
a dimer state, we compute the spin-Peierls correlation function.
The result is shown in Fig. 3. We note that the spin-
Peierls correlation is clearly short-ranged in the Heisenberg
model(K = 0) but is long-ranged in the K = −2 model. The
“weak-pairing/Haldane” and “strong pairing/dimer” mapping
is in agreement with the ground-state degeneracy we deduced
in last section. It is remarkable that in the strong pairing phase
the spin-Peierls correlation becomes long-ranged only after the
Gultzwiller projection and is short-ranged before projection.

Now, we examine the phase transition point between the
Haldane phase and the dimer phase. Figure 4 shows the
spin Peierls correlation at distance L/2 as a function of K

for the projected optimal trial wave function near the phase
transition point. Within numerical error, our results show
that λ − 2χ = 0 and the spin-Peierls correlation vanishes at
the point K ≈ −1. The spontaneous breaking of translation
symmetry indicates that the transition is of second order,
consistent with exact solution at the Takhatajan-Babujian (TB)
point K = −1.30 We would like to point out that the transition
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G

|ψ(1, 1.1532, 2.0661)〉
trial

K=  0,  P
G

|ψ(1, 0.9767, 1.7810)〉
trial

FIG. 3. (Color online) Spin-Peierls correlation functions at K =
−2. The blue circled line shows the Spin-Peierls correlation function
〈P z

i P z
i+r〉 of the projected self-consistent mean-field ground state

PG|ψ(χ = 0,� = 0.9203,λ = 0.9110)〉mf with K = −2. Here, the
spin-Peierls order is defined as P z

i = Sz
i S

z
i+1 − Sz

i+1S
z
i+2. The red

squared line shows the Spin-Peierls correlation of the projected opti-
mal trial mean-field state PG|ψ(χ = 1,� = 1.1532,λ = 2.0661)〉trial

with K = −2. For comparison, the black crossed line is the spin-
Peiels correlation of the projected optimal trial mean-field state of the
Heisenberg model (K = 0).

point determined by the self-consistent mean-field theory is
K = −0.33, which is far away from the exact result.

B. AKLT point: the projected wave function
as exact ground state

The validity of the Gutzwiller projected wave function
approach for S = 1 spin chains is further supported by an

−1.1 −1 −0.9 −0.8
−0.06

−0.04

−0.02

0

0.02

0.04

K

λ−2χ

〈Pz
i
Pz

i+L/2
〉

FIG. 4. (Color online) Projected optimal trial mean-field states
near the phase transition point. Here, we set J = 1 and χ = 1. The
spin-Peierls correlation qualitatively shows the expected result that
λ − 2χ have differen sign in different phases. When λ − 2χ > 0,
the projected wave function have finite spin-Peierls correlation,
indicating they are dimerized. Otherwise, when λ − 2χ < 0, the
spin-Peierls correlation approaches zero, indicating the states are
not dimerized. The point where λ − 2χ = 0 almost overlaps with the
point where 〈P z

i P z

i+ L
2
〉 → 0. This result verifies our conclusion that

the topology of the states distinguishes different phases.
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exact result at the AKLT point12 (K = 1/3), where we find
that the AKLT state can be exactly represented as a Gutzwiller
projected BCS wave function with parameters χ = 1,� =
3/2,λ = 0.

It is convenient to adopt the cartesian coordinate in the
discussion. Firstly, we consider the closed boundary condi-
tion. Since the MF Hamiltonian Hmf in Eqs. (3) and (4)
contains three identical copies for the flavors cx,cy,cz, we
may concentrate on a single flavor Hα and define cαi =

1√
2
(γ r

αi + iγ l
αi), where γ l

αi and γ r
αi are Majorana operators

satisfying {γ a
αi,γ

b
βj } = δabδαβδij where a,b = l,r and α,β =

x,y,z. Setting χ = (1 − K)� = 1, λ = 0, and adopting close
boundary condition χL1 = (1 − K)�L1 = (−1)η (η = 0 for
periodic boundary condition and η = 1 for antiperiodic bound-
ary condition), the mean-field Hamiltonian Hα can be mapped
into Kitaev’s Majorana chain,22

Hα = (−1)η
(−2iγ r

αLγ l
α1

) +
L−1∑
i=1

(−2iγ r
αiγ

l
αi+1

)
, (9)

where we have dropped an unimportant constant. Notice that
every term in Eq. (9) has eigenvalues ±1 and is commuting
with all other terms. Defining the fermion parity22

Pα = eiπ
∑

i Nαi =
∏

i

(1 − 2c
†
αicαi) =

∏
i

(
2iγ l

αiγ
r
αi

)
,

it is easy to see that the fermion parity of the ground state of
the mean-field Hamiltonian is given by

Pα = −2iγ r
αLγ l

α1

∏
i

(
2iγ r

αiγ
l
αi+1

) = (−1)η+1 (10)

and is even(odd) under antiperiodic (periodic) boundary
condition. The total Fermi parity is the product of the
three flavors Pfermi = PxPyPz = (Px)3 = Px . Notice that the
periodic boundary condition is ruled out by the particle number
constraint for even L. This is a general property of the BCS
Hamiltonian in weak-coupling phase as we have discussed
before.

Since all terms in Eq. (9) are commuting, the ground state of
one term in the Hamiltonian (9) provides a supporting Hilbert
space for the reduced density matrix constructed for the whole
ground state. The ground state of Hα for two neighboring sites
i and i + 1 is two-fold degenerate:

|φα〉1 = (c†αi + c
†
αi+1)|vac〉,

|φα〉2 = (1 + c
†
αic

†
αi+1)|vac〉.

Since there are three flavors α = x,y,z, the ground state of
the two sites is a product state |φ〉 = |φx〉|φy〉|φz〉 and are
eightfold degenerate. It is easy to see by direct computation
that the Gutzwiller projection kills half of these states, and the
surviving four states are

(c†xic
†
xi+1 + c

†
yic

†
yi+1 + c

†
zic

†
zi+1)|vac〉,

(c†xic
†
yi+1 − c

†
yic

†
xi+1)|vac〉,

(c†xic
†
zi+1 − c

†
zic

†
xi+1)|vac〉,

(c†yic
†
zi+1 − c

†
zic

†
yi+1)|vac〉.

The first one is a spin singlet, and the remaining three form
a (S = 1) triplet. The absence of spin-2 states for every two
neighboring sites is a fingerprint of the spin-1 AKLT state.12

Thus we prove that the Gutzwiller projected trial state with
χ = 1,� = 3/2,λ = 0 is equivalent to the spin-1 AKLT state.

We note that the above proof can be extended straight-
forwardly to the SO(n) symmetric AKLT models.31 When
n is odd, the n Majorana fermions at the edge form the
irreducible spinor representation of SO(n) group. So, after
Gutzwiller projection, the ground state of n copies of Kitaev’s
Majorana chain model exactly describes the ground state
of the SO(n)-AKLT model. When n is even, the ground
state is dimerized since the spinor representation of SO(n)
is reducible. The equivalence between the ground state of
the SO(n)-AKLT model and the projected ground states of
n copies of Kitaev’s Majorana chain remains valid.32,33 In that
case, the n Majorana fermions at the edge form a direct sum
of two versions of irreducible SO(n) spinor representations.

IV. EFFECTIVE LOW-ENERGY THEORY

The success of the Gutzwiller projected wave function in
describing the ground-state properties of the Haldane and
dimer phases suggests that the low-energy properties of these
phases may be well described by effective field theories
constructed from the corresponding mean-field states. We
provide two approaches in this section. The first one is a Z2

gauge field description by integrating out the fermions, and
the other one is an effective (Majorana) fermionic field theory.

The mean-field theory provides a correct description of
the low-energy properties of the Haldane and dimer phases
when Z2 gauge fluctuations or Z2 instantons are taken into
account. Since the mean-field state is a fermion paired state
with finite gap, the resulting low-energy effective theory is
Z2 gauge theory. Usually, the Z2 gauge theory in (1 + 1)D is
always confined since the Z2 instantons [i.e., the Z2 vortices
in (1 + 1)D discrete space time] have a finite action. However,
the low-energy effective Z2 gauge theory obtained from our
models has different dynamical properties.

In the weak pairing phase, a Z2 instanton gives rise to a
fermionic zero mode.24 As a result, the action of separating two
instantons is proportional to −t/ξ , where t is the time-distance
between the instantons and 1/ξ is the excitation gap.24 This
means that the Z2 instantons are confined and consequently
the Z2 gauge theory is deconfined (this situation still holds
if the Hamiltonian contains a dimerized interaction). The Z2

vortex changes the fermion parity of the mean-field ground
state. Owing to the particle number constraint, a permitted
instanton operator should be a composition of a Z2 vortex and
a spinon operator. Thus, an instanton carries π momentum
and spin 1. An example of such instanton operator is
given as

ϕ̂ =
∑

i

(−1)iSi = Sπ .

Above instanton operator creates a magnon with momentum π .
In the strong pairing phase, due to the absence of fermion

zero modes, the Z2 vortices in (1 + 1)D space time have a
finite action and consequently have a finite density. However,
since the Z2 instanton carry π crystal momentum, there will
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be an extra phase factor (−1) associated with it. When sum
over the contribution of instantons at all spacial positions,
the phase factors will cause cancellation. Consequently, the
effect of instantons is suppressed, and the Z2 gauge theory is
still deconfined.34 On the other hand, if the Hamiltonian has
a translation symmetry breaking term (such as a dimerized
interaction), then the action of the instantons will not be
canceled and will confine the Z2 gauge filed. (This is a
remarkable difference between the strong pairing phase and
the weak pairing phase.) Since a Z2 instanton carries π

momentum and zero spin, we can give an example of such an
operator:

ϕ̂ =
∑

i

Si · Si+1(−1)i+1 =
∑

k

Sk · Sπ−ke
ik.

The finite action of the instantons indicates that the ground
state is degenerate and has a finite spin-Peierls order.

At the transition point, the mean-field dispersion is gapless
at k = 0 due to λ − 2χ = 0, and the low-energy excitations
are consist of three species of Majorana fermions with energy
Ek ≈ 2(1 − K)�|k|. Notice that three Majorana fermions
form a spin-1/2 object.35 Consequently, after Gutzwiller
projection, the elementary excitations carry spin 1/2. Notice
that the number of excited Majorana fermions must be even in a
physical state, so the spin-1/2 excitation must appear in pairs.
This physical picture arising from mean-field theory agrees
well (in long-wavelength limit) with result coming from the
Bethe ansatz solution of the TB model.30

Since the effective Z2 gauge fields are deconfined in both
the Haldane and the dimer phases of model (1), it will be a
good approximation to ignore the gauge field and consider the
fermion theory only. Tsvelik proposed an effective Majorana
field theory to describe the low-energy physics close to the TB
point:36

Heff = − iv

2

∑
α

(
γ r

α ∂xγ
r
α − γ l

α∂xγ
l
α

) − im
∑

α

γ r
α γ l

α, (11)

where γ r
α and γ l

α are right and left moving Majorana fermions.
Marginal terms (four-fermion interactions) are neglected. This
theory describes the Haldane phase for m < 0 and the dimer
phase for m > 0. Thus the quantum criticality at the TB
point belongs to Ising universality class. Our mean-field
Hamiltonian (5) in Majorana fermion representation is the
same as Eq. (11) in longwavelength limit (strictly speaking,
one can only compare the mean-field theory with the effective
field theory after renormalization). The fermion mass and
the velocity are related to the mean-field parameters up to
renormalization factors:

m ∝ λ − 2J |χ |, v ∝ 2(J − K)�.

Notice that the effective theory (11) is only valid when the
spin Hamiltonian is translationally invariant. Otherwise, the
Z2 gauge field is confined in the dimer phase, and Eq. (11)
will not describe the low-energy behaviors near the transition
point correctly.

V. DISCUSSION AND CONCLUSION

We give a few comments about the regimes J = 1,K � 1
(π/4 � θ < π/2) and J � 0 (−3π/2 < θ � −π/2) in the

following. In the region K � 1 (π/4 � θ < π/2), the pairing
term in Eq. (2) becomes irrelevant and consequently � = 0
in our mean-field theory. In this case, the (trial) mean-field
ground state has a 1/3-filled Fermi sea, whose Fermi points
are located at kF = ±π/3. Physically, for K > 1 (π/4 < θ <

π/2), the marginally irrelevant instability of the model (1) is
the antiferronematic order.9,37 Notice that there should be no
true long-ranged antiferronematic order in the ground state in
one dimension. Nevertheless, antiferronematic correlation is
not included in the mean-field ansatz, we propose here and we
do not expect the corresponding Gutzwiller projected wave
function will describe the ground state well in this regime.
One needs to introduce new mean-field parameters, which is
beyond the scope of the present paper.

The situation may be different at the special point K = 1
(θ = π/4), which corresponds to the integrable SU(3) ULS
model. Bethe ansatz solution at this special point indicates that
excitations above the SU(3) singlet ground state are gapless38

and are described by a SU(3)1 Wess-Zumino-Novikov-Witten
(WZNW) model with marginally irrelevant perturbations.21

The physics of the SU(3) ULS model can be obtained
from the Gutzwiller projected wave function. The pairing
term in Eq. (3) vanishes at K = 1 (θ = π/4) and the MF
Hamiltonian becomes a free-fermion model. Moreover, λ = χ

since the fermion bands are 1/3 filled with fermi points at
k = ±π/3. In this case, the variational wave function |�HS〉 =
PG|ψ(χ,0,χ )〉mf is an SU(3) singlet and is the exact ground
state of the SU(3) Haldane-Shastry model with inverse-square
interactions.39 Since the effective-field theory of the SU(3)
Haldane-Shastry chain is just an unperturbed version of the
SU(3)1 WZNW model,39 which shares similar low-energy
physics with the ULS model, we expect that the Gutzwiller
projected fermi sea state is a good variational wave function for
the K = 1 (θ = π/4) antiferromagnetic bilinear biquadratic
model (see also Table I).

Lastly, we consider the J � 0 (−3π/2 < θ � −π/2)
regime. There are two phases. The ferromagnetic phase is
located at J < K < ∞ (−3π/2 < θ < −3π/4). This phase is
again beyond our present mean-field theory, which is designed
to describe spin-singlet states. The remaining part K < J < 0
(−3π/4 < θ < −π/2) also belongs to the dimer phase and
is described by the projected BCS state in strong-pairing
regime. The difference between this dimer phase and the dimer
phase at J > 0 (−π/2 < θ < π/4) is that the hopping term
in Eq. (2) becomes irrelevant and χ vanishes when J � 0
(−3π/4 < θ � −π/2), see Table I for three examples.

To conclude, we introduce in this paper Gutzwiller pro-
jection for the mean-field states obtained from a fermionic
mean-field theory for S = 1 systems. The method is applied
to study the one-dimensional bilinear-biquadratic Heisenberg
model. We find that the topology of the mean-field state
determines the character of the Gutzwiller projected wave
function. The projected weak pairing states belong to the
Haldane phase, while the projected strong pairing states belong
to the dimer phase. This result is consistent with the Z2

gauge theory above the (trial) mean-field ground state. Our
theory agrees well with the Majorana effective-field theory at
the TB critical point and the method can be generalized to
higher dimensions or other spin models. After the submission
of this paper, we were reminded of some interesting works
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related to the TB point and the S = 1 quadratic-biquadratic
model.42,43
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APPENDIX: END STATES IN OPEN HEISENBERG CHAINS

It was shown in Ref. 7 that the mean-field ground state in
the fermionic mean-field theory for S = 1 Heisenberg model
is topologically nontrivial. As a result, each of the three
flavors of fermions cx,cy,cz have one Majorana zero mode
located at each end of an open chain with wave function
exponentially decay away from the chain end. (We adopt
the cartesian coordinate here). It was shown in Ref. 35 that
three Majorana fermions together may represent a spin-1/2
object via Sα = i

4εαβδγ βγ δ , where α,β,δ = x,y,z and γ α is a
Majorana fermion operator corresponding to the flavor cα (see
also Sec. III B). This suggests that the mean-field Majorana
zero modes may form spin-1/2 states at each end, in agreement
with known results.27,28,40 In this appendix, we show how the
Majorana zero modes become the spin-1/2 edge states after
Gutzwiller projection. First, we demonstrate numerically the
existence of Majorana end modes in mean-field theory for
open spin chain.

The existence of Majorana fermion edge mode in mean-
field theory can be seen from the mean-field dispersion Ek

for open chains (see Fig. 5), where the existence of two zero-
energy modes (for each favor) are clear. These two Majorana
modes, noted as γ l

α and γ r
α can be combined into a zero-energy

complex fermion mode cend
α = γ r

α + iγ l
α , which can either be
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0

0.5

1

1.5

2

i

E
i

FIG. 5. (Color online) The mean-field excitation spectrum Ei of
each flavor for an open chain. Due to particle-hole symmetry, the 200
modes correspond to L = 100 fermion modes. The two Majorana
zero modes manifest themselves. The energy of these two Majorana
modes exponentially approaches to zero with increasing L.
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N
)(
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N
+
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L)〉

FIG. 6. (Color online) Projected singlet ground state. The spin-
spin correlation function of 〈Sz

1→NSz
L−N+1→L〉 ≈ −1/4 when N � 15

shows that the edge states carry spin-1/2, here Sz
1→N = ∑N

i=1 Sz
i and

Sz
L−N+1→L = ∑N

j=1 Sz
L+1−j .

occupied or unoccupied. Correspondingly, the fermion number
of the flavor cα fermion can be either even or odd (fermion
parity) in the ground state.22 We note that strictly speaking,
under open boundary condition, the mean-field parameters χij ,
�ij , and λi vary from site to site and should be determined
self-consistently.40 We assume for simplicity that they take
uniform values determined by closed spin chain.

For the three flavors of fermions, there are a total of six
Majorana zero modes, resulting in eightfold degenerate mean-
field ground states. Half of these states have odd total number
of fermions and half have even. For chains with fixed length
L, only half of them survives for the same reason as discussed
in Sec. III.

The remaining four states have different fermion parity
distributions (Px,Py,Pz). One of them is (even, even, even). In
this case, the three flavors have equal weight in the projected
state, corresponding to a spin singlet. The other three are
(even, odd, odd), (odd, even, odd), or (odd, odd, even).
These three states form a spin-triplet because they can be
transformed from one to another by a global spin rotation.

5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

N

〈(S
z 1→

N
)(

S
z L−

N
+

1→
L)〉

FIG. 7. (Color online) Projected spin-triplet ground state with
fermion parity distribution (Nx,Ny,Nz) = (odd, odd, even). The spin-
spin correlation function of 〈Sz

1→NSz
L−N+1→L〉 ≈ −1/4 when N � 15

shows that the edge states carry spin 1/2.
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These four states remain degenerate (in the L → ∞ limit) after
Gutzwiller projection, suggesting that the Majorana fermion
states become stable S = 1/2 end spin states after projection.

To confirm the above picture we calculate the corre-
lation function 〈Sz

1→NSz
L−N+1→L〉, where Sz

1→N = ∑N
i=1 Sz

i

and Sz
L−N+1→L = ∑N

j=1 Sz
L+1−j measures the total spin Sz

accommodated from sites i = 1 to N and from i = L − N + 1
to L, respectively. Note that 〈Sz

1→N 〉 ≈ 0 and 〈Sz
L−N+1→L〉 ≈

0. We first compute 〈Sz
1→NSz

L−N+1→L〉 in the singlet state

(even, even, even). The result is shown in Fig. 6 where we find
that the correlation function approaches −1/4 when N � 15,
indicating that the magnitude of effective end spins (Sz

1→N and
Sz

L+1−N→L) is exactly 1/2.
The same analysis can also be applied to the triplet states.

We consider in Fig. 7 the correlation 〈Sz
1→NSz

L−N+1→L〉 in
the (odd, odd, even) state. It is clear that 〈Sz

1→NSz
L−N+1→L〉 ≈

−1/4 when N � 15, confirming the existence of spin-1/2
effective end spin in the weak-pairing phase.
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