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Abstract— Information-theoretic throughput scaling laws are underwater systems from wireless radio links. One natural
analyzed in an underwater acoustic network withn regularly — question is what are the fundamental capabilities of underwater
located nodes on a unit square, in which both bandwidth and nenvorks in supporting multiple S-D pairs over an acoustic
received signal power can be severely limited. A narrow-band f . .
model is assumed where the carrier frequency is allowed to channel. To answer this que_stlon, the throughput scaling for
scale as a function ofn. We first characterize an attenuation Underwater networks was first studied [7], wherenodes
parameter that depends on the frequency scaling as well as the were arbitrarily located in a planar disk of unit area and the
transmission distance. In the dense network having unit area, a carrier frequency was set to a constant. That work showed

cut-set upper bound on the capacity scaling is then derived. We an upper bound on the throughput of each node, based on
show that there exists either a bandwidth or a power limitation, he phvsical del hich | 1/a _Wo(e(nil/a))
or both, according to the path-loss attenuation regimes, thus € Physical model [1], which scalesas /e ,
yielding the upper bound that has three fundamentally different Wherea corresponds to the spreading factor of the underwater
operating regimes. In the dense network, we also describe anchannel and¥, represents the branch zero of the Lambert W
achievable scheme based on the simple nearest-neighbor multi-function® Furthermore, a capacity scaling law for extended
hop transmission. The operating regimes that guarantee the order underwater networks of unit node density was analyzed from
optimality are identified, where frequency scaling is instrumental . . . .
towards achieving the order optimality in the regimes. an information-theoretic perspective [8]. That work showed
both upper and lower bounds on the capacity scaling when
|. INTRODUCTION the carrier frequency scales as a functiomof

Gupta and Kumar's pioneering work [1] characterized !N this paper, we analyze denseunderwater network [1],
the connection between the number of nodesand the [3]. [4], considered as another fundamental network model to-
sum throughput in large-scale wireless radio networks. Thegther with an extended netwofls in [8], we are interested
showed that the total throughput scale$ds/n/log n) when N the case where the carrier frequency scales as a certain
a multi-hop (MH) routing strategy is used for source- function of n in a narrow-band model. Such an assumption
destination (S-D) pairs randomly distributed in a unit greal®@ds to a significant change in the scaling behavior owing to
MH schemes are then further developed and analyzed in [$]¢ attenuation characteristics. Recently, the optimal capacity
[3]. A recent result [4] has shown that an almost linegicaling of wireless radio networks has been studied in [10]
throughput in the network, i.e©(n'=<) for an arbitrarily acco_rdmg. to operating regimes that are determined by the
smalle > 0, is achievable by using a hierarchical cooperatiof¢lationship between the carrier frequency and the number
(HC) strategy of nodesn. The frequency scaling scenario of our study

Along with the studies in terrestrial radio networks, th&ssentially follows the same arguments as those in [10]. We
interest in study of underwater networks has been groflM to study both an information-theoretic upper bound and
ing [5], [6], due to recent advances in acoustic communicatiG¢hievable rate scaling while allowing the frequency scaling
technology. In underwater acoustic communication systen‘@,th n. o ) _
both bandwidth and received signal power can be severely/Ve explicitly characterize amitenuation parametethat
limited owing to exponential (rather than polynomial) pathdepends on the transm|s§|on distance and also on the carrier
loss attenuation with propagation distance and frequendjeduency. For networks with regularly placed nodes, we first

dependent attenuation. This is a main feature that distinguishes o _ ) )
SThe Lambert W function is defined to be the inverse of the functiea

W (2)e" (2) and the branch satisfying/ (z) > —1 is denoted byiWy(z).
4Capacity scaling laws have intensively been studied in two different
networks for analytical convenience: dense and extended networks having unit

1We use the following notation: if (z) = O(g(x)) means that there exist
constants” andc such thatf (z) < Cg(z) forall z > c.ii) f(z) = o(g(z))

meanszliréo ooy = 0-1) f(z) = Q(g(x)) if g(‘r)__ O(f(2))- W) f(£) = area and unit node density, respectively. Since the two networks represent
w(g(x)) if g(x) = o(f(x)). V) f(z) = O(g(x)) if f(x) = O(g(x)) and both extreme network realizations, a realistic one would be in-between. In
g(z) = O(f(x)). wireless radio networks, the work in [9] generalized the results of [4] to the

2Note that the HC deals with a subtle issue around quantization, whichdase where the network area can scale polynomially with the number of nodes
not our main concern in this work. n. In underwater networks, we leave this issue for further study.



derive an upper bound on the total throughput scaling using tbevered, similarly as in [9], [10]. The absorptiaff) is then
cut-set bound. We show that there exists either a bandwidthasr increasing function of such that
a power limitation, or both, according to the operating regimes

. . . L . — lez

(i.e., path-loss attenuation regimes), similarly as in Ref. [9]. a(f) =O(e*") @)
Specifically, our results indicate that the upper bound has thkggn, respect tof for a constant; > 0 independent of.. The
fundamentally different operating regimes according to thf‘oiseni at nodei € {1,---,n} in an acoustic channel can

attenuation parameter. In addition, to show constructively ogg modeled through four basic sources: turbulence, shipping,
achievability result, we utilize the existing MH routing schemg;ayes, and thermal noise [5]. We assume thatis the
with a slight modification, which is suitable for underwateg;rcylarly symmetric complex additive colored Gaussian noise
n_etworl_<s due to the_very_ long propagation dglay of acoustiGih zero mean and power spectral density (paH)f), and
signal in water. We |dent_|fy t_he operating regimes such thatys n, is frequency-dependent. The overall psdrof with

the optimal capacity scaling is guaranteed. We point out thglyr sources decays linearly on the logarithmic scale in the
frequency scaling is instrumental towards achieving the Or‘*?‘équency region 100 Hz — 100 kHz, which is the operating

optimality in the regimes. region used by the majority of acoustic systems, and thus is
We refer to the full paper [11] for the detailed descriptiopproximately given by [5]

and all the proofs.
log N(f) = ag —aslog f 2

for some positive constants, and a; independent ofn. It
We take into account a two-dimensional underwater netwomkeans thatV(f) = O(1) since

that consists of. nodes on a unit square such that two neigh- 1

boring nodes aré/\/n unit of distance apart from each other, N(f)=0 (f%) 3

i.e., a regular network [12]. This two-dimensional network is

usually assumed to be constituted by sensor nodes that iaréerms of f increasing withn. The received signaj;, at

Il. SYSTEM AND CHANNEL MODELS

anchored to the bottom of the ocean. We randomly pick S#vdek € {1,--- ,n} at a given time is given by
pairings, so that each node is the destination of exactly one
source. Each node has an average transmit power cong#raint Yk = Z hiizi + ni.

(constant), and we assume that the channel state information el
is available at all receivers, but not at the transmitters. It vghere .
assumed that each node transmits at a fate)/n, where By = el

T(n) denotes the total throughput of the network. Alrri, [)

Now let us turn to channel modeling. We assume frequencﬁépresents the complex channel between nodeslk, z; € C
flat channel of bandwidtil’ Hz around carrier frequency, g ihe signal transmitted by nodeandl c {1,--- ,n} is the

which satisfiesf > W, i.e., narrow-band model. This is ase of simultaneously transmitting nodes. The random phases
highly simplified model, but nonetheless one that suffices 190 gre uniformly distributed ovefo, 2r) and independent
demonstrate the fundamental mechanisms that govern CapaﬂFydiﬁerenti L and time. We thus assume a narrow-
scaling. Assuming that all the nodes have perfectly directior@.clmd time-var’yin,g channel, whose gain changes to a new

transmissions, we also disregard multipath propagation. ’ﬁ{blependent value for every symbol
underwater acoustic channel is characterized by an attenuatiogased on the above channel characteristics, operating

that depends on both the distange between nodes and k regimes of the network are identified according to the fol-

(i,k € {1,---,n}) and the signal frequency, and is given lowing physical parameters: the absorptig(if) and the noise
by psd N (f) which are exploited here by choosing the frequency
A(rgi, ) = corgza(f)™ f based om. In other words, if the relationship betwegn

and n is specified, theru(f) and N(f) can be given by a

for a constantcy > 0 independent ofn, where a is the — .oqain scaling function of from (1) and (3), respectively.

spreading factor and(f) > 1 is the absorption coefficient [5].
The spreading factor describes the geometry of propagation I1l. CUT-SETUPPERBOUND
and is typicallyl < a < 2. A common empirical model gives
a(f) in dB/km for f in kHz as [5]:

To access the fundamental limit of a dense underwater
network, a new cut-set upper bound on the capacity scaling
2 £2 is analyzed from an information-theoretic perspective [13].
byt 2 +as byt 12 Consider a given CL_JL dividing the network area into two
equal halves (see Fig. 1). Under the dytsource nodes are
where {ao, - - - ,as,b1,b2} are some positive constants indeen the left, while all nodes on the right are destinations. In this
pendent ofn. As stated earlier, we will allow the carriercase, we have a@(n) x ©(n) multiple-input multiple-output
frequency f to scale at arbitrarily increasing rates relativéMIMO) channel between the two sets of nodes separated by
to n. As a consequence, a wider range of bgttand n is the cut.

10loga(f) = ag +arf* + as
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L . Vn ﬁ attenuation parameter(f), based on the selection rule for

" e s s e eals TSIL zr, [9], so that onlyD,, ; contains the destination nodes with
SEDEDEDEE b b v high received SNR. To be specific, we need to decide whether
ane e ocelanaleaase the total power received by a destinatibre Dy, from the set
: :: : : : : : : : :: St of sources, denoted by
REREE P P = 2 S rtal) (5)
'.'...:::::: iESL
o oe o« ofEEEE e o is larger than the noise psd(f), because degrees-of-freedom
e oole » slo\e olo\s e (DoFs) of the MISO channel are limited to one. If destination

St Dri Dro node k£ has the total received SNR greater than one, i.e.,

Pé’“) = w(N(f)), then it belongs toD; ;. Otherwise, it
Fig. 1. '[rtf cutLt infa two—dimegs(ijon?I d?_nse redgular netwc:ﬁg,largé)_L follows thatk ¢ Dy o.

represen e sets of source an estination nodes, respectively, ae . T

partitioned into two groupDy ; and Dy, . For analytical tractability, suppose that

a(f) = 6 ((1+e)™") for g € [0,00), ®)

Unlike the extended network. case [8], .'t IS necessary tf) n%ﬁereeo > 0 is an arbitrarily small constant, independent of
row down the class of S-D pairs according to their Euclidean

distance t tablish a tight - bound in a dense netwoik which represents all the operating regimes with varying
stance to establish a ught upper bou a gense Netwogx. g, convenience, let us index the node positions such

In this section, we use hybrid approaches that consider eit Lt the source and destination nodes are located at posi-
the sum of the capacities of the multiple-input single-output k,

(MISO) channel between transmitters and each receiver or fipns %1’ Jr and L\/Iﬁ’ \/ﬁ)’ respectively, foti, k, =
amount of power transferred across the network accordinglto =+, v7/2 and iy, ky, = 1,---,\/n. We then obtain the
operating regimes, similarly as in Ref. [9]. following scaling results forPg“) as shown below.

In the extended network framework [8], upper bounding Lemma 1:In a dense network, the terfﬁé’“) in (5) is given
the capacity by the total received SNR yields a tight bouriay
due to poor power connections for all the operating regimes.

IR if 1< 2 andk, = o (n'/2-A+e
In a dense network, however, we may have arbitrarily high O(n) "lsassandhs f/gjﬂJre
. . O(nlogn) if a=2andk, =o(n )
received SNR for nodes in the s, that are located close Pék) - e/ L /28 @)
to the cut, or even for all the nodes, depending on the path- 0 (1qeg)ran? 172 max{l,n })

loss attenuation regimes, and thus need the separation between if k, =Q (n1/2fﬁ+e)
destination nodes that are well- and ill-connected to the left-

half network in terms of power. More precisely, the det and o
of destinations is partitioned into two groug¥, ; and Dy, - Q ("‘kaq ) if kx =0 (n1/2_ﬁ+5)
according to their location, as illustrated in Fig. 1. Then, b¥,(k¢) . ’ 12—
. - e : L - Q %max 1, —"—5= (8)
applying generalized Hadamard’s inequality, we have (14eg)kan? V7 (1teo)™ 7
P if ky, = Q (n'/2-Fte
T(?’l) S E [logdet (I|DL_1| + HL’lH}LLI’l)] . . . v ( )
N () for arbitrarily small positive constantsande,, wherek, //n

P is the horizontal coordinate of nodec Dy, 5.
+E |logdet (I +—H; HE )|, 4 )
[Og ¢ ( (Dral TN (F) 2 L’Qﬂ @ Although the upper and lower bounds fé*) are not

where Hy; is the matrix with entrieSHy J,; = hy; for identical to each other, showing these scaling results is enough
i €Sy, ke Dy, andl = 1,2. Note that the first and © make a decision omy, acgordlng to the o%)ratlng regimes.
second terms in the right-hand side (RHS) of (4) represent then kz = o (n'/>77<), it follows that P, = w(n*’)
information transfer fromS;, to Dy ; and fromSy, to Dy, from (8), resulting inP\* = w(N(f)) due toN(f) = O(1).
respectively. HereD;, ; denotes the set of destinations locateth contrast, under the condition, = € (n!/2=8%<) it is

on the rectangular slab of width;,//n immediately to the observed from (7) thaP\" is exponentially decaying with a
right of the centerline (cut), where, € {0,1,---,v/n/2}.  function ofn, thus leading t?\*) = o(N(f)). Consequently,
The setDy, is given by Dy, \ Dy ;. It then follows that ysing the result of Lemma 1, three different regimes are

[Dpal=apynand|Dps| = (Vn/2 —ap)V/n. identified and the selected;, is specified accordingly:
Let T;(n) denote the-th term in the RHS of (4) foi ¢ 5 5
{1,2}. It is then reasonable to bourdd (n) by the cardinality \/ﬁ/f ! B=0
- rp =14 nlt/? Pt if0<p<1/2
of the setDy, ; rather than the total received SNR. In contrast, .
using the power transfer argument for the tefain), as in 0 if 5>1/2

the extended network case, will lead to a tight upper bouni@r an arbitrarily smalle > 0. It is now possible to show the
It is thus important to set the parameter according to the proposed cut-set upper bound in dense networks.



drops off exponentially whers > 1/2. In addition, another

n expression on the total throughpiit(n) is summarized as
follows.

i ‘ Remark 2:Using (1) and (3) yields the following expres-

min {n(*=1/2, i} e sion
' O(nlogn) if f=0(1)
n't€logn .
0 z B O neC1f2/\l/fﬁs> If f:w(n1/4)'

Fig. 2. Upper (solid) and lower (dashed) bounds on the capacity scaliwhich represents the upper bound for the operating regimes
T'(n). identified by frequency scaling.
IV. ACHIEVABILITY RESULT

In this section, to show the order optimality, we analyze
the achievable throughput scaling for dense networks with

Theorem 1:Consider an underwater regular network of unit
area. Then, the upper bound on the total throughput) is

given by o S L
) the existing transmission scheme, commonly used in wireless
O(n llo_gﬁz)e !f =0 radio networks. In particular, we identify the operating regimes
T(n) = O (n logn) if 0<B<1/2 (9) for which the achievable throughput matches the upper bound

( n(ltatBas)/2

W) if 5>1/2, shown in Section IlI.

L . As in the extended network case [8], the nearest-neighbor
wheree andeg are arbitrarily small positive constants, asmg MH routing in [1] is used with a slight modification. The

an'(\jlﬁ ar(;:] def:]ned in (2)bandd(63r, rfespe_cti\llely. di basic procedure of the MH protocol under our dense regular
oFe that t € upper boun [4] for wireless radio newvorlﬁetwork is similar to the extended network case, and is briefly
of unit area is given by)(nlogn), which is the same as thedescribed as follows:

case withs = 0 (or equivalentlya(f) = ©(1)) in the dense Divide the network inton square routing cells, each of
underwater network. Now let us discuss the fundamental limits® q 9 ’

of the network according to three different operating regimes which h"’?s the same area. .
« Draw a line connecting an S-D pair.

shown in (9). ;

Remark 1:The upper bound on the total capacity scaling * At €ach node, use the transmit power of
is illustrated in Fig. 2 versus the parameter(logarithmic . a(f)VVIN(f)
terms are omitted for convenience). We first address the regime Pmin ¢ 1, ez
B8 = 0 (i.e., low path-loss attenuation regime), in which

the upper bound off’(n) is active withz, = /n/2, or The scheme operates with the full power whefy) =

equivalently Dy, = Dy, while T3(n) = 0. In this case, ¢ (z(}@i) On the other hand, whem(f) = o (%)
the total throughput of the network is limited by the D0F§ne transmit power Pa(f)!/V7N(f)/n®/2, which scales
of the ©(n) x ©(n) MIMO channel betweenS; and Dy, '

) . . . . slower than©(1), is sufficient so that the received SNR at
and is roughly linear in the bandwidth, thus resulting in a . . )
. . . : . ; €ach node is bounded by 1 (note that having a higher power
bandwidth-limited network. Our interest is particularly in the . .
iS unnecessary in terms of throughput improvement).

operating regimes for which the network becomes power- : . e
o : : The amount of interference is now quantified to show the
limited as5 > 0. In the second regimé < 5 < 1/2 (i.e., hievable th hout based
medium path-loss attenuation regime), the upper bound 3q eva e throughput based on MH. .
' emma 2: Suppose that a regular network of unit area uses

T(n) is dominated by the information transfer frofy, to the nearest-neighbor MH protocol. Then, the total interference

Dy, that is, the termil’(n) contributes more thafs (n). ower P; from other simultaneously transmitting nodes, cor-
The total throughput is thus limited by the DoFs of the MIMC ! y g ’
responding to the set C {1,--- ,n}, is bounded by

channel betweef; andD;, ;, since more available bandwidth

leads to an increment ifi’; (n). As a consequence, in this o (mx{nPmPC P d0gn} ) ) o B<1/2
regime, the network is both bandwidth- and power-limited. nfes/2 -

In the third regimeg > 1/2 (i.e., high path-loss attenuationf7 = { O (n~7%s/2) if 3=1/2 (10)
regime), the upper bound faf;(n) is active withzz = 0, or O ( ”an/;fl/z) if 5> 1/2
equivalentlyDy, » = Dy, while T1(n) = 0. The information (1+eo)

transfer toDy, is thus totally limited by the sum of the totalfor an arbitrarily smalky, > 0, wherea; and g are defined in

received SNR from the left-half network to the destinatiof?) and (6), respectively.

nodes inDy. In other words, in the third regime, the network From (1), (3), and (6), we note that wheh = 1/2, it

is limited in power, but not in bandwidth. follows that P = O(N(f)), i.e., Pr is upper-bounded by
Note that the upper bound dfi(n) decays polynomially the psdN(f) of noise. Using Lemma 2, a lower bound on

with increasing$ in the regime0 < g < 1/2, while it the capacity scaling can be derived, and hence the following



result shows the achievable rates under the MH protocol irttee hierarchy, thereby resulting in the signal-to-interference-
dense network. and-noise ratio that scales agl) for each transmission (the
Theorem 2:In an underwater regular network of unit areadetails are not shown in this paper). It is thus not possible to
achieve a linear throughput scaling. Now let us focus on the
Q v if0<B<1/2 case wherd) < 8 < 1/2. At the top level of the hierarchy,
max{n(l/Qfﬁ)(Z*a),logn} - . . .
the transmissions between two clusters having distandg

T(n) = if 3= 11
() Q(\/E)+Q+Ba5)/2 ff g=1/2 @D become a bottleneck because of the exponential path-loss
Q (W) if 8>1/2 attenuation with propagation distance. Hence, the achievable
_ i throughput of the HC decays exponentially with respeat,to
is achievable.

which is significantly lower than that in (11).
Note that the achievable throughput [1] for wireless radio

networks of unit area using MH routing is given b./n), V. CONCLUSION
which is the same as the case for which = 1/2 (or  Dense underwater acoustic networks were analyzed in terms
equivalentlya(f) = © ((1+€)v")) in a dense underwaterof capacity scaling. Provided that the frequengyscales
network. The lower bound on the total throughplitn) is relative to the number of nodes, the information-theoretic
also shown in Fig. 2 according to the parametefFrom this Upper bound and the achievable throughput were obtained as
result, an interesting observation follows. To be specific, finctions of the attenuation paramet&(f). The upper bound
the regime0 < 8 < 1/2, the lower bound orl'(n) grows Was first derived by characterizing three different operating
linearly with increasing?, because the total interference powef€gimes, in which there exists either a bandwidth or a power
Py in (10) tends to decrease &increases' In this regime,“mitation, or both. In addition, from the aChievab”ity result,
note thatP; scales faster than the received signal power We proved that the MH protocol is order-optimal in power-
from the desired transmitter. Meanwh"e Whérb 1/2 the ||m|ted I’egimes (i.e., the case WhefSCEﬂeS faster than or as
lower bound reduces rapidly due to the exponential path- o8y ).
attenuation in terms of increasing
In addition, similarly to Section Ill, another expression on
the achievability result is now summarized as in the followmg[
Remark 3:From (1) and (3), it follows that 2]
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