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Abstract— Information-theoretic throughput scaling laws are
analyzed in an underwater acoustic network with n regularly
located nodes on a unit square, in which both bandwidth and
received signal power can be severely limited. A narrow-band
model is assumed where the carrier frequency is allowed to
scale as a function ofn. We first characterize an attenuation
parameter that depends on the frequency scaling as well as the
transmission distance. In the dense network having unit area, a
cut-set upper bound on the capacity scaling is then derived. We
show that there exists either a bandwidth or a power limitation,
or both, according to the path-loss attenuation regimes, thus
yielding the upper bound that has three fundamentally different
operating regimes. In the dense network, we also describe an
achievable scheme based on the simple nearest-neighbor multi-
hop transmission. The operating regimes that guarantee the order
optimality are identified, where frequency scaling is instrumental
towards achieving the order optimality in the regimes.

I. I NTRODUCTION

Gupta and Kumar’s pioneering work [1] characterized
the connection between the number of nodesn and the
sum throughput in large-scale wireless radio networks. They
showed that the total throughput scales asΘ(

√
n/ log n) when

a multi-hop (MH) routing strategy is used forn source-
destination (S-D) pairs randomly distributed in a unit area.1

MH schemes are then further developed and analyzed in [2],
[3]. A recent result [4] has shown that an almost linear
throughput in the network, i.e.,Θ(n1−ε) for an arbitrarily
small ε > 0, is achievable by using a hierarchical cooperation
(HC) strategy.2

Along with the studies in terrestrial radio networks, the
interest in study of underwater networks has been grow-
ing [5], [6], due to recent advances in acoustic communication
technology. In underwater acoustic communication systems,
both bandwidth and received signal power can be severely
limited owing to exponential (rather than polynomial) path-
loss attenuation with propagation distance and frequency-
dependent attenuation. This is a main feature that distinguishes

1We use the following notation: i)f(x) = O(g(x)) means that there exist
constantsC andc such thatf(x) ≤ Cg(x) for all x > c. ii) f(x) = o(g(x))

means lim
x→∞

f(x)
g(x)

= 0. iii) f(x) = Ω(g(x)) if g(x) = O(f(x)). iv) f(x) =

ω(g(x)) if g(x) = o(f(x)). v) f(x) = Θ(g(x)) if f(x) = O(g(x)) and
g(x) = O(f(x)).

2Note that the HC deals with a subtle issue around quantization, which is
not our main concern in this work.

underwater systems from wireless radio links. One natural
question is what are the fundamental capabilities of underwater
networks in supporting multiple S-D pairs over an acoustic
channel. To answer this question, the throughput scaling for
underwater networks was first studied [7], wheren nodes
were arbitrarily located in a planar disk of unit area and the
carrier frequency was set to a constant. That work showed
an upper bound on the throughput of each node, based on
the physical model [1], which scales asn−1/αe−W0(Θ(n−1/α)),
whereα corresponds to the spreading factor of the underwater
channel andW0 represents the branch zero of the Lambert W
function.3 Furthermore, a capacity scaling law for extended
underwater networks of unit node density was analyzed from
an information-theoretic perspective [8]. That work showed
both upper and lower bounds on the capacity scaling when
the carrier frequency scales as a function ofn.

In this paper, we analyze adenseunderwater network [1],
[3], [4], considered as another fundamental network model to-
gether with an extended network.4 As in [8], we are interested
in the case where the carrier frequency scales as a certain
function of n in a narrow-band model. Such an assumption
leads to a significant change in the scaling behavior owing to
the attenuation characteristics. Recently, the optimal capacity
scaling of wireless radio networks has been studied in [10]
according to operating regimes that are determined by the
relationship between the carrier frequency and the number
of nodes n. The frequency scaling scenario of our study
essentially follows the same arguments as those in [10]. We
aim to study both an information-theoretic upper bound and
achievable rate scaling while allowing the frequency scaling
with n.

We explicitly characterize anattenuation parameterthat
depends on the transmission distance and also on the carrier
frequency. For networks withn regularly placed nodes, we first

3The Lambert W function is defined to be the inverse of the functionz =
W (z)eW (z) and the branch satisfyingW (z) ≥ −1 is denoted byW0(z).

4Capacity scaling laws have intensively been studied in two different
networks for analytical convenience: dense and extended networks having unit
area and unit node density, respectively. Since the two networks represent
both extreme network realizations, a realistic one would be in-between. In
wireless radio networks, the work in [9] generalized the results of [4] to the
case where the network area can scale polynomially with the number of nodes
n. In underwater networks, we leave this issue for further study.



derive an upper bound on the total throughput scaling using the
cut-set bound. We show that there exists either a bandwidth or
a power limitation, or both, according to the operating regimes
(i.e., path-loss attenuation regimes), similarly as in Ref. [9].
Specifically, our results indicate that the upper bound has three
fundamentally different operating regimes according to the
attenuation parameter. In addition, to show constructively our
achievability result, we utilize the existing MH routing scheme
with a slight modification, which is suitable for underwater
networks due to the very long propagation delay of acoustic
signal in water. We identify the operating regimes such that
the optimal capacity scaling is guaranteed. We point out that
frequency scaling is instrumental towards achieving the order
optimality in the regimes.

We refer to the full paper [11] for the detailed description
and all the proofs.

II. SYSTEM AND CHANNEL MODELS

We take into account a two-dimensional underwater network
that consists ofn nodes on a unit square such that two neigh-
boring nodes are1/

√
n unit of distance apart from each other,

i.e., a regular network [12]. This two-dimensional network is
usually assumed to be constituted by sensor nodes that are
anchored to the bottom of the ocean. We randomly pick S-D
pairings, so that each node is the destination of exactly one
source. Each node has an average transmit power constraintP
(constant), and we assume that the channel state information
is available at all receivers, but not at the transmitters. It is
assumed that each node transmits at a rateT (n)/n, where
T (n) denotes the total throughput of the network.

Now let us turn to channel modeling. We assume frequency-
flat channel of bandwidthW Hz around carrier frequencyf ,
which satisfiesf À W , i.e., narrow-band model. This is a
highly simplified model, but nonetheless one that suffices to
demonstrate the fundamental mechanisms that govern capacity
scaling. Assuming that all the nodes have perfectly directional
transmissions, we also disregard multipath propagation. An
underwater acoustic channel is characterized by an attenuation
that depends on both the distancerki between nodesi andk
(i, k ∈ {1, · · · , n}) and the signal frequencyf , and is given
by

A(rki, f) = c0r
α
kia(f)rki

for a constantc0 > 0 independent ofn, where α is the
spreading factor anda(f) > 1 is the absorption coefficient [5].
The spreading factor describes the geometry of propagation
and is typically1 ≤ α ≤ 2. A common empirical model gives
a(f) in dB/km for f in kHz as [5]:

10 log a(f) = a0 + a1f
2 + a2

f2

b1 + f2
+ a3

f2

b2 + f2
,

where{a0, · · · , a3, b1, b2} are some positive constants inde-
pendent ofn. As stated earlier, we will allow the carrier
frequencyf to scale at arbitrarily increasing rates relative
to n. As a consequence, a wider range of bothf and n is

covered, similarly as in [9], [10]. The absorptiona(f) is then
an increasing function off such that

a(f) = Θ(ec1f2
) (1)

with respect tof for a constantc1 > 0 independent ofn. The
noiseni at nodei ∈ {1, · · · , n} in an acoustic channel can
be modeled through four basic sources: turbulence, shipping,
waves, and thermal noise [5]. We assume thatni is the
circularly symmetric complex additive colored Gaussian noise
with zero mean and power spectral density (psd)N(f), and
thus ni is frequency-dependent. The overall psd ofni with
four sources decays linearly on the logarithmic scale in the
frequency region 100 Hz – 100 kHz, which is the operating
region used by the majority of acoustic systems, and thus is
approximately given by [5]

log N(f) = a4 − a5 log f (2)

for some positive constantsa4 and a5 independent ofn. It
means thatN(f) = O(1) since

N(f) = Θ
(

1
fa5

)
(3)

in terms of f increasing withn. The received signalyk at
nodek ∈ {1, · · · , n} at a given time is given by

yk =
∑

i∈I

hkixi + nk

where

hki =
ejθki

√
A(rki, f)

,

represents the complex channel between nodesi andk, xi ∈ C
is the signal transmitted by nodei, andI ⊂ {1, · · · , n} is the
set of simultaneously transmitting nodes. The random phases
ejθki are uniformly distributed over[0, 2π) and independent
for different i, k, and time. We thus assume a narrow-
band time-varying channel, whose gain changes to a new
independent value for every symbol.

Based on the above channel characteristics, operating
regimes of the network are identified according to the fol-
lowing physical parameters: the absorptiona(f) and the noise
psdN(f) which are exploited here by choosing the frequency
f based onn. In other words, if the relationship betweenf
and n is specified, thena(f) and N(f) can be given by a
certain scaling function ofn from (1) and (3), respectively.

III. C UT-SET UPPERBOUND

To access the fundamental limit of a dense underwater
network, a new cut-set upper bound on the capacity scaling
is analyzed from an information-theoretic perspective [13].
Consider a given cutL dividing the network area into two
equal halves (see Fig. 1). Under the cutL, source nodes are
on the left, while all nodes on the right are destinations. In this
case, we have anΘ(n)×Θ(n) multiple-input multiple-output
(MIMO) channel between the two sets of nodes separated by
the cut.



Fig. 1. The cutL in a two-dimensional dense regular network.SL andDL

represent the sets of source and destination nodes, respectively, whereDL is
partitioned into two groupsDL,1 andDL,2.

Unlike the extended network case [8], it is necessary to nar-
row down the class of S–D pairs according to their Euclidean
distance to establish a tight upper bound in a dense network.
In this section, we use hybrid approaches that consider either
the sum of the capacities of the multiple-input single-output
(MISO) channel between transmitters and each receiver or the
amount of power transferred across the network according to
operating regimes, similarly as in Ref. [9].

In the extended network framework [8], upper bounding
the capacity by the total received SNR yields a tight bound
due to poor power connections for all the operating regimes.
In a dense network, however, we may have arbitrarily high
received SNR for nodes in the setDL that are located close
to the cut, or even for all the nodes, depending on the path-
loss attenuation regimes, and thus need the separation between
destination nodes that are well- and ill-connected to the left-
half network in terms of power. More precisely, the setDL

of destinations is partitioned into two groupsDL,1 andDL,2

according to their location, as illustrated in Fig. 1. Then, by
applying generalized Hadamard’s inequality, we have

T (n) ≤ E

[
log det

(
I|DL,1| +

P

N(f)
HL,1HH

L,1

)]

+E

[
log det

(
I|DL,2| +

P

N(f)
HL,2HH

L,2

)]
, (4)

where HL,l is the matrix with entries[HL,l]ki = hki for
i ∈ SL, k ∈ DL,l, and l = 1, 2. Note that the first and
second terms in the right-hand side (RHS) of (4) represent the
information transfer fromSL to DL,1 and fromSL to DL,2,
respectively. Here,DL,1 denotes the set of destinations located
on the rectangular slab of widthxL/

√
n immediately to the

right of the centerline (cut), wherexL ∈ {0, 1, · · · ,
√

n/2}.
The setDL,2 is given by DL \ DL,1. It then follows that
|DL,1| = xL

√
n and |DL,2| = (

√
n/2− xL)

√
n.

Let Tl(n) denote thel-th term in the RHS of (4) forl ∈
{1, 2}. It is then reasonable to boundT1(n) by the cardinality
of the setDL,1 rather than the total received SNR. In contrast,
using the power transfer argument for the termT2(n), as in
the extended network case, will lead to a tight upper bound.
It is thus important to set the parameterxL according to the

attenuation parametera(f), based on the selection rule for
xL [9], so that onlyDL,1 contains the destination nodes with
high received SNR. To be specific, we need to decide whether
the total power received by a destinationk ∈ DL from the set
SL of sources, denoted by

P
(k)
L =

P

c0

∑

i∈SL

r−α
ki a(f)−rki , (5)

is larger than the noise psdN(f), because degrees-of-freedom
(DoFs) of the MISO channel are limited to one. If destination
node k has the total received SNR greater than one, i.e.,
P

(k)
L = ω(N(f)), then it belongs toDL,1. Otherwise, it

follows thatk ∈ DL,2.
For analytical tractability, suppose that

a(f) = Θ
(
(1 + ε0)nβ

)
for β ∈ [0,∞), (6)

whereε0 > 0 is an arbitrarily small constant, independent of
n, which represents all the operating regimes with varying
β. For convenience, let us index the node positions such
that the source and destination nodes are located at posi-
tions

(
−ix+1√

n
,

iy√
n

)
and

(
kx√

n
,

ky√
n

)
, respectively, forix, kx =

1, · · · ,
√

n/2 and iy, ky = 1, · · · ,
√

n. We then obtain the
following scaling results forP (k)

L as shown below.
Lemma 1: In a dense network, the termP (k)

L in (5) is given
by

P
(k)
L =





O(n) if 1 ≤ α < 2 andkx = o
(
n1/2−β+ε

)
O (n log n) if α = 2 andkx = o

(
n1/2−β+ε

)

O
(

nα/2

(1+ε0)kxnβ−1/2 max
{
1, n1/2−β

})

if kx = Ω
(
n1/2−β+ε

)
(7)

and

P
(k)
L =





Ω
(

nα/2−ε

kα−1
x

)
if kx = o

(
n1/2−β+ε

)

Ω
(

1

(1+ε0)
kxnβ−1/2 max

{
1, n1/2−β

(1+ε0)
nβ−1/2

})

if kx = Ω
(
n1/2−β+ε

)
(8)

for arbitrarily small positive constantsε andε0, wherekx/
√

n
is the horizontal coordinate of nodek ∈ DL,2.

Although the upper and lower bounds forP (k)
L are not

identical to each other, showing these scaling results is enough
to make a decision onxL according to the operating regimes.
When kx = o

(
n1/2−β+ε

)
, it follows that P

(k)
L = ω(nαβ)

from (8), resulting inP
(k)
L = ω(N(f)) due toN(f) = O(1).

In contrast, under the conditionkx = Ω
(
n1/2−β+ε

)
, it is

observed from (7) thatP (k)
L is exponentially decaying with a

function ofn, thus leading toP (k)
L = o(N(f)). Consequently,

using the result of Lemma 1, three different regimes are
identified and the selectedxL is specified accordingly:

xL =





√
n/2 if β = 0

n1/2−β+ε if 0 < β ≤ 1/2
0 if β > 1/2

for an arbitrarily smallε > 0. It is now possible to show the
proposed cut-set upper bound in dense networks.



Fig. 2. Upper (solid) and lower (dashed) bounds on the capacity scaling
T (n).

Theorem 1:Consider an underwater regular network of unit
area. Then, the upper bound on the total throughputT (n) is
given by

T (n) =





O(n log n) if β = 0
O

(
n1−β+ε log n

)
if 0 < β ≤ 1/2

O
(

n(1+α+βa5)/2

(1+ε0)nβ−1/2

)
if β > 1/2,

(9)

whereε andε0 are arbitrarily small positive constants, anda5

andβ are defined in (2) and (6), respectively.
Note that the upper bound [4] for wireless radio networks

of unit area is given byO(n log n), which is the same as the
case withβ = 0 (or equivalentlya(f) = Θ(1)) in the dense
underwater network. Now let us discuss the fundamental limits
of the network according to three different operating regimes
shown in (9).

Remark 1:The upper bound on the total capacity scaling
is illustrated in Fig. 2 versus the parameterβ (logarithmic
terms are omitted for convenience). We first address the regime
β = 0 (i.e., low path-loss attenuation regime), in which
the upper bound onT (n) is active with xL =

√
n/2, or

equivalently DL,1 = DL, while T2(n) = 0. In this case,
the total throughput of the network is limited by the DoFs
of the Θ(n) × Θ(n) MIMO channel betweenSL and DL,
and is roughly linear in the bandwidth, thus resulting in a
bandwidth-limited network. Our interest is particularly in the
operating regimes for which the network becomes power-
limited asβ > 0. In the second regime0 < β ≤ 1/2 (i.e.,
medium path-loss attenuation regime), the upper bound on
T (n) is dominated by the information transfer fromSL to
DL,1, that is, the termT1(n) contributes more thanT2(n).
The total throughput is thus limited by the DoFs of the MIMO
channel betweenSL andDL,1, since more available bandwidth
leads to an increment inT1(n). As a consequence, in this
regime, the network is both bandwidth- and power-limited.
In the third regimeβ > 1/2 (i.e., high path-loss attenuation
regime), the upper bound forT2(n) is active withxL = 0, or
equivalentlyDL,2 = DL, while T1(n) = 0. The information
transfer toDL is thus totally limited by the sum of the total
received SNR from the left-half network to the destination
nodes inDL. In other words, in the third regime, the network
is limited in power, but not in bandwidth.

Note that the upper bound onT (n) decays polynomially
with increasingβ in the regime0 < β ≤ 1/2, while it

drops off exponentially whenβ > 1/2. In addition, another
expression on the total throughputT (n) is summarized as
follows.

Remark 2:Using (1) and (3) yields the following expres-
sion

T (n) =





O(n log n) if f = Θ(1)
O

(
n1+ε log n

f2

)
if f = ω(1) andf = O

(
n1/4

)

O
(

n(1+α)/2fa5

ec1f2/
√

n

)
if f = ω

(
n1/4

)
,

which represents the upper bound for the operating regimes
identified by frequency scaling.

IV. A CHIEVABILITY RESULT

In this section, to show the order optimality, we analyze
the achievable throughput scaling for dense networks with
the existing transmission scheme, commonly used in wireless
radio networks. In particular, we identify the operating regimes
for which the achievable throughput matches the upper bound
shown in Section III.

As in the extended network case [8], the nearest-neighbor
MH routing in [1] is used with a slight modification. The
basic procedure of the MH protocol under our dense regular
network is similar to the extended network case, and is briefly
described as follows:
• Divide the network inton square routing cells, each of

which has the same area.
• Draw a line connecting an S–D pair.
• At each node, use the transmit power of

P min

{
1,

a(f)1/
√

nN(f)
nα/2

}
.

The scheme operates with the full power whena(f) =
Ω

(
nα
√

n/2

N(f)
√

n

)
. On the other hand, whena(f) = o

(
nα
√

n/2

N(f)
√

n

)
,

the transmit powerPa(f)1/
√

nN(f)/nα/2, which scales
slower thanΘ(1), is sufficient so that the received SNR at
each node is bounded by 1 (note that having a higher power
is unnecessary in terms of throughput improvement).

The amount of interference is now quantified to show the
achievable throughput based on MH.

Lemma 2:Suppose that a regular network of unit area uses
the nearest-neighbor MH protocol. Then, the total interference
powerPI from other simultaneously transmitting nodes, cor-
responding to the setI ⊂ {1, · · · , n}, is bounded by

PI =





O

(
max{n(1/2−β)(2−α),log n}

nβa5/2

)
if 0 ≤ β < 1/2

O
(
n−βa5/2

)
if β = 1/2

O
(

nα/2

(1+ε0)nβ−1/2

)
if β > 1/2

(10)

for an arbitrarily smallε0 > 0, wherea5 andβ are defined in
(2) and (6), respectively.

From (1), (3), and (6), we note that whenβ = 1/2, it
follows that PI = O(N(f)), i.e., PI is upper-bounded by
the psdN(f) of noise. Using Lemma 2, a lower bound on
the capacity scaling can be derived, and hence the following



result shows the achievable rates under the MH protocol in a
dense network.

Theorem 2:In an underwater regular network of unit area,

T (n) =





Ω
( √

n

max{n(1/2−β)(2−α),log n}
)

if 0 ≤ β < 1/2

Ω (
√

n) if β = 1/2
Ω

(
n(1+α+βa5)/2

(1+ε0)nβ−1/2

)
if β > 1/2

(11)

is achievable.
Note that the achievable throughput [1] for wireless radio

networks of unit area using MH routing is given byΩ(
√

n),
which is the same as the case for whichβ = 1/2 (or

equivalentlya(f) = Θ
(
(1 + ε0)

√
n
)

) in a dense underwater

network. The lower bound on the total throughputT (n) is
also shown in Fig. 2 according to the parameterβ. From this
result, an interesting observation follows. To be specific, in
the regime0 ≤ β ≤ 1/2, the lower bound onT (n) grows
linearly with increasingβ, because the total interference power
PI in (10) tends to decrease asβ increases. In this regime,
note thatPI scales faster than the received signal powerPr

from the desired transmitter. Meanwhile, whenβ > 1/2, the
lower bound reduces rapidly due to the exponential path-loss
attenuation in terms of increasingβ.

In addition, similarly to Section III, another expression on
the achievability result is now summarized as in the following.

Remark 3:From (1) and (3), it follows that

T (n) =





Ω
( √

n

max{ec1(2−α)f2/
√

n,log n}
)

if f = Ω(1)

andf = o
(
n1/4

)
Ω(
√

n) if f = Θ
(
n1/4

)

Ω
(

n(1+α)/2fa5

ec1f2/
√

n

)
if f = ω

(
n1/4

)
,

which represents the lower bound for the operating regimes
obtained from the relationship between the carrier frequency
f and the number of nodesn.

Now let us turn to examining how the upper bound is close
the achievable throughput scaling.

Remark 4:Based on Theorems 1 and 2, it is seen that if
β ≥ 1/2, then the achievable rate of the MH protocol is
close to the upper bound up tonε for an arbitrarily small
ε > 0 (note that the two bounds are of exactly the same order
especially forβ > 1/2). The conditionβ ≥ 1/2 corresponds
to the high path-loss attenuation regime, and is equivalent to
a(f) = Ω

(
(1 + ε0)

√
n
)

or f = Ω
(
n1/4

)
. Therefore, the

MH is order-optimal in regular networks of unit area under
the aforementioned operating regimes, whereas in extended
networks [8], using MH routing results in the order optimality
for all the operating regimes.

Finally, we remark that applying the HC strategy [4] does
not guarantee the order optimality in the regime0 ≤ β < 1/2
(i.e., low and medium path-loss attenuation regimes). The
primary reason is specified under each operating regime: for
the conditionβ = 0, following the steps similar to those
of Lemma 2, it follows thatPI = ω(Pr) at all levels of

the hierarchy, thereby resulting in the signal-to-interference-
and-noise ratio that scales aso(1) for each transmission (the
details are not shown in this paper). It is thus not possible to
achieve a linear throughput scaling. Now let us focus on the
case where0 < β < 1/2. At the top level of the hierarchy,
the transmissions between two clusters having distanceO(1)
become a bottleneck because of the exponential path-loss
attenuation with propagation distance. Hence, the achievable
throughput of the HC decays exponentially with respect ton,
which is significantly lower than that in (11).

V. CONCLUSION

Dense underwater acoustic networks were analyzed in terms
of capacity scaling. Provided that the frequencyf scales
relative to the number of nodesn, the information-theoretic
upper bound and the achievable throughput were obtained as
functions of the attenuation parametera(f). The upper bound
was first derived by characterizing three different operating
regimes, in which there exists either a bandwidth or a power
limitation, or both. In addition, from the achievability result,
we proved that the MH protocol is order-optimal in power-
limited regimes (i.e., the case wheref scales faster than or as
n1/4).
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