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Abstract— We present an immersed interface method for the
incompressible Navier Stokes equations capable of handling rigid
immersed boundaries. The immersed boundary is represented
by a set of Lagrangian control points. In order to guarantee
that the no-slip condition on the boundary is satisfied, singular
forces are applied on the fluid at the immersed boundary. The
forces are related to the jumps in pressure and the jumps in the
derivatives of both pressure and velocity, and are interpolated
using cubic splines. The strength of singular forces is determined
by solving a small system of equations at each time step. The
Navier-Stokes equations are discretized on a staggered Cartesian
grid by a second order accurate projection method for pressure
and velocity.
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I. I NTRODUCTION

This paper considers the immersed interface method (IIM)
for the incompressible Navier-Stokes equations in general do-
mains involving rigid boundaries. In a 2-dimensional bounded
domainΩ that contains a rigid interfaceΓ, we consider the
incompressible Navier-Stokes equations, written as

ut + (u · ∇)u +∇p = µ4u + F (1)

∇ · u = 0 (2)

with boundary and initial conditions

u|∂Ω = ub (3)

u(x, 0) = u0 (4)

whereu is the fluid velocity,p the pressure, andµ the viscosity
of the fluid. Here, we simply assume that the density,ρ ≡ 1,
and the viscosity,µ, are constant. The singular forceF has
the form

F (x, t) =
∫

Γ

f(s, t)δ(x−X(s, t))ds (5)

where X(s, t) is the arc-length parameterization ofΓ, s is
the arc-length,x = (x, y) is spatial position, andf(s, t) is
the force density. The Navier-Stokes equations are discretized
using finite differences on a staggered Cartesian grid. The main
features of our method are:

• It is a Cartesian grid method; the method does not require
complex mesh generation.

• It is second order accurate for velocities.
• The Poisson-like equations resulting at each time step

are solved using a cyclic reduction algorithm which has
a complexity O(NlogN), where N is the number of
degrees of freedom.

Methods utilizing a Cartesian grid for solving interface prob-
lems or problems with complex geometry have become popu-
lar in recent years. One of the most successful Cartesian grid
methods is Peskin’s immersed boundary (IB) method ( [10],
[11], [15]). In order to deal with rigid boundaries, Lai and
Peskin [11] propose to evaluate the force density using an
expression of the form,

f(s, t) = κ(Xe(s)−X(s, t)), (6)

whereκ is a constant,κ À 1, andXe is the arc-length pa-
rameterization of the required boundary position. The forcing
term in Eq (6) is a particular case of the feedback forcing
formulation proposed by Goldstein et al. [12] withβ = 0.
In [12], the force is expressed as

f(s, t) = α

∫ t

0

U(s, t′)dt′ + βU(s, t) (7)

where U is the velocity at the control points, andα and
β are chosen to be negative and large enough so thatU
will stay close to zero. Lima E Silva et al. [15] proposed
an alternative model to compute the force densityf based
upon the evaluation of the various terms in the momentum
equation (1) at the control points. The force densityf is
calculated by computing all the Navier-Stokes terms at the
control points.
Once the force density is obtained at the boundary, the
immersed boundary method uses a discrete delta function to
spread the force density to the nearby Cartesian grid points.
Since the IB method uses the discrete delta function approach,
it smears out sharp interface to a thickness of order of the
meshwidth and it is only first-order accurate for problems with
non-smooth but continuous solutions.
In contrast, the immersed interface method (IIM) can avoid
this smearing and maintains a second-order accuracy by
incorporating the known jumps into the finite difference



scheme near the interface. The IIM was originally proposed
by LeVeque and Li [3] for solving elliptic equations, and later
extended to Stokes flows by LeVeque et al. [4]. The method
was developed further for the Navier-Stokes equations in Li
et al. [6], Lee [9] and Le et al. [16] for problems with flexible
boundaries. The method was also used by Calhoun [8] and
Li et al. [7] for solving the two-dimensional streamfunction-
vorticity equations in irregular domains. In [7], [8] the no-slip
boundary conditions are imposed directly by determining the
correct jump conditions for streamfunction and vorticity.
Another Cartesian grid approach has been presented by Ye
et al. [13] and Udaykumar et al. [14] using finite volume
techniques. They reshaped the immersed boundary cells and
use a polynomial interpolating function to approximate the
fluxes and gradients on the faces of the boundary cells while
preserving second-order accuracy.
In this paper, we extend our earlier works presented in Le
et al. [16] for problems with deformable boundaries, to solve
problems with rigid immersed boundaries . Our approach uses
the immersed interface method to solve the incompressible
Navier-Stokes equations formulated in primitive variables.
In [16], the singular forcef is computed based on the con-
figuration of the interface, i.e., the interface is assumed to be
governed by either surface tension, or by an elastic membrane.
In present work, the singular force at the immersed boundary
is determined to impose the no-slip boundary condition at
the rigid boundary. At each time step the singular force is
computed implicitly by solving a small, dense linear system
of equations. Having computed the singular force, we then
compute the jump in pressure and jumps in the derivatives
of both pressure and velocity. The jumps in the solution
and its derivatives are incorporated in the finite difference
discretization to obtain sharp interface resolution. Fast solvers
from Fishpack software library [18] are used to solve the
resulting discrete systems of equations.
The remainder of the paper is organized as follows. In sec-
tion II, we present the relations that must be satisfied along
the immersed boundary between the singular forcef and
the jumps in the velocity and pressure and their derivatives.
In section III, we describe the generalized finite difference
approximations to the solution derivatives, which incorporate
solution jumps. In section IV, we present details of the
numerical algorithm. In section V, some numerical examples
are presented and finally, some conclusions and suggestions
for future work are given in section VI.

II. JUMP CONDITIONS ACROSS THE INTERFACE

Let n andτ be the unit outward normal and tangential vectors
to the interface, respectively. The normal,f1 = f(s, t) ·n, and
tangential,f2 = f(s, t) · τ , components of the force density,
can be related to the jump conditions for pressure and velocity
as follows (see [4], [6], [9] for details),

[u] = 0, [µuξ] = −f2τ , [uη] = 0 (8)

[p] = f1, [pξ] =
∂f2

∂s
, [pη] =

∂f1

∂s
. (9)

[µuηη] = κf2τ , [µuξη] = −∂f2

∂η
τ − κf2n,

[µuξξ] = − [µuηη] + [pξ]n + [pη]τ + [uξ]u · n
(10)

The jump, [ · ], denotes the difference between the value of
its argument outside and inside the interface, and(ξ, η) are
the coordinates associated with the directions ofn and τ ,
respectively. Here,κ is the signed valued of the curvature of
the interface (i.e. we assume thatn × τ = k ≡ constant, so
thatn can point either towards, or outwards from, the center of
curvature). From expressions (8)–(10) the values of the jumps
of the first and second derivatives of velocity and pressure
with respect to the(x, y) coordinates are easily obtained by a
simple coordinate transformation. For instance, we write,

[ux] = [uξ]n1 + [uη]τ1

[uyy] = [uξξ]n2
2 + 2[uξη]n2τ2 + [uξη]τ2

2 ,

wheren = (n1, n2) andτ = (τ1, τ2) are the Cartesian com-
ponents of the normal and tangential vectors to the interface
at the point considered.

III. G ENERALIZED FINITE DIFFERENCE FORMULAS

From Taylor series expansions, it is possible to show that if
the interface cuts a grid line between two grid points atx = α,
xi ≤ α < xi+1, then, the following approximations hold for
a piecewise twice differentiable functionv(x):

vx(xi) =
vi+1 − vi−1

2h
− 1

2h

2∑
m=0

(h+)m

m!
[v(m)] + O(h2)

vx(xi+1) =
vi+2 − vi

2h
− 1

2h

2∑
m=0

(h−)m

m!
[v(m)] + O(h2)

vxx(xi) =
vi+1 − 2vi + vi−1

h2
− 1

h2

2∑
m=0

(h+)m

m!
[v(m)]+O(h)

vxx(xi+1) =
vi+2 − 2vi+1 + vi

h2
+

1
h2

2∑
m=0

(h−)m

m!
[v(m)]+O(h)

where v(m), denotes them-th derivative ofv, vi = v(xi),
h+ = xi+1−α, h− = xi−α, andh, is the mesh width in the
x direction. The jumps inv and its derivatives are defined as

[v(m)]α = lim
x→α+

v(m)(x)− lim
x→α−

v(m) (11)

in short, [ · ] = [ · ]α, and v(0) = v. See Wiegmann and
Bube [5] for more details.

IV. N UMERICAL ALGORITHM

A. Projection method

We employ a pressure-increment projection algorithm for the
discretization of the Navier-Stokes equations. This projection
algorithm is analogous to that presented in Brown et al. [1]. It
leads to a second order accuracy for both velocity and pressure
provided all the spatial derivatives are approximated to second
order accuracy. The spatial discretization is carried out on a



standard MAC staggered grid analogous to that in Kim and
Moin [2]. The ENO second-order upwind scheme is used for
the advective terms (Shu and Osher [17]). With the MAC
mesh, the pressure field is defined at the cell center where the
continuity equation is enforced. The velocity fieldsu andv are
defined at the vertical edges and horizontal edges, respectively.
Given the velocityun, and the pressurepn−1/2, we compute
the velocityun+1 and pressurepn+1/2 in three steps:
Step 1: Compute an intermediate velocity fieldu∗ by solving

u∗ − un

4t
= − (u · ∇u)n+ 1

2 −∇pn− 1
2 + µ∇2un+ 1

2 (12)

u∗|∂Ω = un+1
b

where, the advective term is extrapolated using the formula,

(u.∇u)n+ 1
2 =

3
2

(u · ∇u)n − 1
2

(u · ∇u)n−1 (13)

the diffusion term is approximated implicitly as,

∇2un+1/2 =
1
2
(∇2

hu∗ +∇2
hun) + C1 . (14)

and the pressure gradient term is given by

∇pn− 1
2 = GMACpn− 1

2 + C2 (15)

The MAC gradient operators are defined as

(GMAC
x p)i+ 1

2 ,j =
pi+1,j − pi,j

4x

(GMAC
y p)i,j+ 1

2
=

pi,j+1 − pi,j

4y

Step 2: Compute a pressure updateφn+1 by solving the
Poisson equation

∇2φn+1 =
∇ · u∗
4t

, n · ∇φn+1|∂Ω = 0 (16)

This is accomplished by solving the discrete system

∇2
hφn+1 =

DMACu∗

4t
+ C3 (17)

where the MAC divergence operator is defined as follows

(DMACu)i,j =
ui+ 1

2 ,j − ui− 1
2 ,j

4x
+

vi,j+ 1
2
− vi,j− 1

2

4y

Step 3: Update pressure and velocity field according to,

un+1 = u∗ −∆tGMACφn+1 + C4 (18)

pn+1/2 = pn−1/2 + φn+1 − µ

2
(
DMACu∗

)
+ C5 (19)

The operators∇h and∇2
h are the standard three point central

difference operators andCi, i = 1, . . . , 5, are the correction
terms which are only non-zero at the points near the interface
and are calculated using generalized finite difference formulas
of the type introduced in the previous section. This method
requires solving two Helmholtz equations foru∗ in Eq (12)
and one Poisson equation forφn+1 in Eq (17). Since the
correction terms only affect the right-hand sides of the discrete
systems, we can take advantage of the fast solvers from
Fishpack [18] to solve these equations.

B. Singular force evaluation

Having solved forun+1 at the grid points, we now compute
the velocity at the interface. In our method, we use a set of
control points to represent the interface. The velocity at the
control points,Uk, is interpolated from the velocity at the grid
points. Thus, we can write

Uk = U(Xk) = B(un+1) (20)

whereB is the bilinear interpolation operator which includes
the appropriate correction terms which are required to guaran-
tee second order accuracy when the derivatives of the velocity
are discontinuous.
In summary, the equations that need to be solved in order to
calculateun+1 andUk, can be written symbolically as,

Eq (12) → Hu∗ = C + B1f

Eq (17) → Lφn+1 = Du∗ + B2f

Eq (18) → un+1 = u∗ −Gφn+1 + B3f

Eq (20) → Uk = Mun+1 + B4f

Eliminatingu∗, φn+1 andun+1 from the above equations, we
can compute the velocityUk at the control points as follows,

Uk = M
(
H−1C −GL−1DH−1C

)

+
(
M

(
H−1B1 −GH−1B1 −GL−1B2 + B3

)
+ B4

)
f

For convenience, we can write the above equation as

Uk = U0
k + Af (21)

whereU0
k is simply the velocity at the control points obtained

by solving Eqs (12)–(20) withf = 0, given un andpn−1/2.
A is a 2Nb× 2Nb matrix, whereNb is the number of control
points. The vectorAf is the velocity at the control points
obtained by solving the following equations

u∗f
4t

=
µ

2
∇2u∗f , u∗f |∂Ω = 0 (22)

∇2φn+1
f =

∇ · u∗f
4t

, n · ∇φn+1
f |∂Ω = 0 (23)

un+1
f = u∗f −∆t∇φn+1

f (24)

Af = B(un+1
f ) (25)

with f being the singular force at the immersed boundary.
Eq (21) can be used to determine the singular force if we
know the prescribed velocityUp at the immersed boundary.
Thus, the singular force at the control points can be computed
by solving

Af = Up −U0
k (26)

The matrix A is computed once and stored. We solve
Eqs (22)–(25)2Nb times, i.e., one for each column. Each
time, the force strengthf is set to zero except for the entry
in the column we want to calculate which is set to one. Once
the matrix A has been calculated, only the right hand side
Up−U0

k, needs to be computed at each timestep. The resulting
small system of equations (26) is then solved at each timestep
for the singular forcef . Finally, we solve Eqs (12)–(19) to
obtainun+1 andpn+1/2.
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Fig. 1: Velocity field at time t = 10 with a 64×64 grid,
µ = 0.02, 4t = 4x/4. The immersed boundary rotates with
angular velocityω = 2 . Fig. 1(a) Plot of the x component of

velocity field. Fig. 1(b) Plot of velocity vector field.

V. NUMERICAL RESULTS

In this section we present the numerical results for three
problems which involve immersed boundaries.

A. Rotational flow

In this problem, the interface is a circle with radius r = 0.3
embedded in square domain[−1, 1] × [−1, 1]. We prescribe
the interface to rotate with angular velocityω = 2. We set
µ = 0.02 and consider the solution whent = 10. The velocity
field is shown in Figure 1. We carried out a grid refinement
analysis, using a reference grid of512×512, to determine the
order of convergence of the algorithm. The results in Table I
show that the velocity is second order accurate and pressure
is nearly second order accurate.

B. Flow past a circular cylinder

In this example, we simulate an unsteady flow past a circular
cylinder immersed in a rectangular domainΩ = [0, 3]×[0, 1.5].

N Nb ‖E(u)‖∞ order ‖E(u)‖2 order
64 40 1.8001× 10−3 1.6528× 10−4

128 80 5.5145× 10−4 1.71 3.9239× 10−5 2.08
256 160 1.2755× 10−4 2.11 1.0021× 10−5 1.97
N Nb ‖E(p)‖∞ order ‖E(p)‖2 order
64 40 6.6995× 10−3 1.6014× 10−3

128 80 1.5951× 10−3 2.07 4.7510× 10−4 1.75
256 160 5.7996× 10−4 1.46 1.5854× 10−4 1.58

TABLE I: The grid refinement analysis for the rotational flow
problem withµ = 0.02, 4t = 4x/4, at t = 10.

The cylinder has a diameterd = 0.1 and its center is
located at (1.6, 0.75). The fluid density isρ = 1.0 and the
freestream velocity is set to unity,U∞ = 1. The viscosity is
determined by the Reynolds number,Red. Simulations have
been performed atRed = 20, 40, 80, 100, 200 and 300 on
512 × 256 computational mesh. We use 40 control points to
represent the circular cylinder. At the inflow boundary we
specify the velocity corresponding to the freestream velocity,
and a homogeneous Neumann boundary condition is applied
at the top, bottom and exit boundaries. The pressure is set to
zero at the exit boundary. The pressure field plots are shown
in Figure 2. The results appear to be in good agreement with
the other numerical simulations and experimental results.
It is important to note that the matrixA, for a closed immersed
boundary, is singular. This happens because the pressure inside
the close boundary is not uniquely determined. We choose
the pressure inside the cylinder such that there is no jump in
pressure at one of the control points, i.e., the normal force
at that point is set to zero. Therefore, we can eliminate one
column and row of the matrixA corresponding to that control
point, thus making the problem solvable.

C. Flow past a flat plate

In this example, we simulate an unsteady flow past a flat plate
immersed in a rectangular domainΩ = [0, 3]× [−0.75, 0.75].
The flat plate whose length isL = 0.1 is oriented in the
crossflow direction and located atx = 1.40. Simulations have
been performed atReL = 20, 50, 100, 1000 and 5000 on a
256 × 128 computational mesh. We use 8 control points to
represent the flat plate. The same boundary conditions as for
the flow past a cylinder problem are applied in this problem.
The pressure field plots are shown in Figure 3.

VI. CONCLUSION

We have presented a formally second order accurate immersed
interface method for the solution of the incompressible Navier-
Stokes equations in irregular domain. The implementation
has been tested with three examples involving rotational flow
and unsteady flows over a circular cylinder and over a flat
plate. Numerical experiments have shown that our method can
handle problems with rigid boundaries. We plan to incorporate
the current approach with our earlier works [16] for problems
with deformable interfaces to deal with deformable boundaries
in irregular domain problems and contact problems.
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Fig. 2: Pressure field at t = 10,4t = 4x/4. (a) Re = 20, (b) Re = 40, (c) Re = 80, (d) Re = 100, (e) Re = 200, (f) Re = 300.
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Fig. 3: Pressure field at t = 10,4t = 4x/4. (a) Re = 20, (b) Re = 50, (c) Re = 100, (d) Re = 1000, (e) Re = 5000.
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