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Abstract—We present an immersed interface method for the o Itis a Cartesian grid method; the method does not require
incompressible Navier Stokes equations capable of handling rigid complex mesh generation.
immersed boundaries. The immersed boundary is represented It is second order accurate for velocities.

by a set of Lagrangian control points. In order to guarantee . : . . .
that the no-slip condition on the boundary is satisfied, singular « The Poisson-like equations resulting at each time step

forces are applied on the fluid at the immersed boundary. The are solved using a cyclic reduction algorithm which has
forces are related to the jumps in pressure and the jumps in the a complexity O(NlogN), where N is the number of
derivatives of both pressure and velocity, and are interpolated degrees of freedom.

using cubic splines. The strength of singular forces is determined - . . . i
by solving a small system of equations at each time step. The V€thods utilizing a Cartesian grid for solving interface prob

Navier-Stokes equations are discretized on a staggered Cartes.ian'em_S or problems with complex geometry have becom(-? popu-
grid by a second order accurate projection method for pressure lar in recent years. One of the most successful Cartesian grid

and velocity. methods is Peskin’s immersed boundary (IB) method ( [10],

] ) [11], [15]). In order to deal with rigid boundaries, Lai and
Keywords Immersed interface method, Navier-Stokes eqUgraskin [11] propose to evaluate the force density using an
tions, Cartesian grid method, finite difference, fast PO'SS%&pression of the form,

solvers, irregular domains.
f(s,t) = k(X°(s) — X(s,t)), (6)

L?éherem is a constantg > 1, and X°¢ is the arc-length pa-

I. INTRODUCTION

This paper considers the immersed interface method (Il
for the incompressible Navier-Stokes equations in general
mains involving rigid boundaries. In a 2-dimensional bound
domain ) that contains a rigid interfac€, we consider the
incompressible Navier-Stokes equations, written as

t
w4 (u-Vu+Vp = pAu+ F (1) f(sit) = a/o Ul(s,t')dt' + BU (s,t) @)

meterization of the required boundary position. The forcing
rm in Eq (6) is a particular case of the feedback forcing
rmulation proposed by Goldstein et al. [12] with = 0.

In [12], the force is expressed as

V-u=0 (2) where U is the velocity at the control points, and and
§ are chosen to be negative and large enough so that

with boundary and initial conditions will stay close to zero. Lima E Silva et al. [15] proposed

wlpo = up (3) an alternative model to compute the force densftypased
upon the evaluation of the various terms in the momentum
u(z,0) = ug (4) equation (1) at the control points. The force densftyis

whereu is the fluid velocityyp the pressure, andthe viscosity calculated by computing all the Navier-Stokes terms at the

of the fluid. Here, we simply assume that the density; 1, control points.

and the viscosityy, are constant. The singular forde has Once the force density is obtained at the boundary, the
the form immersed boundary method uses a discrete delta function to

spread the force density to the nearby Cartesian grid points.

F(z,t) = / f(s,t)0(x — X (s,t))ds (5) Since the IB method uses the discrete delta function approach,

r it smears out sharp interface to a thickness of order of the
where X (s, t) is the arc-length parameterization bf s is meshwidth and it is only first-order accurate for problems with

the arc-lengthx = (z,y) is spatial position, andf(s,¢) is non-smooth but continuous solutions.

the force density. The Navier-Stokes equations are discretidadcontrast, the immersed interface method (IIM) can avoid

using finite differences on a staggered Cartesian grid. The m#iis smearing and maintains a second-order accuracy by
features of our method are: incorporating the known jumps into the finite difference



0
scheme near the interface. The [IM was originally proposed [itt,,] = K faT, [Hug,] = —%;T — kfam,

by LeVeque and Li [3] for solving elliptic equations, and later B (10)
extended to Stokes flows by LeVeque et al. [4]. The method [l = = [ntng] + [peln + [py] T + [uclu - n
was developed further for the Navier-Stokes equations in The jump,[-], denotes the difference between the value of

et al. [6], Lee [9] and Le et al. [16] for problems with flexibleits argument outside and inside the interface, é\d;) are

boundaries. The method was also used by Calhoun [8] athé coordinates associated with the directionsnofind =,

Li et al. [7] for solving the two-dimensional streamfunctionrespectively. Herex is the signed valued of the curvature of

vorticity equations in irregular domains. In [7], [8] the no-slighe interface (i.e. we assume thatx 7 = k = constant, so

boundary conditions are imposed directly by determining thRatn can point either towards, or outwards from, the center of

correct jump conditions for streamfunction and vorticity.  curvature). From expressions (8)—(10) the values of the jumps

Another Cartesian grid approach has been presented by ofethe first and second derivatives of velocity and pressure

et al. [13] and Udaykumar et al. [14] using finite volumawith respect to théz, y) coordinates are easily obtained by a

techniques. They reshaped the immersed boundary cells ghlple coordinate transformation. For instance, we write,

use a polynomial interpolating function to approximate the

fluxes and gradients on the faces of the boundary cells while [us] = [uglm +[uym

preserving second-order accuracy. [y = [weeln3 + 2[uey|nata + [uey|75

In this paper, we extend our earlier works presented in L .

. ; wheren = (ny,n2) and+ = (71, 72) are the Cartesian com-

et al. [16] for problems with deformable boundaries, to solve . :
T . onents of the normal and tangential vectors to the interface

problems with rigid immersed boundaries . Our approach uded : )

. . . .at the point considered.

the immersed interface method to solve the mcompressﬂe

Navier-Stokes equations formulated in primitive variables. |||. GENERALIZED FINITE DIFFERENCE FORMULAS

:ﬁn [16t]', thefsjtlrr:ggl?r iorcef. IS thr’]mP“tte‘: bas.ed on thedc?nﬁgm Taylor series expansions, it is possible to show that if

'gura |og g 'fhm er a]tce, 'ie" hen et; ace 'si a?_sume bo interface cuts a grid line between two grid points at «,

Igoverne ¢ y e'k eirr]sur_ acel er;smn, Otrthy an elas |cdmbem ;an?'g a < z;4+1, then, the following approximations hold for

in present work, e singular force at the immersed boun a<’:Wpiecewise twice differentiable functiar{x):

is determined to impose the no-slip boundary condition at

the rigid boundary. At each time step the singular force is Vinl — Vi 1 & (BH)m

computed implicitly by solving a small, dense linear system vz (23) = % Y Z ( m? [+ O(h?)
of equations. Having computed the singular force, we then m=0

compute the jump in pressure and jumps in the derivatives Ving — Ui 1 & (h=)m

of both pressure and velocity. The jumps in the solution ve(zit1) = % — 55 — [0+ O(h%)
and its derivatives are incorporated in the finite difference m=0

discretization to obtain sharp interface resolution. Fast solvers 9w 4w, 12 (h*+)m

from Fishpack software library [18] are used to solve the,, (z;) = Yit1 ”21 Yiz1 - Z : ™))+ 0(h)
resulting discrete systems of equations. h h m=0 ml

The remainder of the paper is organized as follows. In sec-

tion Il, we present the relations that must be satisfied along 9. . 2 —\ym

the immersed boundary between the singular fofcand Vga (Tig1) = s thzﬂ +vl+% Z (hm? [U(m)HO(h)
the jumps in the velocity and pressure and their derivatives. m=0 '

In section ll, we describe the generalized finite differenaghere v(™), denotes then-th derivative ofv, v; = v(x;),
approximations to the solution derivatives, which incorporagetr — .., — o, h~ = z; — a, andh, is the mesh width in the
solution jumps. In section IV, we present details of the direction. The jumps in and its derivatives are defined as
numerical algorithm. In section V, some numerical examples

are presented and finally, some conclusions and suggestions []e = lim o™ (z) — lim o™ (11)

z—at T~
for future work are given in section VI. _ _
in short, [-] = [-]a, and v(® = ». See Wiegmann and

Il. JUMP CONDITIONS ACROSS THE INTERFACE Bube [5] for more details.

Let n andT be the unit outward normal and tangential vectors
to the interface, respectively. The normal,= f(s,t)-n, and

tangential,fo = f(s,t) - 7, components of the force density.
can be related to the jump conditions for pressure and velocide employ a pressure-increment projection algorithm for the

IV. NUMERICAL ALGORITHM
A. Projection method

as follows (see [4], [6], [9] for details), discretization of the Navier-Stokes equations. This projection
algorithm is analogous to that presented in Brown et al. [1]. It

[u] =0, [wue] = —for, [uy] =0 (8) leads to a second order accuracy for both velocity and pressure

Oy ofr provided all the spatial derivatives are approximated to second

[p] = f1, [pe] = 95’ [pn] = s (9  order accuracy. The spatial discretization is carried out on a



standard MAC staggered grid analogous to that in Kim argl Singular force evaluation
Moin [2]. The ENO second-order upwind scheme is used f®faying solved foru™*! at the grid points, we now compute
the advective terms (Shu and Osher [17]). With the MAGe velocity at the interface. In our method, we use a set of

mesh, the pressure field is defined at the cell center where g@trol points to represent the interface. The velocity at the

continuity equation is enforced. The velocity fieldandv are  control points Uy, is interpolated from the velocity at the grid
defined at the vertical edges and horizontal edges, respectivglyints. Thus, we can write

Given the velocityu™, and the pressurg”—'/2, we compute X I
the velocityu™*! and pressure@™t!/2 in three steps: U =U(X") = B(u""") (20)
Step 1: Compute an intermediate velocity fiedtl by solving whereB is the bilinear interpolation operator which includes

wt — um il " o nil the appropriate correction terms which are rgquired to guaran-

AL (w-Vu)""2 —Vp" 2 +puVu""2  (12) tee second order accuracy when the derivatives of the velocity
. i are discontinuous. _ _

u'lon = wy In summary, the equations that need to be solved in order to

_ _ _ i ; )
where, the advective term is extrapolated using the formul&alculateu™"" andUy, can be written symbolically as,
Eq(12) — Hu"=C+B.f

mtd _ 3 v - L v
(u.Vu) =3 (u-Vu) 5 (u-Vu) (13) Eq (17) . Lo = Du’ + Bof

the diffusion term is approximated implicitly as, Eq (18) N Wt =ut — Go" T + By f
_ n+1
V22 = %(Viu* +Viu") +Cr . (14) Eq(20) —  Uk=Mu"" +Buf
n+1

Eliminatingu*, "' andu™*! from the above equations, we

and the pressure gradient term is given by can compute the velocity/,, at the control points as follows,

Vp'Tr = GMAY T 4 O,y (15) Uy =M(H'C-GL'DH'C)
The MAC gradient operators are defined as +(M(H*131 ~GH'B, -~ GL'B, + Bs) + B4)f
(Gi\./IACp)H% i pv“ii_p” For convenience, we can write the above equation as
g X
U,=U)+ A 21
(GMACy). , — Pijtl ~Pij R=UptAS (21)
v Plij+s Ay whereU?" is simply the velocity at the control points obtained

by solving Egs (12)—(20) withf = 0, givenu™ and p"~1/2,
A is a2N, x 2N, matrix, wherelN, is the number of control
points. The vectorA f is the velocity at the control points

Step 2: Compute a pressure updatet! by solving the
Poisson equation

V2t — V- “*, n-Vé" s =0 (16) Obtained by solving the following equations
This is accomplished by solving the discrete system A= gV Up ufloo =0 (22)
. DMAC,,* \VARTY
V%QS +1 _ Tt + Cs (17) v2¢'7fl+1 _ . f, n- V¢?+1|8Q -0 (23)
where the MAC divergence operator is defined as follows u’f?’“ — - Atv(b?-‘rl (24)
(DMACu)m- _ ui—&-%,jgx’ui_%’j N /Ui,j_,.%gyvi,j_% Af = B(U}H_l) (25)

with f being the singular force at the immersed boundary.
Eq (21) can be used to determine the singular force if we
u"tl = — AtGMACynt L oy (18) know the prescribed velocity/, at the immersed boundary.

N . n 1 ) Thus, the singular force at the control points can be computed
D +1/2:p 1/2+¢ +1_§(DMACU )+05 (19) by So|ving

Step 3: Update pressure and velocity field according to,

0
The operators/,, and V3 are the standard three point central Af=U, - Ui (26)
difference operators an@’;,: = 1,...,5, are the correction The matrix A is computed once and stored. We solve
terms which are only non-zero at the points near the interfaégs (22)—(25)2N, times, i.e., one for each column. Each
and are calculated using generalized finite difference formulasie, the force strengtlf is set to zero except for the entry
of the type introduced in the previous section. This methad the column we want to calculate which is set to one. Once
requires solving two Helmholtz equations fa¥ in Eq (12) the matrix A has been calculated, only the right hand side
and one Poisson equation fg"t! in Eq (17). Since the Up—UO, needs to be computed at each timestep. The resulting
correction terms only affect the right-hand sides of the discrezeall system of equations (26) is then solved at each timestep
systems, we can take advantage of the fast solvers frédon the singular forcef. Finally, we solve Eqs (12)—(19) to
Fishpack [18] to solve these equations. obtainu™*! andp”t1/2,



Ufield at t= 10 N Ny [[E(w)] oo order [|E(u)]]2 order
64 | 40 [ 1.8001 x 1073 1.6528 x 10~%
o 128 | 80 | 5.5145 x 1074 | 1.71 | 3.9239 x 107> | 2.08
' A 256 | 160 | 1.2755 x 10~* | 2.11 | 1.0021 x 107% | 1.97
04 iy N | M TE®) e order TE®) 2 order
A/ 64 | 40 | 6.6995 x 103 1.6014 x 103
02 Z%\\{\&&&\ i\ 128 | 80 | 1.5951 x 103 | 2.07 | 4.7510 x 10—4 | 1.75
, zg’i:'i‘o‘oﬁ\\\“‘&\““\\“{\\\\\ 256 | 160 | 5.7996 x 10~* | 1.46 | 1.5854 x 10~* | 1.58

R0
S TABLE I: The grid refinement analysis for the rotational flow
problem withy = 0.02, At = Az /4, at t = 10.

, » The cylinder has a diameted = 0.1 and its center is
e ~ . located at (1.6, 0.75). The fluid density js= 1.0 and the
S 5 o8 freestream velocity is set to unit{j,, = 1. The viscosity is
® T WX determined by the Reynolds numbéte,. Simulations have
(a) been performed ake; = 20, 40, 80, 100, 200 and 300 on
Voot feldat - 10 512 x 256 computational mesh. We use 40 control points to
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D

represent the circular cylinder. At the inflow boundary we
specify the velocity corresponding to the freestream velocity,
and a homogeneous Neumann boundary condition is applied
at the top, bottom and exit boundaries. The pressure is set to
zero at the exit boundary. The pressure field plots are shown
in Figure 2. The results appear to be in good agreement with
the other numerical simulations and experimental results.

It is important to note that the matriA, for a closed immersed
boundary, is singular. This happens because the pressure inside
the close boundary is not uniquely determined. We choose

04Ls

LA ALy i S
e

>m A A AAAAN S S

S s>

N = f;;///;//g the pressure inside the cylinder su'ch that there is no jump in
S pressure at one of the control points, i.e., the normal force
B Y at that point is set to zero. Therefore, we can eliminate one
X column and row of the matriXd corresponding to that control
(b) point, thus making the problem solvable.

Fig. 1: Velocity field at time t = 10 with a 6464 grid,
w=0.02, At = Axz/4. The immersed boundary rotates wit
angular velocityw = 2 . Fig. 1(a) Plot of the x component of In this example, we simulate an unsteady flow past a flat plate
velocity field. Fig. 1(b) Plot of velocity vector field. immersed in a rectangular domdih= [0, 3] x [—0.75,0.75].
The flat plate whose length i& = 0.1 is oriented in the
crossflow direction and located at= 1.40. Simulations have

iC. Flow past a flat plate

V. NUMERICAL RESULTS been performed aRe; = 20, 50, 100, 1000 and 5000 on a
In this section we present the numerical results for thré86 x 128 computational mesh. We use 8 control points to
problems which involve immersed boundaries. represent the flat plate. The same boundary conditions as for

the flow past a cylinder problem are applied in this problem.
The pressure field plots are shown in Figure 3.

In this problem, the interface is a circle with radius r = 0.3

embedded in square domajnl,1] x [—1,1]. We prescribe VI. CONCLUSION

the interface to rotate with angular velocity = 2. We set

1 = 0.02 and consider the solution when= 10. The velocity \We have presented a formally second order accurate immersed
field is shown in Figure 1. We carried out a grid refinemeriterface method for the solution of the incompressible Navier-
analysis, using a reference grid ®if2 x 512, to determine the Stokes equations in irregular domain. The implementation
order of convergence of the algorithm. The results in TabléhRs been tested with three examples involving rotational flow
show that the velocity is second order accurate and pressapgl unsteady flows over a circular cylinder and over a flat
is nearly second order accurate. plate. Numerical experiments have shown that our method can
) ) handle problems with rigid boundaries. We plan to incorporate
B. Flow past a circular cylinder the current approach with our earlier works [16] for problems
In this example, we simulate an unsteady flow past a circublaith deformable interfaces to deal with deformable boundaries
cylinder immersed in a rectangular dom&in= [0, 3]x[0, 1.5]. in irregular domain problems and contact problems.

A. Rotational flow



(@) (b) (c) (d) (e) ®
Fig. 2: Pressure field at t = 18\t = Az /4. (a) Re = 20, (b) Re = 40, (c) Re = 80, (d) Re = 100, (e) Re = 200, (f) Re = 300.

(a)
Fig. 3: Pressure field at t = 1@\t = Axz/4. (a) Re = 20, (b) Re = 50, (c) Re = 100, (d) Re = 1000, (e) Re = 5000.
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