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Abstract— In this paper a precorrected FFT-Fast Multipole
Tree (pFFT-FMT) method for solving the potential flow
around arbitrary three dimensional bodies is presented. The
method takes advantage of the efficiency of the pFFT and
FMT algorithms to facilitate more demanding computations
such as automatic wake generation and hands-off steady and
unsteady aerodynamic simulations. The velocity potential on
the body surfaces and in the domain is determined using
a pFFT Boundary Element Method (BEM) approach based
on the Green’s Theorem Boundary Integral Equation. The
vorticity trailing all lifting surfaces in the domain is represented
using a Fast Multipole Tree, time advected, vortex particle
method. Some simple steady state flow solutions are performed
to demonstrate the basic capabilities of the solver. Although
this paper focuses primarily on steady state solutions, it should
be noted that this approach is designed to be a robust and
efficient unsteady potential flow simulation tool, useful for rapid
computational prototyping.

Index Terms— Aerodynamics, Panel Method, Boundary El-
ement Method, precorrected FFT, Fast Multipole Tree, Vortex
Particle Method

I. Introduction

Aircraft design has developed significantly since the
invention of the computer. Hess and Smith, while working
at Douglas Aircraft company in the early 1960’s started
work on what is now commonly referred to as the
Aerodynamic Panel Method [1]. The panel method is a
boundary element method (BEM) approach for solving
the potential flow around aerodynamic bodies. Since
Hess and Smith first developed the panel method, the
aerospace industry and multiple research institutions have
further investigated and advanced the approach[2][3][4].
Furthermore, with computational simulation taking a
more prominent role in design and analysis in other
domains, many efficient computational methods and al-
gorithms have been developed. In this paper we present
a simulation tool, FastAero, based on advances made in
electrostatic simulations (precorrected FFT [5]), large n-
body interaction problems (Fast Multipole Tree [6]), as
well as other contributions in a diverse set of disciplines.

The program uses a precorrected FFT (pFFT) based
fast integral equation solver[5] to compute the potential
flow solution on the body. In addition to the pFFT, the
simulation tool also uses a Fast Multipole Tree (FMT)
algorithm [6][7] to compute the contributions from the
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shedded wakes. The FMT algorithm is a variation on
the Barnes-Hut tree code [7] and the Greengard Fast
Multipole Method [6].

In the first section we introduce the governing fluid
dynamic equations. The second section of this paper
describes the Boundary Integral Equation (BIE) and the
Boundary Element Method (BEM) for computing poten-
tial flow. Then, algorithms such as the pFFT and the FMT
are briefly presented to introduce these techniques for
improving computational efficiency. Results are presented
to demonstrate that the method can simulate an aircraft
while automatically generating the wake sheet.

II. The Governing Equations

In order to more clearly demonstrate the method of
solution in this paper, we present the fluid domain in Fig.
1. The domain of interest is the volume of fluid external to
the aircraft. Since we are dealing with higher Reynold’s
number flows, potential flow assumptions are adequate
for an engineering design situation. In addition to the
potential flow, the evolution of the lifting surface trailing
vorticity is modeled using an unsteady time advancing
vortex particle approach. The combined potential flow-
vortex particle wake approach is novel in that it allows
an automatic generation and evolution of the domain
vorticity, a distinct advancement in the use of panel
methods. With automatic wake generation and vorticity
evolution, the BEM potential flow solver is completely
automatic for lifting flows. In effect, we consider a domain
whose velocity influence is derived from both a potential
flow solution as well as a distribution of vorticity in the
domain.

In the paragraphs which follow we present the governing
equations and assumptions we make in the development
of the flow solver.

A. Fluid Domain Assumptions

Most aerodynamic applications are high Reynold’s num-
ber flows. As such, the fluid in the domain is assumed to
be inviscid and irrotational. In addition, the flow is also
assumed to be incompressible. Due to these assumptions
the conservation of momentum equations can be decoupled
from the conservation of mass equation. In order to
maintain a consistent reference frame, all equations are
derived assuming a body fixed coordinate system, unless
otherwise specified.



Fig. 1. A figure showing the domain of interest. The domain of
interest includes all fluid external to the aircraft surface. The particles
trailing the wing section, the vertical tail and horizontal stabilizer
demonstrate the regions in which vorticity exists due to the lifting
surface trailing shear layer. In terms of domains of interest, the fluid
can be assumed to be irrotational, other than in the regions where
the vorticity lies. As such potential flow can be assumed.

B. Velocity Definition

—

In this particular simulation code, the velocity, U(Z, t)
at a given point in the domain is defined as the super-
position of a scalar potential component, @ (Z,t) and a
vector potential component, @y (Z, t):

The gradient of the scalar potential ®, is the irrotational
component of the velocity, g (Z,t). The scalar potential
is typically the unknown quantity in most panel methods.
The curl of the vector potential, \17, gives the velocity,
g (Z,t) due to any vorticity, o, in the domain.

C. The Continuity Equation

The governing continuity equation for a constant density
fluid is expressed in differential form as:

—

V- (0) =0,

Substituting the velocity potential relationships into the
continuity equation, the resulting equation simplifies to:

V- (VE+VxT)=V.-(V®)=V>d=0 (2

Which is the Laplace equation for the scalar potential.

D. The Boundary Conditions

At any point on a solid surface in the domain, the no
penetrating flux boundary condition is given by:

ﬁbody . [j(f7 lf) =0,

where, fioqy is the outward unit normal vector on the
body at Z. In terms of the vector and scalar potentials,
the boundary condition is:

pody - (V® + V x ¥) = 0. (3)
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Fig. 2. A figure demonstrating the Kutta Condition governing the
stream wise vorticity release into the domain. The Kutta condition
requires a potential jump across the wake corresponding to the
difference between the upper and lower trailing edge potentials.

Note: It is not possible to enforce a no-slip tangential
flow condition at the body surface. This violates the
physical no-slip condition at the wall; however, due to
the assumption of inviscid and irrotational flow this wall
slip condition is mathematically acceptable. The physical
existence of the boundary layer can be accounted by a
viscous correction. This would involve solving the poten-
tial flow on a surface boundary slightly displaced from
the physical body surface to account for the boundary
layer mass deficit. In this displaced region of the flow,
the surface tangent flow is present. At high Reynold’s
numbers the boundary layer is thin, thus justifying the
first approximation that potential flow is valid up until
the body surface.

In the body fixed reference frame, the velocity in the
farfield is:

lim U(Z,t) = Uso(7,1) = V(Do)

r—00
This condition on the farfield velocity requires that any
perturbations of the velocity field due to a body tend
towards zero at infinity.

E. The Kutta-Joukowski Theorem

By conservation of vorticity (Kelvin’s Theorem), the
vorticity generated on the wing surface must be shed into
the domain. Since the flow is assumed to be inviscid, a
Kutta condition is applied at the trailing edge of the
wing. The condition allows for a jump discontinuity in
the surface potential across the geometric cusp which
represents the trailing edge. In order to prescribe the
stream wise vorticity in the domain, a linearized version
of the pressure continuity at the trailing edge is used [8],

(I)upper - (I)lower = A(I)Wake- (4)

Here, upper and lower refer to control points on the
upper and lower surfaces of the trailing edge of the wing.
This Kutta condition is presented in Fig. 2.

For unsteady flows, a time dependent component is also

enforced:
[S] [t 5
dt wing dt wake

where 7 represents the strength of a line of span wise
vorticity on the wing and in the wake.

In addition to the Kutta condition, a method for
representing the vorticity in the domain due to the wake
shear layer must be present. Close to the wing, the domain



vorticity is represented using a wake sheet slicing the
domain which imposes the prescribed potential jump in
the normal direction across the wake sheet. This sheet of
potential jump is used to account for the vorticity recently
shed into the domain. At each time step of the solution,
a potential jump wake sheet is constructed to account
for the wake shed vorticity. After the wake vorticity has
convected away from the wing, it is represented using
a discrete particle vorticity representation. These vortex
particles are more easily manipulated than the wake sheet
representation. The particles are treated with automatic
wake evolution procedures, without having to worry about
wake-body intersections.

F. The Representation of the Vorticity in the Domain

Vorticity, &, is defined as the curl of the velocity:

V x /E[\I/ =
The velocity due to the Vector Potential, T is:
V x U = iy

Substituting the vector potential relationship into the
definition of vorticity, and manipulating the equations,
results in:

V20 = —3

which is a Poisson equation relating the vector potential
to the vorticity.

With the relationships between the velocity, vorticity
and vector potential defined, the governing equations
for vorticity evolution are derived. The vorticity evolu-
tion equation is derived starting from the incompressible
Navier-Stokes equations,

p@(j

wﬁ-pﬁ-Vﬁ:—VP-‘rMVz[l (6)

where, p, is the fluid density, p is the fluid viscosity, and
p is the pressure. Taking the curl of eqn. 6, and assuming
an inviscid flow, the resulting equation for the vorticity
evolution in the domain is,
% +U-Vé=a VU

where the term @ VU on the right hand side represents the
vorticity stretching (or how the strength and magnitude of
the vorticity changes as it is exposed to velocity gradients
in the fluid field).

The vorticity in the domain is represented as the
summation over all of the discrete vortex particles in the

domain:
) = 3" By (t)vol,8(F - Tp(1)) = 3 @y (1)8(F
P P
where, @, (t)vol, is represented as &,(t).
We use a Lagrangian reference frame for the evolution

of the vorticity, such that the position Z,(t) of a discrete
vortex particle at any given time is governed by:

Tp(1)),

d 2o
Zy(0) = Oy (1), ) (7
The evolution of the vortex particle strength as it travels
through the domain can be represented as:
Da,(t) ~
=22 ay(1) - VO (), ) (®)
Each of the vortons has an associated core in order
to mimic the physical vortex core as well as to reduce
the numerical instability of the vortex interactions. More
information about vortex particle core functions and
vortex methods in general can be found in [9].

III. The Pressure—Velocity Relationship
The Bernoulli Equation is used in order to determine
the forces and pressures on the body:
dd
dt

where pgiqric refers to the local static pressure. The steady
state Bernoulli Equation is:

+ gﬁQ + Pstatic = Const,

§ﬁ2 + pstatic = Const. (9)

From this pressure-velocity relationship, the forces and
moments can easily be computed for the body.

A. The Laplace Equation in Integral Equation Form

In the method presented in this paper we use integral
equations to determine the potential flow solution as
well as the vorticity induced velocity. In this section, the
potential flow solution is highlighted. First we define the
total potential,

O = ¢+ Do

where the free stream potential, ®,, induces the free
stream velocity. For a constant velocity flow field, the
free stream potential will vary linearly in the direction
of the flow, with a proportionality constant equivalent
to the flow velocity. The perturbation potential, ¢ is the
potential which causes flow perturbations due to the body
and the small wake strip with a Kutta condition prescribed
potential jump. Similarly the total velocity at any given
point is the superposition of velocities:

(j = ’LT¢ + ﬁm + g
In the total velocity equation, the Wy component of the
velocity due to the vorticity in the domain is added. The

integral equation for the total potential at any point in
the domain is therefore'

T ir / // 8n 1z=2| "’|| St
dS) + ®os
M//wmmfwnb+

The no-flux boundary condition applied to the potential
flow integral equation is:

ﬁbody [V -® + V X \II] =0= 7Albodyv'((b + ‘I)oo)+fz[v X \I/] s



Which reduces to:
0 .
9 __ (Une + ] -
on
From this a perturbation potential integral equation for
the unknown perturbation potential can be expressed as:

1 [/ 0 1
-1 9_ 1 s, -
4 / ./;W N ||f—f’|| e

L

The farfield boundary conditions on the perturbation
potential are satisfied due to the decay of the Green’s
function. Once the perturbation potential is known, the
flow field for the entire domain is also known. At each time
step in a discretized unsteady flow solution, it is necessary
to solve the BIE in eqn. 11.

The integral equation for computing the velocity in the
domain, away from the body surface, due to the body is
determined by taking the gradient of the integral equation

for the potential:
as,
/// ? () st

1 .
ds! o + U 12
/// (%mrﬂﬁ St Voo +lw, (12)

, ai Uso + ity | - 7. If the surface of the body
is discretized into body panels or elements, the surface
singularity strengths (single and double layers) can be
represented using basis functions. In the current method, a
triangulation of the surface is used to represent the overall
geometry. The Boundary Integral Equations become sum-
mations of the integrals over the triangular elements. By
representing the solution ¢, and the boundary condition
%, on the surface of the body using constant basis
functions, and enforcing the integral equation be satisfied
at specified centroidal collocation points, a boundary
element method linear system of equations is formed for

the constant collocation BEM,

= ¢
[M[ﬂ—w]bJ

The matrices [A] and [B] represent the discretized double
layer and single layer integrals respectively. Both of these
matrices are dense because the normal velocity at a
point contributes to the potential globally. The individual
entries in the [A] and [B] matrices are integrals of the
single and double layer Greens functions over triangular
elements. Analytical expressions for these integrals are
presented in Hess and Smith [10] as well as in Newman[11].

Although the current method uses constant collocation,
there is a significant amount of effort currently in place to
increase the solution fidelity via higher order methods and
curved panel geometry representation. Although initial
panel integral calculations will be more costly, the overall
solution time should decrease due to the faster solution of
a reduced size matrix.

(10)

Ose + s 2] ===,
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where

B. The Poisson Equation In Integral Equation Form

The Poisson equation governs the vector velocity po-
tential. In integral form, the vector potential due to the
vorticity in the domain is:

B 1 [ 3
Tt) = — —_qv’
@0 =1 / / / 17— 2|

In the current flow solver, vortons or vortex particles
are used to represent the vorticity. For a vortex particle
representation of the vorticity, the discrete vector potential
equation is:

- 1 . 1
\ij(m7t) = E Za(mt)”f——_’
p

Zp(@)]

The vorticity induced velocity can be computed from:
- 1 1
V x (qf (m,t)) = — NV xd(x,1).
’ ir & V0]

Similarly, the gradient of the velocity term used for the
vorticity stretching in the evolution equation is:

V<V>< (xff(m))) - %Zp:v(vm xd’).
(14)

The evaluation of the vorticity induced vector potential
can be represented as a matrix vector product:

€] (@ =¥,

(13)

Where the vorticity is known and a single matrix vector
product results in the vector potential. From this the
velocity and gradient of velocity computations can easily
be determined merely by taking the curl and gradient of
the curl of the above relationship.

1) Discrete Form of the Vorticity Evolution Equation:
The evolution of vorticity is computed by discretizing the
governing vorticity evolution ODEs and computing the
vortex particle position at time, t + 1. A simple approach
to this would be to use a forward Euler equation (one of
the options in the current solver structure),

F(t+1) = Z(t) + U, (Z(t), 1) - At
and then the strength of the vortex can be updated as:
Gy(t+1) = @,(t) + a,(t) - VU, (Z(t),t) - At.

It should be noted that the use of higher order time
stepping method will be beneficial in both maintaining
stability as well as solution fidelity.

IV. Putting the Equations Together

In order to simulate a body shedding wakes, it is
necessary to compute velocities and use those velocities to
advect the wake. In our FastAero program we accomplish
this by a time stepping procedure. The following steps
occur during each time step during the solution process:
Step 1) Solve the potential flow equation (eqn. 11), to
determine the unknown perturbation potential values on
the surface of the body. The 2 —n value is computed for
the current UOO and @y by eqn. 10. Included in this flow



solution is a "buffer wake”. This buffer wake is a thin
wake composed of double layer panels which aid in the
enforcement of the potential Kutta condition (eqn. 4). The
buffer wake panels are of a length U - At and are aligned
with the local free stream velocity behind each trailing
surface. This buffer wake would traditionally be the entire
wake representation in traditional panel methods. This
first step involves a linear system solve, and is a relatively
expensive part of the solution algorithm.

Step 2) Determine the strength of the new vorticity
released into to domain (due to the At time step). This
new vorticity release is determined from the small double
layer buffer wake sheet which is used in the potential
solve. The stream wise vorticity is determined by taking
the gradient of the jump in the potential along the span
wise direction. This is easily done with constant strength
panels, since the stream wise vorticity is merely the jump
in the representation of wake strength in the span wise
direction. In order to compute the time dependent span
wise vorticity, the change in strength of the buffer sheet
from time step t to time step t+1 is easily converted from
the jump in stream wise potential to a vortex line (eqn.5).
Step 3) Determine the velocity and gradient of the velocity
influence from the body onto the vortex particles in the
wake using appropriate the boundary integral equations
(eqn. 12). This involves evaluating the gradient of the
potential flow integral equation at each of the vortex
particle positions. This is a single matrix vector product
operation.

Step 4) Determine the velocity and gradient of the velocity
influence of each of the wake particles on each of the other
wake particles using the integral equation for the vorticity-
velocity relationship (eqn. 13 and eqn. 14 ). This is merely
a matrix vector product evaluation.

Step 4 a) If necessary, compute the pressures and forces
acting on the body, prior to updating the position and
strength of the wake. This is an application of the
Bernoulli equation (eqn. 9 ), to compute the velocity.
Step 5) For each vortex particle in the wake, update
the particle position and vortex particle strength using
the Lagrangian vortex evolution equations (eqn. 7 and
eqn. 8). This involves determining the new position and
strength by solving the ODEs governing the evolution of
the vorticity.

Step 6) Compute the wake to body influence based on
the new wake vorton positions and strengths. This is
done by evaluating the matrix vector product represented
by the Poisson equation governing the vorticity-velocity
relationship (eqn. 13). From this influence, form a new
value of gl;; for time step ¢t + 1 (eqn. 10).

Step 7) Start over at (1) unless the iteration stopping
condition has been reached.

A. The Farfield Approximation Model

Once the vortex particles have convected sufficiently
far away from the body, they are lumped into multipole
expansion representations, and treated as simple vortex

multipole particles. These multipole representations have
no inter-particle influence in the farfield; however, they do
have influence on the near field vortices and the body.

V. Accelerating the Flow Solver

The solution time and memory for the Boundary
Element Method - Vortex Particle approach is signifi-
cant, especially when many surface elements and domain
point vortices are used. In a typical medium resolution
simulation, the body may have 5,000-10,000 panels and
10,000-15,000 wing trailing vortex particles. For standard
or direct iterative methods, as the number of unknowns
increase, the complexity of the solution increases with
O(n?®) or O(n?) depending on solution method (here
n represents the number of unknowns, elements and/or
particles). It is possible to use fast methods to reduce
the solution complexity to O(n). We briefly present the
methods used for accelerating the potential flow solution
and the velocity-vorticity evaluation.

A. The pFFT Potential Flow Solver

In order to solve the potential flow we implemented
a GMRES [12] iterative solver. The operation count
bottleneck in the GMRES is computing the matrix vector
product (MVP) which costs O(n?) operations because the
matrix is dense. The pFFT algorithm can be used to
compute dense matrix vector products associated with the
single and double layer singularities in O(nlog(n)) time.
The pFFT implements a Fourier domain multiplication
for the convolution product in the integral equation. This
pFFT approach was developed by Philips and White [5],
and the current implementation makes use of the pFFT++
code developed by Zhu, Song and White [13].

The pFFT algorithm is outlined in Fig. 3 linked with the
numerically listed operations. In the initial pFFT setup
an FFT grid is constructed in the domain surrounding the
body. The steps in the algorithm are:

Step 1) The singularity strength (panel charge) is pro-
jected onto the FFT grid. The projection operator acts
locally, and hence, results in a sparse matrix [P]. The
locality of the projection operator is seen in Fig. 3 and
Fig. 4.

Step 2) The grid strengths are convolved by multiplication
via a transformation to the Fourier domain (using an
FFT). Once the convolution is complete, the result is
transformed back to the physical domain after an inverse
FFT giving the grid potentials.

Step 3) The grid potentials are interpolated back to the
panels or evaluation points. This operation is similar to the
projection operation, and in the case of a Galerkin BEM
approach, the projection and interpolation are transpose
relations. The interpolation results in a sparse matrix [I].
Step 4) The nearby interactions are computed directly
by subtracting the grid strengths and adding the direct
interaction. The setup of this operation is the most costly
in the pFFT setup process due to both the grid correction
and the local direct panel influence calculations. In this
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Fig. 3. A schematic outlining the pFFT algorithm. The schematic

demonstrates the (1) projection of the panel singularity strength onto
the FFT grid, (2) the convolution operation becomes a multiplication
after being transformed to the Fourier domain, to give the grid
potential (3) after an inverse FFT, the grid potential is interpolated
back onto the panels/evaluation points, (4) for nearby interactions
the solution is precorrected by subtracting the local grid interaction
and adding the direct interactions. Overall the pFFT algorithm
computes an MVP in O(nlog(n)) time.

case the direct interactions are represented by the sparse
matrix [D]r, and the correction is represented by a local
subtraction equivalent to [I;, Hy Pr], where the subscript
L, refers to local interactions.

The resulting pFFT algorithm matrix vector product
can be expressed in matrix form as,

Ap = [IHP + [Dy, — ILHLPL)] 6.

Once the initial overhead of setting up the matrices is
complete, the matrix vector product is a multiplication
and addition of sparse matrices. The resulting matrix
vector product is one of the most efficient currently
available for the solution of the potential problem.

B. The FMT Vorticity-Velocity Evaluation

The Fast Multipole Tree algorithm is an octree based
approach for reducing the complexity of the MVP evalu-
ation from O(n?) MVP to one of O(nlog(n)). The FMT
algorithm is a variant on the Barnes-Hut [7] tree algorithm
and Greengard’s Fast Multipole Method [6]. The FMT
constructs an octree structure complete with a multipole
expansion of the source terms in each cell of the tree.
The MVP is determined by evaluating the appropriate
multipole influences at the evaluation point. In this section
we present the Fast Multipole Tree Algorithm which is
used. For further information about the FMT algorithm,
as well as the formulae for the multipole moments refer
to [6].

The Non-Zero Values on the FFT Grid After Projection

P : =
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Fig. 4. The pFFT grid overlay on the business jet. Points highlighted
with '+’ markers are those non-zero grid values after projection. The
total FFT grid is a rectangular domain encapsulating the aircraft.
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Fig. 5. The general tree structure (note this is a 2D quadtree,

rather than a 3D octree). The leaf cells are shown with circles in the
tree structure. Empty cells without data are shaded. In the current
simulation code, this tree structure is constructed using a top down
approach starting from the root cell.

1) Setting up the FMT Algorithm: The following de-
scribes how the multipole tree is setup (see also Fig. 5 for
the octree structure):

Step 1) Construct the root cell enclosing all of the source
points/panels. This cell is a level 1 cell, or root cell.
Step 2) Determine if the number of elements in the current
cell is greater than the maximum number of elements
permitted per leaf cell. This maximum number of elements
per leaf cell is typically user specified.

a) If no, the current cell is a leaf cell. Proceed by
computing the leaf cell multipole moment representing
the singularity strength distribution in cell. The leaf cell
multipole moment is centroidally located in the leaf cell
and compactly represents the distribution of particles in
the leaf cell. This leaf cell multipole expansion represen-
tation is determined by translating and adding all of the
particle representations or monopoles in the cell. Once the
leaf cell centroidal multipole representation is constructed,
continue down the next branch of the tree.

b) If yes, split the current cell (now called a parent cell)



into 8 sub-cells called children cells. Determine which
elements lie in each of the children, and construct new
cells (only construct new cells for those children which
have elements inside of them). Cycle through each of the
children cells starting at step (2).

Step 3) Cycle through all cells, and propagate the leaf
cell multipole up the tree using the multipole translation
operators, fully populating the cell-centroid multipole
strengths at each level of the tree. The children cell
multipoles are translated and added to the parent cell.
The end result is to have multipole representations of the
particles in each of the tree cells at each of the octree
levels in the domain.

Having completed the above three steps, we have a
sparse, yet sufficiently accurate, approximation represent-
ing the particles in each of the cells. By appropriate
selection of octree cells and multipole moments, the
solution at an evaluation point can be determined. The
exact approach to selecting octree cells is presented in the
next section.

2) Evaluation of the Matrix Vector Product: The eval-
uation of the FMT matrix vector product is performed as
presented in this section. For each evaluation point, start
the following list of operations with the root cell:

Step 1) Check the current cell to see if it is far enough
away from the evaluation point to be considered a farfield
interaction. This operation can be handled in many
different ways (currently a measure of the cell centroid
to evaluation point distance combined with a cell side
length measure is used).

a) If the cell is sufficiently far away, evaluate the potential,
velocity and/or gradient of velocity at the evaluation point
using the multipole expansion at the current cell centroid
and add it to the current value at the evaluation point.
b) If the cell is not a farfield cell, and is not a leaf cell, cycle
through the all of the populated children cells starting at
step 1.

¢) If the cell is not a farfield cell, but is a leaf cell, evaluate
the potential, velocity and/or gradient of the velocity using
the direct calculations and add the result to the current
evaluation point value. A direct computation is used for
this portion of the flow, since the multipole expansion
is not deemed accurate enough, and there is no further
octree splitting to sufficiently separate the cell from the
evaluation point.

Some practical applications of the Fast Multipole Tree
code for computing the vortex influences behind a business
jet are shown in Fig. 6 and Fig. 7. These applications
explicitly show the octree structure in the domain.

In order to attain more efficient computations for the
MVP, there are several tricks which can be used when
applying the FMT; however, the basic method stands as
described.

C. Using the pFFT and FMT in the Solution Process

The MVP acceleration methods have been presented.
The choice of appropriate acceleration method for each
step of the algorithm is briefly highlighted.

J3 Result for the Falcon Business Jet

Fig. 6. A plot showing the perspective view of the wake development
behind a business jet, complete with the Octree representation.
Notice that in regions of higher wake vortex particle density, the
octree is refined.

J® Result for the Falcon Business Jet

Fig. 7. A view from above showing the Octree structure over the
wake system.

D. The Potential Flow Solution

For the potential flow linear system solution we use a
pFFT approach embedded in a GMRES iterative solver.
We use the pFFT due to the efficiency it affords in eval-
uating a matrix vector product once the pFFT matrices
are set up. Since, per given geometry, many MVP’s are
computed in the GMRES iterative solution process it is
well worth absorbing the setup overhead of the pFFT if
the resulting MVP is sufficiently faster than the FMT
counterpart. Hence, for the potential flow solution we use
the pFFT.

E. The Velocity Influence Computations

In order to evaluate the velocity and velocity gradients
in the domain a Fast Multipole Tree algorithm is used to
perform the Matrix vector product. The FMT algorithm
is used for (1) wake to wake interactions, (2) wake to
Body interactions, and (3) body to wake interactions. The
FMT is used for the velocity and gradient interactions
for the following reasons:

1) The geometry of the velocity evaluation is continuously
changing. Since the wake particles are dynamic, a complete
system setup is required for each time step. This is a
costly procedure in both the pFFT and FMT. Since the



¢ 6]
o
i 6]
121 ° O 8
el
(Y
e
0 b 0
1 X y 4
&
*
0.8 b

o

;s

s *

0.6 o) q
0.4 b
0.2 b

Al (——~\* |
w""""wr
I I | el L 2 eanand 1 I I I
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 12 1.4
Chordwise Position %
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angle of attack. The 2D-Abbott and Von Doenhoff [14] data is
represented using (’*’), the solution using the current simulation
tool is represented using (’0’), and the 2D panel method result is
represented using ('+’). This is a non-lifting test case, and it can
clearly bee seen that there will be a symmetric pressure distribution.
Notice, there is good agreement between the 2D Data and the 3D
simulation.

pFFT precorrection step is significantly more expensive
than the FMT when a particle approach is being used,
the FMT is a better choice for this part of the simulation.
2) It is simple and more accurate to compute the gradient
of velocity using the multipole vs. the pFFT.

3) The memory requirements are minimized when using
the FMT to evaluate quantities in the wake region. Since
the FFT grid encloses the entire domain, when a pFFT
approach is used to evaluate quantities in the wake region,
a sufficiently regular grid must be used. This causes
significant memory cost per simulation, since the FFT
grid is heavily influenced by the aircraft discretization.
In short, the FMT is more versatile, time efficient and
memory efficient when it is used for evaluating quantities
in the wake sufficiently far away from the aircraft body.

VI. Sample Flow Simulation Results

In order to validate the current approach the pressure
distribution on a high aspect ratio, finite rectangular wing
is used as a test case. The wing used as a test case has
a NACA 0012 airfoil cross section. The aspect ratio of
the wing (ratio of span to chord) is 16, hence we would
expect that the flow along the centerline position to be
approximately 2-D flow. In this case we sample the 3-D
wing at a given chordwise station near centerline. In Fig.
8 the results for a zero angle of attack simulation are
compared with both known data from Abbott and Von
Doenhoff [14], as well as a 2-D panel method. Since the
NACA 0012 airfoil is symmetrical, as expected there is a
zero net lift and drag force.

The high aspect ratio NACA 0012 cross section wing
was also used for a lifting body simulation. In this case
the 3D pressure coefficient distribution along the wing
centerline is expected to be virtually identical to the 2D

-35
30 i
-2.51 b
0
I |
€ -2 A
g
o
£ o
8—1.5* o T
g RS
2 N0
o -1F A o g
o A
At
N 2 (A)
0_057 2 g .
Rriio
Rr+i0
ALRHY
ALD AL A A |
O x 88888 Brir e igeabind B 14
A g0 0
PN
0.5 A9 B
Q
i
1 e L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Chordwise Position %
Fig. 9. The result for the high aspect ratio NACA 0012 airfoil

wing section at 6 degrees angle of attack. The 3D simulation result is
represented using ('o’) for the aspect ratio = 16 case, with (triangles)
for the aspect ratio = 8, while the 2D panel method result (AR= c0),
is represented using (’+’). This is a lifting test case. Notice, there
is good agreement between the 2D Simulation results and the 3D
simulation. In addition it is prudent to notice that reducing the
aspect ratio reduces the lift as expected. Since the 3D simulation
cases are both sufficiently high aspect ratio wings we do not expect
to see significant lift reductions due to downwash.

The Business Jet Wake Evolution Seen From The Side
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Fig. 10. A side view of the wake evolution for the business jet at 6
degrees angle of attack. Notice the downwash effect of the main wing
vortex wake sheet on the horizontal and vertical tail wake sheets.

distribution for the high aspect ratio wing. In Fig. 9, a
plot of the pressure coefficient for both the 2D and 3D
wing sections is shown for 3D wings of AR=16 and AR=S8.
It might be expected that the AR = 16 wing would have
a coefficient of pressure similar to a 2D wing section. The
AR=8 wing section would be expected to have a reduction
in lift due to the increased downwash from the lower aspect
ratio. Again, there is good agreement in these simple test
cases.

To show the power and application of the method, we
present some sample simulations of a business jet in a
steady flow. One can see from these simulations that
the wake roll-up is realistic, and the general solution is
viable. The wake is automatically generated using the time
stepping procedure outlined in this paper. In Figs. 10-12
we show the various views of the wake roll-up.

VII. Conclusions

In this paper we have presented a robust and efficient
method for simulating the potential flow around arbitrary
bodies with limited user interference and setup time. The
method uses the precorrected FFT approach to accelerate



The Business Jet Wake Evolution Seen From The Top
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Fig. 11. The top view of the wake sheet for the business jet at

6 degrees angle of attack. The buffer region of the wake is also
plotted. Note that the wake is approximated using a farfield multipole
approximation model after it is cut-off (not shown here due to desire
for clarity).
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Fig. 12. The wake roll up is seen clearly for the case where the
viewing axis is aligned with the free stream velocity (here the angle
of attack is also 6 degrees)

the potential flow solution, while also implementing a fast
multipole tree algorithm to solve the velocity and vorticity
stretching influences in the domain. The approach has
been demonstrated to be efficient and accurate for steady
state design and analysis problems. The method presented
is particularly well suited to unsteady lifting body flow
simulations due to the use of the unique vortex particle
approach. The vortex particle representation of the wakes
is particularly useful when hands-off unsteady and steady
potential flow simulations are desired. This hands-off op-
eration for potential flow simulation saves users significant
setup costs and permits more automatic optimization to
take place.

There are several avenues of future work to pursue.
The first is to finalize and validate the simulation of
unsteady flow. Second, a more efficient steady state wake
solution should be implemented (requiring far fewer time
steps to converge to a steady state). Finally, there are
many applications which are difficult to analyze without
an appropriate and relatively hands off simulation tool.
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