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Abstract

This dissertation is a collection of three essays in real estate finance. In the first
essay, we observe that between 1985 and 2007, the share of household mortgage debt
as a proportion of the total value of housing in the US increased substantially from
30% to an all-time high of 50%. With the decline in house prices, these high levels
of leverage increased the propensity at which households defaulted. We examine
household decisions on mortgage leverage using new extensive loan-level data from
Fannie Mae over the sample period 1986 to 2010. We conceptualize a market for
leverage per se and develop a theory of leverage demand-and-supply. Empirically,
we estimate an interest rate elasticity of leverage demand of -0.37 or, equivalently, a
movement along the demand curve from an r-LTV pair of (10%, 72%) to that of (5%,
85%). We find that leverage demand was cyclical and responsive to economic events
but without a general trend. By contrast, leverage supply shifts in the form of lower
mortgage interest rates were concurrently associated with higher average loan-to-value
ratios. We find that in MSAs with higher house prices, households borrowed more
and bought equally more expensive houses. That left leverage unchanged but raised
households' risk of illiquidity by increasing their loan-to-income ratios. In MSAs with
high house price volatility, we find that both leverage demand and supply were lower.
We also identify that younger, poorer and less credit-worthy borrowers demand more
leverage than their counterparts.

In the second essay, co-authored with David Geltner, we document that loss aver-
sion behavior plays a major role in the pricing of commercial properties, and it varies
both across the type of market participants and across the cycle. We find that sophis-
ticated and more experienced investors are at least as loss averse as their counterparts
and that loss aversion operated most strongly during the cycle peak in 2007. We also
document a possible anchoring effect of the asking price in influencing buyer valua-
tion and subsequent transaction price. We demonstrate the importance of behavioral
phenomena in constructing hedonic price indices, and we find that the impact of loss
aversion is attenuated at the aggregate market level. This suggests that the pricing
and volume cycle during 2001 - 2009 was little affected by loss aversion.

In the third essay, also co-authored with David Geltner, we present a technique to
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address the problem of data scarcity in the construction of high-frequency real estate
price indexes. We introduce a two-stage frequency conversion procedure, by first
estimating lower-frequency indexes staggered in time, and then applying a generalized
inverse estimator to convert from lower to higher frequency return series. The two-
stage procedure can improve the accuracy of high-frequency indexes in scarce data
environments. The method is demonstrated and analyzed by application to empirical
commercial property repeat-sales data.

Thesis Supervisor: William Wheaton
Title: Professor of Economics
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Chapter 1

Introduction

The goal of this thesis is to contribute to our understanding of three current issues

in the area of real estate finance. The three topics are unified by the underlying

microeconomic inquiry of individual decisions and their relation to the performance

of real estate markets. The three areas explored in this thesis are:

e Borrower decision on mortgage leverage, it's relationship to policy and to per-

formance of real estate markets.

e Psychological biases in the pricing of real estate and their impact on both indi-

vidual and market performance.

9 Measuring performance of real estate markets when transactions data is scarce.

In the first essay, we make the observation that there has been a substantial increase in

household mortgage leverage in the US over the past 25 years. To explain this trend,

we develop a theory of how households make decisions on leverage and empirically

test it's implications on a large longitudinal dataset provided by Fannie Mae. Our

finding is that the increase in leverage can be primarily explained by increases or shifts

in the supply of leverage. We document that increases in the national conforming

loan limit allowed borrowers to borrow cheaply and to lever more. We also show how

leverage varied across markets with different house prices and/or volatilities. Finally,

we find that younger, poorer and less credit-worthy borrowers were leveraged more

than their counterparts.
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In the second essay, we ask whether pricing in real estate markets is affected by

psychological biases of buyers and sellers? Using data on commercial real estate, we

find strong empirical evidence that real estate transactions (listing prices, transaction

prices and time on the market) are affected by both loss aversion on the part of

sellers and anchoring on the part of buyers. We show that controlling for these

behavioral phenomenon can greatly improve the construction of traditional measures

of performance such as a hedonic price index. We also document how loss aversion

varied across the real estate cycle and by type of investor.

In the third essay, we recognize the importance of measuring the performance

of real estate markets accurately and on a frequent basis. The need for such series

is underscored by their demand by both academic research (such as their use in

the previous two essays) and by industry participants seeking frequent information

on where the market is moving. The challenge in constructing an accurate, high-

frequency, localized price index is the thin-ing of data on transactions as one zooms

into a local area such as an MSA or a neighborhood. In this paper, we propose a

new technique for constructing such price indexes in a scarce data environment and

illustrate it's effectiveness using data on commercial real estate.

It should be noted that while the cases examined in each paper are separate,

the actual theories and methods developed in these papers are generalizable to both

housing and commercial real estate. For instance, one could examine the leverage

decisions of commercial real estate investors, where aspects of our theory such as the

effects of asset prices on leverage can be empirically tested. Similarly, loss aversion

behavior has been documented in the housing market (Genesove and Mayer (2001))

and the technique developed in the third essay is supplemental to existing hedonic

and repeat sales techniques used in housing research.
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Chapter 2

Why did Household Mortgage

Leverage Rise from the mid-1980's

until the Great Recession?

2.1 Introduction

In the United States, household mortgage leverage increased dramatically in the run-

up to the Great Recession. Figure 2-1 shows that between 1985 and 2007, the share

of household mortgage debt as a proportion of the total value of housing in the US

increased substantially from 30% to 50%. With the decline in house prices and subse-

quently slow de-leveraging, that share further increased to 60% by 2010. These high

levels of mortgage leverage increased the propensity at which households defaulted

on their mortgages and there is evidence that leverage was a primary driver of the

recession (Mian and Sufi (2009), Mian and Sufi (2011)). In fact, it is a characteristic

of highly leveraged economies that they seldom avoid a financial crisis (Reinhart and

Rogoff (2008)). Furthermore, leverage also plays an important role in partly deter-

mining asset prices (Geanakoplos (2009), Lamont and Stein (1999)). As leverage goes

up and down, asset prices also go up and down and that is damaging to the economy.

Given the crucial role of leverage in the economy, it is imperative that we understand
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how households determine an optimal level of mortgage leverage. Thus, our objec-

tive in this article is two-folds. First, we seek to understand why household mortgage

leverage rose so dramatically? Is it leverage demand or leverage supply that primarily

lead to an increase in leverage? Second, and to enable us to empirically answer the

research question, we conceptualize a market for leverage per se and develop a theory

of leverage demand-and-supply.

In our theory of leverage, lenders and households endogenously choose an LTV

ratio in a competitive market and under the possibility of default that depends on

future house prices. The model is set in the tradition of optimal LTV contracts

under asymmetric information (Brueckner (2000), Harrison et al. (2004)). While

earlier studies have focused on the role of asymmetric information on equilibrium

leverage, our paper is different in that it derives separately, an optimal leverage, for

lenders and borrowers without invoking asymmetric information. The predictions

of the models are intuitive. When house prices are volatile, lenders demand more

collateral and rise-averse borrowers demand less leverage. This is because a more

volatile house price distribution increases the risk of borrower default, which adversely

affects both expected profits and collateral payoffs. On the other hand, higher average

prices (holding all else constant) positively affect future payoffs and thus increase

both leverage demand and supply. The model also predicts that the poorer or more

impatient the borrowers are, the higher the leverage they demand at any given interest

rate.

The theoretical model yields structural demand and supply equations to test

econometrically. We identify the demand curve by viewing exogenous changes in

the national conforming loan limit as supply shifts of leverage (e.g. loans that are

jumbo become cheaper to finance over time). We estimate the demand equation and

reduced forms of equilibrium interest rates and loan-to-value ratios using extensive

loan-level data from Fannie Mae over the sample period 1986 to 2010. We estimate

an interest rate elasticity of demand of -0.37, which implies that if the note interest

rate dropped from 10% to 5% (see historical drop shown in Figure 2-2), then from

an initial LTV ratio of 72% (avg. LTV in 1986), leverage demand would rise by

18



18.5% to an LTV ratio of 85%. Furthermore, we find that (holding all else constant)

leverage demand has historically been cyclical and without any general upward trend.

It rises and falls in concurrence with economic conditions, which suggests that it had

a limited role in increasing historical household leverage.

We find two pieces of compelling evidence in favor of an increasing leverage supply

hypothesis. First, we estimate that a doubling of the national conforming loan limit

(CLL) would decrease the average note interest rate by 4%. Holding the demand

curve constant, this implies that LTV would rise by 12.5 percentage points, which

is substantial, given that the CLL has been increased quite a bit over the past two

decades.

Second, the reduced form estimates of equilibrium interest rates and LTV ratios

show that note rates have generally fallen while LTV ratios have concomitantly risen

over the sample period. Given that demand is found to be cyclical in nature and

that outward shifts in demand would instead cause interest rates to rise over time,

this finding strongly suggests that leverage supply has been the primary driver of

increases in household leverage. For e.g., in 2005, when leverage demand was about

2.8 percentage points higher than it's 1986 level, equilibrium leverage was 13.4 per-

centage points higher. Thus, a rough estimate would be that leverage supply was 10.6

percentage points higher than it's 1986 level. In the aftermath of the crisis, we find

that while leverage demand had collapsed to it's 1980's levels, leverage supply was

still high, possibly reflecting the crucial role played by the GSEs in supplying credit

when the rest of the market was holding back.

Our results on house prices reveal that greater house prices lead borrowers to not

only borrow more but to also buy equally more expensive houses. Although this kept

leverage virtually unchanged, it raised households' risk exposure. This is because,

controlling for income, a high loan amount implies a higher loan-to-income ratio.

This amounts to a greater debt service and exposure to greater risk of illiquidity

in the future. We also find that in markets with greater house price volatility, both

borrowers and lenders contracted at lower LTV ratios, which is consistent with theory.

Our article is related to the research on mortgage contract choice and demand
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for mortgage debt (Follain (1990), Jones (1993), Brueckner (1994), Follain and Dun-

sky (1997), Ling and McGill (1998), Hendershott et al. (2002), Hendershott and

LaFayette (1997), Leece (2006), Elliehausen (2010))). We complement this research

by using a long historical dataset and go beyond debt demand to look at a market for

leverage per se. In particular, the demand-and-supply framework is unique in that it

helps us in isolating the determinants of (changes in) leverage.

The rest of the paper proceeds as follows. The next section describes the data and

certain stylized facts about leverage. Section 3 presents the theory of leverage. Section

4 outlines the empirical strategy and presents the results, and Section 5 concludes.

2.2 Data and Stylized Facts

Our data are a random sample of single-family home mortgages originated in the U.S.

over the period 1986 to 2010 and purchased by Fannie Mae. The raw sample in each

year includes approximately 120,000 observations with equal-sized shares of purchase

mortgages versus refinance mortgages. For each mortgage we have data summarizing

the characteristics of the loan and the underlying property as well as information on

the borrower.

The loan-to-value (LTV) ratio is lender submitted and defined as the ratio of the

loan amount to the lesser of the sale price or the appraised value of the property.

For second mortgages, a combined LTV ratio is calculated using the sum of the

current unpaid principal balances of the first and second mortgages. Figures 2-3 and

2-4 present empirical cumulative density functions of LTV ratios for purchases and

refinances, respectively. For purchases, we see that close to 40% of the data contains

LTV ratios below 80%. There is considerable bunching (over 20% of the data) at the

80% LTV ratio, the threshold beyond which Private Mortgage Insurance (PMI) is

required for all conforming loans. We see similar bunching at the 90%, 95% and 100%

LTV ratios. Some of the purchase LTV ratios even exceed 100%. For refinances, the

bulk of the data (close to 80%) is at LTV ratios below 80%. These distributions are

suggestive of interior as well as corner solutions to the borrower's problem of choosing
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an optimal LTV ratio. However, it does not appear to be the case that all borrowers

situate themselves at the PMI threshold.

Next, we sub-divide our sample into three separate time periods, 1986 to 1992,

1993 to 2007 and 2008 to 2010. We choose 1992 as the end point of the first period

because that year marked the passage of the Federal Housing Enterprises Financial

Safety and Soundness Act (FHEFSSA) which had a major impact on the activities

of the Government Sponsored Entities.1 The second, largely prosperous, period be-

tween 1993 and 2007 was highlighted by economic growth, low unemployment and

an unprecedented rise in house prices. This was followed by a period marking the

beginning of the Great Recession from early 2008 which continued until the end of our

data in 2010. We see in Figure 2-5 that the distribution of LTV ratios for purchase

mortgages during the 1986 to 1992 period was skewed towards LTV ratios below 80%

with relatively few LTV ratios close to 100%. In comparison, the panel for the 1993

to 2007 period shows that the left tail of the distribution became less pronounced

with the effect that mass accumulated not only at an 80% LTV ratio but also at

very high LTV ratios. In the period following the recession, we see that the mass at

80% LTV rose even further but largely due to a lower density at higher LTV ratios.

There was also an increase in the fraction of the data with LTV ratios less than 80%.

We see a similar but less pronounced effect for refinances (see Figure 2-6).

The above discussion suggests that the fraction of risky high LTV ratio mortgages

increased over time. In Table 2.1, we document that the fraction of mortgages with

an LTV ratio of greater than 90% increased from 7% in 1992 to over 15% by 1999.

In 2007, such loans made up about a fifth of all mortgages in our sample. A similar

pattern arises when we look at the behavior of the sampled mortgages' Debt-to-

Income (DTI) ratios over time. The DTI ratio is defined as the fraction of the

borrower's monthly income that is relied upon in paying the monthly mortgage debt

(see histogram in Figure 2-7). Higher DTI ratios are consistent with riskier mortgages

as a greater burden is placed on borrowers' existing incomes to service their mortgages.

'For example, among other requirements, FHEFSSA mandated GSEs to reach a target percentage
of their mortgage purchases to be secured by homes of low- and moderate-income households.
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The fraction of risky high DTI ratio mortgages also increased over time in our sample.

For example, in Table 2.2, we see that the share of DTI ratios between 0.42 and 0.65

increased from less than 10% prior to 1995 to 27% in 2000 and eventually peaked at

41% in 2007.

Figure 2-8 provides a histogram of homeowners' FICO scores. Notice that the

histogram is noticeably skewed towards lower FICO scores. In Table 2.3 we use

this FICO information and classify our sampled mortgages into the following three

progressively riskier categories: LTV ratio > 80% and/or FICO score < 660, LTV

ratio > 90% and/or FICO < 620 and finally LTV ratio > 95% and/or FICO <

580. The share of the latter two categories generally increased over time, particularly

starting from 1993 onwards. The middle category saw a decrease in it's share after

2003 but the share of the most risky mortgages (the LTV > 95 and/or FICO < 580

category) kept rising until 2007, when it peaked at 14% of all loans. Consistent with

arguments by Acharya et al. (2011) and others, this analysis suggests that the quality

of loans purchased by Fannie Mae deteriorated over time.

Having investigated the characteristics of the home mortgages purchased by Fannie

Mae, we turn our attention to summary statistics of borrower characteristics. In

Table 2.4 we see that, on average, borrowers' income and FICO scores rose over time.

However, if we instead turn to Table 2.5 where these characteristics are summarized

for three different LTV ratio categories, we find that generally poorer, younger and

riskier (those with low FICO scores) borrowers are leveraged the highest. Finally,

looking at the occupancy status of the underlying properties, we note in Table 2.6 that

the share of mortgages secured by second homes and investment properties steadily

increased over time.

In summary, we note the following stylized facts about the mortgages purchased

by Fannie Mae. The CDFs of LTV ratios suggest the existence of an interior solution

to the problem of a household's LTV choice. The fraction of risky mortgages increased

over time, especially after passage of FHEFSSA in 1992. In addition, we document

that borrowers who are younger, poorer and with low FICO scores are leveraged more.

Finally, the share of mortgages secured by second homes and investment properties
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has increased over time.

These stylized facts motivate the research questions to be answered in this article.

First, how does the borrower arrive at an optimal leverage ratio? Second, what

explains the increase in household mortgage leverage over time? Is it due to an

increase in borrower demand for leverage or due to a greater supply of it? We now

turn to addressing these questions.2

2.3 A Demand and Supply Model of Leverage

In this section, we conceptualize a market for leverage. We set up a partial equilib-

rium model where a lender and a borrower optimally choose a leverage ratio, given

default risk that depends on future house prices. The lender model derived below is a

specific form of a more general credit rationing model specified in Jaffee and Stiglitz

(1990). It most closely resembles the model of mortgage strategic default developed

by Brueckner (2000). The major point of departure from that model is that we as-

sume lenders to be price takers. Thus, the note interest rate is taken as given and the

lender maximizes expected profits by choosing an appropriate leverage ratio to supply.

The same exception applies to the borrower model, also based on it's counterpart in

Brueckner (2000). In addition, we treat borrowers as risk averse (as opposed to risk

neutral) and consider ruthless default instead. This latter assumption is not crucial

to the model and is left out because our task is to derive empirical predictions that

do not depend on variables not available to us in the data (such as the borrower's

cost of default that serves as asymmetric information and drives strategic default in

Brueckner (2000) and Harrison et al. (2004)).

An advantage in this approach of separately deriving the demand and supply for

leverage is that this gives us results on comparative statics that are specific to the

lender and the borrower, thus enabling us to better understand the factors affecting

the two sides of the market. We first set up the lender's problem below, followed

by the borrower model and end this section with a discussion of a leverage market

2 For further details on the data cleaning process, please refer to the appendix.
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equilibrium.

2.3.1 Lender Model

Lenders are assumed to be risk-neutral and functioning in a competitive market. The

assumption of a competitive market implies that each lender is essentially a price

taker. In the 2-period model derived below, a borrower wishes to buy a house of

value V, which is set equal to 1, so that the choice of the loan amounts to choosing

a loan-to-value (LTV) ratio. In the first period, the lender lends an amount L to the

borrower, earning a payoff of -L. In the second period, the borrower must sell the

house and pay back both the principal and interest (at the rate r). The ability of

the borrower to return the amount L(1+r) depends on the value of the house, P, in

the second period. If value of the house exceeds the amount owed, then the lender's

payoff is L(1+r). However, if the value of the house is less than the amount owed, we

assume that the borrower ruthlessly defaults and the lender's payoff is P, the proceeds

from the sale of the house under foreclosure. Furthermore, it will be convenient to

assume that second period house prices are uniformly distributed with pdf f(P) and

support [PL, PH] . The lender's expected profits are therefore given as:

L(1+r) PH
.7r = -L + il Pf (P)dP + 71 L(1 +r)f (P)dP

PL IL(1+r)

This expected profit equation is the expected utility of the payoffs in the two

periods. When the house price, P, is between PL and what is owed, L(1+r), the

borrower defaults and the lender receives the low payoff of P (discounted to the first

period by lender patience or discount factor, q). In the case where the house price

is higher than what is owed, (i.e. it is between L(1+r) and PH), the lender's payoff

is the high outcome of a full repayment of the principal and interest. Furthermore,

under the assumption that the value of the house in the first period is 1, all the

variables in the model can be expressed in terms of the numeraire. For e.g., L can be

expressed as a fraction of the value of the house and will therefore represent a loan-

3The mean is given by (PL+P). The range of prices is PH - PL.
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to-value ratio. Next, we derive what the optimal LTV a lender is willing to supply

at a given interest rate, r. In other words, our objective is to derive the lender's offer

curve for various r-LTV combinations. Maximizing expected profit w.r.t L, we get

the following first-order condition:

dir PH - L(1+ set

S + (+ r)[ (PH-PL = 0

It is easily verified that expected profit are indeed maximized.4 The first-order

condition yields the optimal amount loaned:

LS PH (PH - FL) (2.1)
(1 +r (1 +r)2q

Comparative statics of the loan offer curve gives a number of results. First, taking

the derivative of (2.1) with respect to r, we get:

dLs PH 2 (PH - PL)

dr (1+ r)2 (1 + r)3

For the loan offer curve to be upward sloping, 4-j > 0. This implies that the

interest rate, r, cannot exceed (1 + r) = 2(PH-PL) .This is analogous to having a

maximum loan size beyond which the lender's offer curve begins to bend backwards.

At some high loan level, the borrower's liability, L (1 +r), may exceed the upper bound

on house prices PH. Since this would guarantee default, the lender won't offer any

higher loan amounts beyond a certain maximum amount. For all r, the maximum

LTV given in (2.1) is P. The backward-bending portions are not relevant to us

but such a feature is characteristic of the loan offer curves in general models of credit

rationing. 5

This model also makes empirical predictions with regards to house prices. In order

to derive the effects of expected prices and the range of prices on leverage supply,

let's look first at the individual effects of PL and PH separately. If we increase PL,

holding PH (and all else) constant, then given our assumptions on f(P), this results in

4 The second order condition is: = -(1+ r)2 H

5 See Jaffee and Modigliani (1969), Jaffee and Russell (1976) and Jaffee and Stiglitz (1990).
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simultaneously higher expected prices but a lesser range of prices. Taking the partial

derivative of LS with respect to PL,

OLS 
> 0

9PL (1+ r

This implies that the supply curve shifts outwards. The interpretation is that in

markets with higher average prices and lesser range of prices, the supply of credit will

be more. This is not particularly useful at the moment because we are ultimately

interested in separating out the pure effects of higher prices and greater range. We

will address this shortly but next we look at the effect of increasing PH.

If we increase PH holding PL (and all else) constant, we increase both expected

prices and the range of prices. Taking the partial derivative of Ls with respect to PH,

OPH (1+ r) + (1±r)2

This has an ambiguous sign. In order for Ls to be increasing in PH, i-e- aL > 0,'
9

PH

interest rates would have to satisfy the condition, (1 + r) > (. The increase in

PH increases expected profits but also increases the probability of default due to a

greater range in realized prices. For the lender to actually increase the supply of

credit, he/she has to be compensated by a higher interest rate, as reflected by the

condition (1+ r) >1. For interest rates lower than this, LS < 0, and the increase inTi 'DPH

PH would result in a fall in supply. Thus, the two parts of the supply curve behave

differently depending on the prevailing interest rates.

Now that we have obtained the pure effects of PH and PL, we next look at the

effect of the range in prices, holding the mean of the distribution constant. If we

increase PH by one unit and decrease PL by one unit, then the mean of the resulting

distribution would be the same as the old distribution. The new distribution would

also be riskier in the Diamond-Rothschild-Stiglitz (mean-preserving spread) sense.
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Formally, we can see the effect of this as:

LsOL s8  1 2

aPH L (--r) 1±r)2 y

If the above expression were to be positive, it would imply that (1 + r) > . Even for

a lender discount factor of 0.99, this would imply interest rates of over 100%, which is

an impractical implication. Thus, we can safely conclude that the above expression is

negative, implying that with greater risk (higher range of prices, holding mean prices

(and all else) constant), lenders would supply lower leverage at every interest rate.

Similar to above, we can analyze the effect of an increase in mean prices while

keeping the range of prices constant. If we increase both PH and PL by one unit, we

increase the mean also by 1 unit but keep the range of prices constant. Formally, the

effect of this can been by:
&Ls &Ls 1

+PH OPL (1r)

Thus, the supply of LTV increases with higher expected prices, holding the range of

prices constant.

Figure 2-9 illustrates the rate-LTV combinations that a lender is willing to supply

at and the above-derived effects on the offer curve. In particular, three offer curves

are shown with different sets of values for PL and PH. In all three cases, the lender

patience factor is set equal to 0.8 (r/ = 0.8) and, as mentioned earlier, the value of

the house is equal to 1. In the base case represented by the triangle-blue line, the

values of P are distributed PL = 0.5, PH = 1.1. This curve gives the upward sloping

rate-LTV combinations for this distribution of house prices. In a second case, house

prices are distributed PL = 0.6, PH = 1.2, i.e. where expected prices are higher by

0.1, but the range is kept constant. The circled-black line shows this effect that with

higher expected prices, the supply of leverage is greater than that in the base case. A

third case shows the effect of a mean-preserving spread in the distribution of house

prices. In particular, this is the case where PL = 0.4, PH = 1.2, a distribution with
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the same mean as that of the base case. The effect of this is that with greater risk ,

the supply of leverage falls or shifts in from the base case to the squared-green line.

Note that only the increasing portion of these loan offer curves are the relevant supply

functions and not the backward-bending portions.

2.3.2 Household Model

In a competitive market, borrowers are price takers and thus maximize their expected

utility over the choice of a leverage or LTV ratio. In the general two-period model

below, a household has a first-period wealth and discounted value of all future in-

comes, Y The value of the house in the first period is 1, i.e. the purchase decision

is made outside of the model. In the first period, the household chooses a loan of

amount L and enjoys a payoff of Y - (1 - L), where 1 - L is the down payment

and L < 1 (i.e. unsecured debt is not allowed). Any surplus from the first period

is transferred over to the second period, which earns a rate of return of (1 + e). In

addition, the household has to sell the house for a value of P, realized stochastically

and distributed uniformly (with pdf f(P) and cdf F[P]). If the value of P exceeds the

amount owed, L(1 + r), the household pays the amount in full and enjoys a surplus of

P - L(1 + r) + (Y - (1 - L))(1 + e). If, however, the value of the house in the second

period falls below the amount owed, the borrower defaults and enjoys a surplus of

(Y - (1 - L))(1 + e).

In the model below, households are assumed to be risk-averse.6 Household's utility

functions are assumed to be concave and additively separable over the 2 periods. In

particular, let u and v be the first and second period utility functions, respectively,

with the properties u' > 0, v' > 0, " < 0 and v" < 0. The household expected utility

6An entire household is treated as an individual. The terms household and borrower are used
interchangeably.
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can be written as:

L(1+r)
S = u[Y -(1- L)] +6 jL v[(Y - (1 - L))(1 + e)]f(P)dP

~ PH

+ 6f v[(Y - (1 - L))(1+e)+ P - L(1+r)]f(P)dP
L(1+r)

The first term in the household's expected utility function is the utility of the

first-period payoff of Y - (1 - L). Since the decision on the loan amount is being

made in the first period, the second period expected utility is discounted by the

borrower discount or patience factor, 6 < 1. The second period expected utility is

the probability of default times the bad outcome at default v[(Y - (1 - L))(1 + e)]

plus the probability of no default times the good outcome in the absence of default

v[(Y - (1 - L))(1 + e) + P - L(1 + r)]. It can be verified 7 that it is optimal to default

when P = L(1 + r) and thus the probability of default is given by F[L(1 + r)].

A few key properties of the above general utility function are that:

1. Utility is increasing in the rate of return on surplus, i.e. d > 0.

2. Utility is decreasing in the cost of borrowing, i.e. 2 < 0.

3. If e > r, then - > 0. However, if e < r, (Q -- dQ) < 0.de drde dr

The first part of property 3 states that if the rate of return on the surplus exceeds

the rate on the loan (e - r > 0), the borrower utility will always be increasing no

matter what loan rate, r is. It is easily seen from the first-order condition (!) that

this leads the borrower to borrow as much as possible:

7 All derivations and proofs are relegated to the appendix.
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= u'[Y - 1 + L]
d L

>0 by assumption

I/L(1+r)+ 6(1 + e) v'[(Y- (1 - L))(1 + e)]f(P)dP
PL

>0 by assumption

IPH
+ 3 (e -r) V'[(Y-1)(1 +e)+ P +L(e -r)]f (P)dP

fL(1+r)
>0 >0 by assumption

No matter what the loan rate, 1 > 0. Thus, the borrower will choose to borrow

as much as possible, and obtain a maximum LTV of LD = 18

The second part of property 3 states the converse, i.e. if the rate of return on

the surplus does not exceed the loan rate, (e - r < 0), then the borrower's utility

will always be decreasing. Furthermore, the borrower can be at a higher utility level

if he/she allocates the first period surplus for either down payment or consumption

instead of transferring it to the second period. This will be higher utility because

utility will then only fall by 9.' Note that this does not imply that the borrower will

not borrow. For a given loan rate, the borrower, through his/her choice of L, trades

off (at the margin) an increase in current wealth with a fall in expected (discounted)

future wealth, conditional on house prices. We now turn to formally showing this

result.

For the case (e - r < 0), the borrower's expected utility can now be written as:

Q-u[Y - (1 - L)] +6 v[0]f(P)dP +6 v[P - L(1+r)] (P)dP
PL L(1+r)

for e < r

This model is interpreted as follows. The first-term, again, is the utility of the

first-period payoff of Y - (1 - L). As argued above, any surplus in this period is

8This result is also found in Brueckner (1994) where all households demand 100% LTV ratios if

the return on equity capital (e) exceeds the costs of mortgage debt (r).

9Harrison et al. (2004) make this assumption explicit in their borrower's objective function. It

is implicitly assumed in the model by Brueckner (2000).
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either consumed or put in the down payment for the reason that that would make

the borrower better off. Thus, in the second period, if realized house prices are below

L(1 + r), the borrower defaults and has a utility of surplus 0, v(0). In the event that

realized house prices are between L(1 + r) and PH, the borrower sells the house and

pays the lender what is owed and in return enjoys a surplus of P - L(1 + r).

Maximizing the borrower expected utility w.r.t to L, the following first-order

condition is obtained:

U'[Y - 1 + L] - 6(1 + r)/ v'[P - L(1 + r))f(P)d(P) e 0 (2.2)
JL(1±r)

The interpretation of this equation is that, in equilibrium, a household chooses

an L such that it equates the marginal utility of first period wealth to the expected

(discounted) marginal utility of second period wealth. The tradeoff in the borrower's

decision is that increasing the loan amount (and thus, leverage) increases the first

period wealth but it also increases the expected future loan payment, thus decreas-

ing second period wealth, conditional on house prices. From (2.2), the household's

optimal loan demand can be implicitly written as:

LD = LD[rpy,6]

Comparative statics of (2.2) yields several properties of the optimal leverage de-

mand schedule. These are summarized in the proposition below and all proofs are

provided in the appendix.

Proposition 1. The optimal loan demand LD has the following properties:

1.1 As r rises, the minimum LTV demand is LD = 1 - Y for Y < 1 and LD

0 for Y > 1.

1.2 In the limr e, the maximum LTV demand is LD = 1. For r < e, LD - 1.

1.3 LD has an interior downward sloping schedule w.r.t loan rate r (d < 0).

1.4 LD is decreasing in borrower patience 6, (d. < 0).
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1.5 LD is decreasing in borrower incomes Y, (d <0)

1.6 If a distribution P first-order stochastically dominates a distribution P', then

LP > Lp'.

1.7 If a distribution P second-order stochastically dominates a distribution P' then

LP > Lp'.

In Figure 2-10, Propositions 1.1 to 1.3 are illustrated in panel (a), and Propositions

1.4 to 1.7 are illustrated in panels (b) to (e). As the interest rate on the loan increases,

LTV demanded falls along a downward sloping schedule. The intuition for this result

is that a higher interest rate lowers second period wealth and to smooth wealth over

the two periods, a borrower would decrease their leverage to simultaneously lower

first period wealth and instead increase second period wealth. The minimum LTV

can be 1 - Y for those with Y < 1. It will zero for those that are not constrained by

income (Y > 1). As the rate on the loan falls and approaches the rate of return on the

surplus, e, the maximum LTV demanded would be 1. The same result holds for rates

below e. Proposition 1.4 establishes that more patient borrowers, i.e. borrowers that

value future wealth more, would have lower demand for leverage. In Proposition 1.5,

borrowers with higher Y would find that the marginal increase in first period wealth

(from an increase in L) would not be as much as for them as it would be for those

with lower incomes. Therefore, they would comparatively lever less. Proposition 1.6

states that if there were two house price distributions and one unambiguously yielded

higher average prices, then there would be greater demand for leverage in that market.

Finally, Proposition 1.7 states that if there were two house price distributions and

one had unambiguously greater risk (but same average prices) than the other, then a

risk averse borrower would demand lower leverage in that market.

Equilibrium The highest LTV ratio demanded is 1 while the highest supplied is

, U which would often be greater 1 (since PH > 1). The lowest leverage demand is
1+r'

1 - Y (or 0) while the lowest supplied at r = 0 in (2.1) would be PH LH

7q 77 77

These would represent small loan balances, L(1 + r), below PL that are risk-free (and

thus supplied at r = 0). In general, we should not expect these amounts to exceed
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1 - Y (Y < 1). Given that demand is downward sloping and supply is upward sloping

between the above fixed points (at high and low rates), this ensures that there is an

interior equilibrium point of intersection between demand and supply as shown in

Figure 2-11.

2.4 Empirical Analysis

2.4.1 Empirical Strategy

The model of leverage derived in the previous section yields two structural equations

describing the demand and supply of leverage, which we specify as follows:

L = #0 +3 1 r + X32 + T#3 + E (2.3)

r = o + 71L + X72 + T3 +7-y4 CLL + v (2.4)

Leverage demand is given by (2.3), where LTV (L) is a linear function of the note rate

(r), a matrix of exogenous variables representing borrower and market characteristics

(X), and a matrix of yearly time dummies (T). Similarly, leverage supply is given by

(2.4), where the note rate (r) is a linear function of LTV (L) and the same X and T

matrices of characteristics and time dummies. In addition, we include the log of the

national conforming loan limit (CLL) as a supply-shifter. 10 Similar to the Adelino et

al. (2011) paper, where changes in the national conforming loan limit were used as an

instrument for changes in the cost of credit, we view these exogenous changes as supply

shifts because over time they make the cost of credit to be cheaper for houses that

would otherwise require financing via a jumbo loan (or part conforming, part more

expensive financing). Since changes in the CLL are based on national appreciation of

house prices, it is reasonable to assume that these changes are exogenous to individual

mortgages and to local housing market conditions (and thus avoid correlation with

' 0Up until 2008, the conforming loan limit was set nationally with the exception that it was always
1.5 times higher in Hawaii/Alaska. Starting from 2008, there was an additional county-based CLL
available for areas that were determined as high cost. With the exception of 1990, where CLL fell
by $150 over the previous year, changes in it have always amounted to an increase in the limit.
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our MSA measures in X).

In both of our structural equations, X does not contain any specific demand-only

or supply-only variable. This is because our dataset does not contain any variable that

is observed only by the borrower and not by the lender, and vice versa. Thus, the only

variable excluded from the demand equation is the conforming loan limit (CLL). It

is easy to see that (2.3) is just-identified." Furthermore, since there are no demand-

only variables, the supply equation, (2.4), is not identified. However, looking at the

reduced form, the coefficient on CLL is uncontaminated and it's estimate would help

answer how leverage supply has changed due to policy changes in this supply-shift

variable:

L = 7ro + X7r1 + T7r2 + #174CLL + ui (2.5)

r = zo+ Xz 1 + Tz 2 +-y 4 CLL +u 2  (2.6)

The coefficient on CLL in (2.6) also allows for an indirect least squares estimate of the

interest rate elasticity of leverage demand (#1). This would be obtained by dividing

the reduced form coefficient on CLL in (2.5) by that in (2.6).

We estimate (2.5) and (2.6), equation by equation using OLS. 1 2 We also esti-

mate the leverage demand equation, (2.3), via 2SLS. Since leverage demand is just-

identified, a limitation is that we cannot perform a test of over-identifying restrictions.

In the case of purchase mortgages, we also separately estimate the numerator and de-

nominator in LTV, i.e. loan and housing demand (V) regressions, using the same

exogenous variables. This is because in our theory, we derived results on leverage un-

der the assumption that the housing demand decision was given outside the model.

Empirically, the house purchase decision cannot be included in the leverage regres-

sions as it is an endogenous decision. By including it as a separate reduced form

iiThe demand equation, (2.3), has one exclusion restriction and one normalization (coefficient on
L is 1). Thus, the sum of the restrictions (2) adds up to the number of endogenous variables (2).
Since the order condition is satisfied with equality, (2.3) is just-identified. The rank condition also
holds as long as the coefficient on CLL in the supply equation is not zero (N4 $ 0) (see appendix).
The supply equation, (2.4), fails the order condition as there is only one restriction (normalization
on r) which is less than the number of endogenous variables (2). Thus, (2.4) is not identified.

12 It is well known that in a system of linear seemingly unrelated regression equations with identical
regressors, equation by equation OLS yields efficient parameter estimates.
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regression, it allows us to better understand the leverage decision. In the case of refi-

nances, while there is no housing decision being made and V changes stochastically,

we will still find it useful to add a reduced form loan demand estimation.

2.4.2 Results

The estimates for the structural leverage demand equation are shown in Table 2.7

while the reduced form estimates are shown in Tables 2.8 (purchases) and 2.9 (refi-

nances). We first discuss results for purchases and then compare any differences for

refinances.

Leverage Demand: The 2sls estimates for purchase mortgages are shown in the

first column of Table 2.7. The estimate on the note interest rate is -3.07, which is

also verified via indirect least squares." Equivalently, a log-log estimate 14 gives an

interest rate elasticity of leverage demand of -0.37. This implies that a 10% increase

in the note rate leads to a 3.7% decrease in the loan-to-value ratio. A few numerical

examples illustrate this effect. From an r-LTV combination of (5%, 100%), if the rate

increases to 6%, then this would lead to 7.4% [2 x 3.7%] fall in LTV to 92.7%. Starting

from an r-LTV combination of (10%, 70%), a subsequent fall in interest rates to 5%

would lead to a 18.5% [5 x 3.7%] increase in LTV to 83%. These are quite plausible

estimates of demand elasticity. Furthermore, holding note rate and all else constant,

the year dummies can be interpreted as changes in taste or preference of borrowers for

LTV. These dummies are used in Figure 2-12 to trace the evolution of LTV demand,

starting with an LTV of 72% (sample mean) for 1986. The first thing to note is

that there is no upward trend and in fact, LTV demand is cyclical. Historical events

that would be expected to negatively effect households and real estate markets are

indeed reflected in down-ticks or falls in leverage demand. LTV demand was relatively

healthy during periods of steady economic growth and particularly strong in the most

recent real estate boom. We now turn to look at leverage supply.

"The coefficients on CLL in Table 2.8 provide an indirect estimate by dividing the coefficient in
the LTV column by that in the Note Rate column (148 =-3.07).

14There is however a slight attenuation bias in that regression due to the fact that ln(1) is unde-
fined.
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Leverage Supply: There are two pieces of evidence that suggest that leverage

supply has increased over time. First, as argued in the previous section, the coefficient

on CLL in the reduced form note rate regression in Table 2.8 is uncontaminated and

gives it's structural marginal effect. Also, since all the variation in that variable is

over time, it's coefficient tells us how much leverage supply has changed due to shifts

caused by changes in CLL. We find that a doubling or a 100% increase in CLL leads

to a fall in the average note rate by 4% [(4.0568/100) x 100]. Over in the LTV column

of Table 2.8, this increase in CLL leads to an increase in LTV of 12.5 percentage

points. As expected, this combination of falling rates and rising LTV corresponds to

an outward shift in the leverage supply curve. Furthermore, examining the Ln Loan

and Ln Price columns, a 100% increase in the CLL is associated with an increase in

the average purchase price by 44% and the average loan size by 58%. This would be

consistent with the intuition that increases in the CLL would make expensive houses

more attractive by making them cheaper to finance. These results indicate a strong

effect of policy changes in CLL on the market for mortgage leverage.

A second look at how leverage supply has changed over time begins by examining

the reduced form yearly time dummies. Since CLL captures the same variation

over time, we drop that variable and reestimate the note rate and LTV regressions. 15

These yearly time dummies for the reduced forms and the structural demand equation

are shown in Table 2.10. Several observations can be made from the reduced form

columns of note rate and LTV. Relative to 1986, the average note rate fell over time

while the loan-to-value ratio rose concurrently. Specifically, when compared to 1986,

the note rate was 1.75%, 2.4% and 3.47% lower in 1995, 2001 and 2005, respectively.

At the same time, the LTV ratio was higher by 5.9%, 13.5% and 13.4% in 1995,

2001 and 2006, respectively. Comparing the same time periods in the structural LTV

demand column, we see that demand was 5.2%, 6.1% and 2.7% higher." These results

strongly suggest that leverage supply had increased substantially over time. For e.g, in

15 All coefficients in Table 2.8 are robust to the exclusion of CLL. Therefore, the full regressions
are not shown but are available upon request.

16Each of these point estimates is statistically significant and significantly different from its coun-
terparts.
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2005, leverage supply was roughly 10.6 percentage points higher (compared to demand

which was only 2.7 percentage points higher) than it's 1986 level. Furthermore, if

demand was the primary reason for the rise in leverage, then we would have expected

the note rate to have increased, not fallen, over time. We can also see that the reduced

form LTV time dummies stayed relatively high even in 2008 (16%) and 2009 (13%)

while demand collapsed to 0.17% (relative to 1986) in 2009. This is likely due to the

fact that in the aftermath of the crises, the GSEs were the only suppliers of credit

left.

House Prices: We next turn to the MSA Ln House Price Level variable in Table

2.7, constructed by first creating a series of average house price levels (for MSAs)

in 2000 using the 5% PUMS sample of the Census, and then extrapolating those

price levels using the quarterly MSA house price (repeat-sales) indices published by

the Federal Housing Finance Agency (FHFA). Thus, this variable measures, over

time, the log house price level both across MSAs and within an MSA. In Table 2.7,

we find that a 10% increase in the average house price level leads to a fall in the

LTV ratio demanded by an economically small 0.57 percentage points (combined

with a virtually insignificant fall in the rate shown in Table 2.8). Examining the

Ln Loan and Ln Price regressions in Table 2.8, we find that this 10% increase in

house prices leads borrowers to increase the size of their loans by 4.9% and to buy

houses that are 5.7% more expensive.18 Our borrower model predicted that with

higher average prices, the borrower should be levered more. However, that result was

derived based on a fixed value of house whereas empirically we find that borrowers

roughly offset larger loans with equally expensive house purchases (holding all else

equal), which implies that they put down more in equity. Moreover, since we control

for income in the regression, a higher loan amount implies a higher loan-to-income

ratio. This may mean greater debt service and exposure to greater risk of illiquidity in

the future. There is corroborating evidence in a study at the aggregate MSA level in

which Goetzmann et al. (2011) find that based on past price appreciation, households

'7 Further details on the construction of this variable can be found in the data appendix.
18The difference 5.7% - 4.9% = 0.8%, fall in LTV can be shown in a regression where the dependent

variable is Ln LTV.

37



borrowed more and purchased more expensive houses. This subsequently lead to an

increase in the loan-to-income ratio, again implying that households were at a greater

risk.

House Price Volatility: The 2-year back, MSA De-trended Ln HPI Quarterly

Volatility variable in Table 2.7 is simply the de-trended log volatility of the FHFA

repeat-sales indices (lagged by 8 quarters).19 In Table 2.7, a increase of 10% in the

past house price volatility leads to a fall in the demand for leverage by 0.2 percentage

points, which is consistent with the borrower theory. This latter figure is small because

the magnitude of log volatility is less than 0.5, which implies that a 10% increase is

a small change (e.g 10% increase from 0.1 is 0.11). Moving to the reduced form

estimates in Table 2.8, the coefficient on HPI Volatility is positive in the note rate

regression and more negative in the LTV regression, suggesting that the net effect

of higher past price volatility is that lenders supply less leverage. This is because

greater house price volatility increases the risk of borrower default which adversely

affects expected profits. Consistent with our theoretical model, lenders would supply

less leverage. Also in Table 2.8, the same 10% increase in past volatility, leads to a

fall in the loan amount and the purchase price by 2.5% and 2.3%, respectively.

Borrower Characteristics: Looking at the Borrower's Total Monthly Income Amount

variable in Table 2.7, we find that borrowers with monthly incomes higher by $5,000

lever less by an economically insignificant amount (0.41 percentage points) and (in

Table 2.8) pay a rate that's only 1.6 bps less. Furthermore, the coefficients in the Ln

Loan and Ln Price columns reveal that such borrowers not only carry a loan that's

bigger by 11.4% [2.28e-05 x 5,000 x 100%] but they also buy a house that's 11.8%

more expensive. This would explain why the leverage ratio would fall by a very small

amount.

Next, we find in Table 2.7 that borrowers with bad credit scores demand more

leverage. For example, a decrease in the Borrower Credit Score by 100 leads to an

LTV ratio that is higher by 6 percentage points and (in Table 2.8) a note rate higher

19These results are robust to slightly shorter and slightly larger windows of lag. We do not
use longer windows as we lose considerable data. Shorter windows, on the other hand, make the

calculation of standard deviation much less reliable.
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by 23 bps. Also from Table 2.8, borrowers with credit scores lower by 100 take out

loans smaller by 4% and buy houses that are less expensive by 11%. To the extent

that credit scores serve as a signal of riskiness and/or reflect the (asymmetric) default

costs of a borrower, this result would be consistent with the predictions of models by

Brueckner (2000) and Harrison et al. (2004). The reason is that riskier borrowers

(those with low default costs) self-select into higher LTV ratios.

Our next finding is that the demand for leverage is monotonically decreasing with

age. In Table 2.7, the base age group is 16-to-24 years and we add four age group

dummies of 25-to-34, 35-to-49, 50-to-64 and above 64 years. Each age group demands

lower leverage relative to the base group and to groups that are younger to it. For

instance, the age group 35-to-49 levers 5.9 percentage points less than the base group

and about 4.2 percentage points less than the 25-to-34 age group. Furthermore, a

test of equality on the leverage ratios for every pair of these dummy variables rejects

the null hypothesis that these groups behave the same. To the extent that older

borrowers are more patient and value future wealth more than younger borrowers, we

would expect to find that the demand for leverage falls with age (consistent with our

borrower model).

Gender, Race and Occupancy: In Table 2.7, women demand less leverage than

men. However, in Table 2.8, the sign on the Female variable is positive in the note

rate regression and slightly more negative sign in the LTV regression. This suggests

that women pay more for mortgages than men (leverage supply is less). Since we do

not fully control for wealth, we cannot know for sure if these results are robust to

unobservables. However, they are consistent with recent work by Cheng et al. (2011)

that suggests that women pay higher rates because they are more likely to go to a

lender by recommendation whereas men are more likely to search for (and find) a

lower rate.

Relative to whites, the demand for leverage is higher for all other races. Again,

these results are interesting but inconclusive due to a lack of information on other

unobservables that may be correlated with these characteristics. The demand for

leverage on second homes and investment properties is greater than that on first
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homes. Interestingly, the rate on an investment property is about 53 bps higher

whereas it is higher by only 6 bps for second homes (Table 2.8). Also, the reduced

form LTV estimate is less positive than it's structural counterpart. This implies that

leverage supply is lower for investment properties.

Comparison with Refinances: Most results are consistent with the findings for

purchases. The conforming loan limit had a similar effect on increasing leverage

supply. Leverage demand was similarly cyclical. A 10% increase in average house

prices lead borrowers to increase debt by 4.4%, which is slightly less than that for

purchases. Finally, an increase in house price volatility reduced leverage supply for

refinances and more adversely affected leverage demand than it did for purchases.

2.5 Conclusion

Why did household mortgage leverage rise from the mid-1980's until the Great Reces-

sion? We conclude that it is outward shifts in leverage supply that were the primary

driver of the increase in leverage. By contrast, we find that leverage demand was cycli-

cal and responsive to major economic events, but without a general upward trend. In

this article, we developed a theory of leverage demand-and-supply and estimated an

interest rate elasticity of leverage demand of -0.37. Our empirical results document

the effects of house prices and borrower characteristics on household leverage. We find

that greater house price volatility reduces LTV ratios while greater house prices lead

borrowers to borrow more and buy more expensive houses. The effect of the latter

was to keep leverage unchanged but it raised households' exposure to risk of illiquidity

by increasing their loan-to-income ratios. We find that poorer, more impatient and

less credit-worthy borrowers demand more leverage than their counterparts.

40



65

60

55

50

45

40

35

25

20

15

10 ' ' ' ' '
1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 2-1: Mortgage Debt as a Percentage of Total Value of Housing

Source: Federal Reserve Household Balance Sheet

41

*



Avg. Note Rate at Origination - FRMs only

\ /
N,

'I

- ..-
-

/

1990 1995

ID"
I'

/
~ '

2000 2005
Origination Year

Figure 2-2: Average Note Rate of Fixed Rate Mortgages

CDF of LTV - Purchases

o .2 .4 .6 .8

fraction of the data

Figure 2-3: Cumulative Density Function of LTV - Purchases

42

00

0

0
z
.2'O

N

/
/

1985

0
I-

U,
S

2010

1



CDF of LTV - Refinances (inc cashouts)

.2 .4 .e .8
fraction of the data
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LTV Category

Origination Year LTV < 80% 80% < LTV < 90% 90% < LTV < 110% Total

No. Row % No. Row % No. Row % No. Row %

1986 94940 81 17024 14 5510 5 117474 100
1987 90567 78 20482 18 4943 4 115992 100
1988 87585 74 23839 20 6160 5 117584 100
1989 92402 78 19003 16 6449 5 117854 100
1990 92007 78 18230 15 7882 7 118119 100
1991 93985 79 16390 14 8481 7 118856 100
1992 94661 80 15894 13 7873 7 118428 100
1993 86679 74 17980 15 12619 11 117278 100
1994 80752 69 18619 16 17936 15 117307 100
1995 79281 68 17388 15 20059 17 116728 100
1996 79995 69 17652 15 18244 16 115891 100
1997 82260 71 16207 14 16651 14 115118 100
1998 82153 71 15585 13 18776 16 116514 100
1999 80440 70 15288 13 19139 17 114867 100
2000 80792 71 16579 15 16890 15 114261 100
2001 81038 70 16023 14 18688 16 115749 100
2002 86395 74 13227 11 16827 14 116449 100
2003 88868 76 11215 10 16217 14 116300 100
2004 91089 79 9848 9 13851 12 114788 100
2005 94857 82 9172 8 12060 10 116089 100
2006 94315 81 8557 7 13984 12 116856 100
2007 83432 71 11823 10 21806 19 117061 100
2008 87780 75 14798 13 13719 12 116297 100
2009 102266 86 9850 8 6353 5 118469 100
2010 100090 85 10059 9 7984 7 118133 100

N 2,208,629 380,732 329,101 2,918,462

Table 2.1: Percentage of Data by LTV Category
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DTI Category

Origination Year DTI < 0.26 0.26 < DTI < 0.42 0.42 < DTI < 0.65 Total

No. Row % No. Row % No. Row % No. Row %

1986 264 49 242 45 36 7 542 100
1987 427 48 402 45 62 7 891 100
1988 1614 31 3391 65 201 4 5206 100
1989 1756 23 5394 72 353 5 7503 100
1990 1610 22 5239 73 332 5 7181 100
1991 1441 26 3895 70 208 4 5544 100
1992 3629 36 5892 59 483 5 10004 100
1993 40746 38 61044 57 5854 5 107644 100
1994 34544 32 66365 61 7501 7 108410 100
1995 29919 27 69551 63 10903 10 110373 100
1996 30829 28 68101 62 11341 10 110271 100
1997 32032 30 64091 59 12159 11 108282 100
1998 37393 35 57635 53 13162 12 108190 100
1999 34013 32 51910 49 19228 18 105151 100
2000 26411 25 49846 48 27497 27 103754 100
2001 32073 30 50233 47 25301 24 107607 100
2002 34141 31 47899 44 26401 24 108441 100
2003 33777 31 46515 43 28060 26 108352 100
2004 27925 26 46571 44 31495 30 105991 100
2005 21627 20 49655 47 35115 33 106397 100
2006 18296 17 48738 45 40213 37 107247 100
2007 17322 16 47149 43 45503 41 109974 100
2008 23640 20 49751 43 42122 36 115513 100
2009 34664 29 53333 45 29988 25 117985 100
2010 35564 30 59601 51 22457 19 117622 100

N 555,657 1,012,443 435,975 2,004,075

Table 2.2: Percentage of Data by Debt-to-Income Category
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0 0 0 0 0 0

Year Other Total Other Total

No. No. No. No. No. Row % Row % Row % Row % Row %

1986 17110 4856 829 94679 117474 15 4 1 81 100
1987 20642 3953 1283 90114 115992 18 3 1 78 100
1988 24109 4858 1709 86908 117584 21 4 1 74 100
1989 19176 5485 1278 91915 117854 16 5 1 78 100
1990 18449 7318 902 91450 118119 16 6 1 77 100
1991 16591 7925 851 93489 118856 14 7 1 79 100
1992 16159 7338 815 94116 118428 14 6 1 79 100
1993 18236 11053 2034 85955 117278 16 9 2 73 100
1994 19235 15905 2926 79241 117307 16 14 2 68 100
1995 17849 15777 5217 77885 116728 15 14 4 67 100

1996 22235 16798 6334 70524 115891 19 14 5 61 100
1997 22354 15807 5990 70967 115118 19 14 5 62 100
1998 20816 15439 6851 73408 116514 18 13 6 63 100
1999 21936 14756 8220 69955 114867 19 13 7 61 100
2000 25262 15570 7855 65574 114261 22 14 7 57 100
2001 21897 15565 8357 69930 115749 19 13 7 60 100
2002 19101 13420 8090 75838 116449 16 12 7 65 100
2003 16929 11222 8634 79515 116300 15 10 7 68 100
2004 16663 8945 9161 80019 114788 15 8 8 70 100
2005 16475 7479 9174 82961 116089 14 6 8 71 100
2006 16418 7275 11947 81216 116856 14 6 10 70 100
2007 18299 10395 16883 71484 117061 16 9 14 61 100

2008 18940 10440 5872 81045 116297 16 9 5 70 100
2009 11609 5466 1371 100023 118469 10 5 1 84 100
2010 11674 5756 2415 98288 118133 10 5 2 83 100

N 468,164 258,801 134,998 2,056,499 2,918,462

Table 2.3: Fraction of Risky Mortgages
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FICO Income Age

Origination Year N Mean Sd N Mean Sd N Mean Sd

1986 2300 682 91 697 6408 19679 764 44 16
1987 3785 696 87 1268 5230 4601 1393 44 16
1988 5099 704 79 6229 5147 4306 6433 40 13
1989 3984 698 81 8478 5716 10223 8925 39 11
1990 3839 699 76 8287 5640 4560 9039 40 12
1991 3413 694 82 6541 5404 4496 6756 40 13
1992 5069 712 77 13162 5619 5413 12542 42 12
1993 8320 705 84 110089 5469 5370 98897 42 11
1994 15222 709 75 110977 5143 4418 102663 42 12
1995 13819 692 80 112668 5056 4220 102635 42 12
1996 90529 710 62 112003 5282 5094 100619 42 12
1997 112709 713 60 110154 5588 5907 98961 43 12
1998 114702 718 58 110855 5940 4819 101080 43 12
1999 113028 715 60 108959 6028 5465 100393 43 12
2000 112222 707 63 108130 6023 5315 98785 43 12
2001 114644 715 64 109994 6590 5902 103265 43 12
2002 115791 721 60 112666 6865 6833 105766 43 12
2003 115850 725 57 113348 6962 6785 106167 44 13
2004 114248 722 58 110538 6871 9293 97527 44 13
2005 115698 723 59 110864 7150 6059 96790 44 13
2006 116585 719 61 111057 7603 7473 100114 44 13
2007 116913 718 63 112573 7747 6665 108099 44 13
2008 116183 742 53 115720 8690 7931 106804 45 13
2009 118285 763 41 118178 9298 9091 106372 46 13
2010 117984 766 41 117737 9899 9219 105611 47 13

Table 2.4: Summary Statistics by Year

FICO Income Age

LTV Category N Mean Sd N Mean Sd N Mean Sd

LTV < 80% 1334225 733 56 1546528 7191 7396 1416242 45 12
80% < LTV < 90% 198632 713 58 249593 6075 5126 228678 40 11
90% < LTV < 110% 237364 686 72 265051 5101 3305 241480 36 11

Table 2.5: Summary Statistics by LTV Category
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Occupancy Status Code

First Home Second Home Investment Home Total

ORIGTN.YEAR No. Row % No. Row % No. Row % No. Row %

1986 113074 96 1528 1 2872 2 117474 100
1987 111178 96 1804 2 3010 3 115992 100
1988 111564 95 2576 2 3444 3 117584 100
1989 112240 95 2786 2 2828 2 117854 100
1990 112996 96 2420 2 2703 2 118119 100
1991 114032 96 2243 2 2581 2 118856 100
1992 113718 96 1580 1 3130 3 118428 100
1993 111455 95 1864 2 3959 3 117278 100
1994 109957 94 2110 2 5240 4 117307 100
1995 110765 95 2320 2 3643 3 116728 100
1996 109912 95 2408 2 3571 3 115891 100
1997 108809 95 2625 2 3684 3 115118 100
1998 110198 95 2766 2 3550 3 116514 100
1999 106926 93 3038 3 4903 4 114867 100
2000 104324 91 3174 3 6763 6 114261 100
2001 106477 92 3238 3 6034 5 115749 100
2002 105204 90 3971 3 7274 6 116449 100
2003 104719 90 4732 4 6849 6 116300 100
2004 102076 89 5344 5 7368 6 114788 100
2005 100619 87 5865 5 9605 8 116089 100
2006 101099 87 5902 5 9855 8 116856 100
2007 102664 88 5413 5 8984 8 117061 100
2008 100817 87 6240 5 9240 8 116297 100
2009 104374 88 7397 6 6698 6 118469 100
2010 101437 86 7696 7 9000 8 118133 100

N 2,690,634 91,040 136,788 2,918,462

Table 2.6: Occupancy Status by Year
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Table 2.7: Structural Leverage Demand Estimation (2sls)

LTV - Purchases LTV - Refinances

Loan Original Note Rate

15 YR FRM

20 YR FRM

25 YR FRM

40 YR FRM

Borrowers Total Monthly Income Amount

Borrowers Count

25 < Borrower's Age < 34

35 < Borrower's Age < 49

50 < Borrower's Age < 64

Borrower's Age > 64

Borrower Credit Score

MSA Ln House Price Level

MSA Detrended Ln HPI Qtrly Vol, 2 yr bk

Second or Vacation Home

Investment Property

-3.0725

(0.7753)

-13.6819

(0.3527)

-6.8572

(0.2168)

-3.0843

(0.3930)

5.8035

(0.3627)

-8.28e-05

(7.84e-06)

-1.7511

(0.0641)

-1.5857

(0.0890)

-5.8772

(0.0961)

-10.0289

(0.1009)

-13.7921

(0.1384)

-0.0595

(0.0018)

-5.7276

(0.0629)

-1.0511

(0.6113)

2.2555

(0.1113)

2.7088

-3.90

(0.8308)

-12.0273

(0.4015)

-3.7932

(0.1334)

-1.3910

(0.1733)

4.4890

(0.4613)

-2.90e-05

(5.31e-06)

-0.2080

(0.0659)

0.2115

(0.2104)

-4.4202

(0.2079)

-9.3643

(0.2078)

-15.2030

(0.2244)

-0.0511

(0.0019)

-10.3784

(0.0902)

-9.9837

(0.7568)

0.5683

(0.2030)

1.3346
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Table 2.7: Structural Leverage Demand Estimation (2sls)

Female

American Indian/Alaskan Native

Asian/Pacific Islander

Black (and not Hispanic)

Hispanic

Other Race

1987

1988

1989

1990

1991

1992

1993

1994

1995

56

LTV - Purchases

(0.4179)

-0.7518

(0.0466)

1.6672

(0.3204)

0.3042

(0.0828)

5.2097

(0.1212)

4.0734

(0.1122)

0.3783

(0.0988)

-1.7117

(4.3005)

-4.8607

(4.3216)

1.9601

(4.4727)

7.3831

(4.1008)

0.3751

(3.6473)

1.8482

(2.7883)

1.1479

(1.9334)

2.5485

(2.2595)

5.1954

(2.2484)

LTV - Refinances

(0.3681)

-1.1664

(0.0551)

1.6204

(0.3440)

2.9806

(0.1040)

4.2897

(0.1254)

3.0021

(0.0954)

1.1764

(0.1023)

-0.6123

(4.5062)

-3.9173

(7.5002)

2.5111

(4.5786)

-5.3855

(5.8132)

-0.2471

(4.0221)

-1.9157

(3.0130)

-3.1531

(2.1004)

-3.0586

(2.2396)

0.0939

(2.5327)



Table 2.7: Structural Leverage Demand Estimation (2sls)

LTV - Purchases LTV - Refinances

1996

1997

7.8182

(2.4842)

6.8279

(2.2896)

5.4118

(1.7118)

6.5646

(1.9880)

8.4343

(2.5683)

6.1209

(1.7229)

5.0041

(1.4158)

3.1811

(0.8087)

2.7177

(0.9025)

2.7608

(0.9024)

5.1577

(1.3332)

7.8040

(1.2961)

5.9641

(1.0580)

0.1781

(0.2508)

216.7163

(5.5240)

0.22
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3.6810

(2.5702)

3.7182

(2.4734)

2.6810

(1.8958)

3.2855

(1.9864)

6.5932

(2.7942)

4.3877

(1.7841)

1.4278

(1.3682)

-2.7925

(0.7697)

-2.1865

(0.8374)

-0.9531

(0.9478)

2.5185

(1.4415)

4.1488

(1.4096)

2.4414

(1.0295)

-1.5372

(0.2558)

261.9842

(6.2962)

0.24

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Constant



Table 2.7: Structural Leverage Demand Estimation (2sls)

LTV - Purchases LTV - Refinances

N 511,448 524,826
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Table 2.8: Reduced Form Estimates with CLL (Purchases)

Note Rate LTV Ln Loan Ln Price

15 YR FRM

20 YR FRM

25 YR FRM

40 YR FRM

Borrowers Total Monthly Income Amount

Borrowers Count

25 < Borrower's Age < 34

35 < Borrower's Age < 49

50 < Borrower's Age < 64

Borrower's Age > 64

Borrower Credit Score

MSA Ln House Price Level

MSA Detrended Ln Qtrly HPI Vol, 2 yr bk

Ln Natl Conforming Loan Limit (CLL)

Second or Vacation Home

-0.4400

(0.0028)

-0.0687

(0.0086)

0.0282

(0.0170)

0.0702

(0.0139)

-3.19e-06

(2.61e-07)

-0.0636

(0.0015)

-0.0452

(0.0038)

-0.0596

(0.0038)

-0.0428

(0.0040)

-0.0007

(0.0046)

-0.0023

(0.0000)

-0.0353

(0.0019)

0.3739

(0.0182)

-4.0568

(0.2300)

0.0628

(0.0033)

-12.3299

(0.0914)

-6.6461

(0.2041)

-3.1710

(0.3841)

5.5879

(0.3498)

-7.30e-05

(6.73e-06)

-1.5555

(0.0402)

-1.4470

(0.0797)

-5.6941

(0.0818)

-9.8975

(0.0931)

-13.7898

(0.1365)

-0.0525

(0.0004)

-5.6190

(0.0552)

-2.1997

(0.5291)

12.4648

(3.0115)

2.0626

(0.0979)

-0.2618

(0.0039)

-0.1982

(0.0060)

-0.1614

(0.0112)

0.0693

(0.0109)

2.28e-05

(1.84e-06)

0.1416

(0.0039)

0.2043

(0.0037)

0.2416

(0.0053)

0.1206

(0.0051)

-0.0206

(0.0042)

0.0004

(0.0000)

0.4898

(0.0041)

-0.2547

(0.0196)

0.5768

(0.0627)

-0.2115

(0.0095)

Investment Property 0.5307 1.0782 -0.5436 -0.5808
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-0.0503

(0.0039)

-0.0974

(0.0060)

-0.1154

(0.0113)

-0.0051

(0.0109)

2.36e-05

(1.90e-06)

0.1662

(0.0040)

0.2187

(0.0038)

0.3181

(0.0054)

0.2692

(0.0052)

0.1991

(0.0041)

0.0011

(0.0000)

0.5764

(0.0043)

-0.2267

(0.0198)

0.4483

(0.0660)

-0.2576

(0.0099)



Table 2.8: Reduced Form Estimates with CLL (Purchases)

Female

American Indian/Alaskan Native

Asian/Pacific Islander

Black (and not Hispanic)

Hispanic

Other Race

Year Dummies

Constant

R2

N

Note Rate

(0.0031)

LTV

(0.0700)

-0.7692

(0.0455)

1.5847

(0.3144)

0.4396

(0.0743)

4.8720

(0.0837)

3.7307

(0.0698)

0.3863

(0.0968)

yes

33.7326

(38.9694)

0.24

511,448

0.0057

(0.0017)

0.0269

(0.0121)

-0.0441

(0.0026)

0.1099

(0.0042)

0.1115

(0.0030)

-0.0026

(0.0034)

yes

59.5546

(2.9770)

0.81

511,448

Ln Loan

(0.0069)

-0.0768

(0.0022)

0.0048

(0.0098)

0.0786

(0.0026)

-0.0495

(0.0036)

-0.0920

(0.0034)

0.0123

(0.0031)

yes

-2.0965

(0.8163)

0.48

511,448

Ln Price

(0.0071)

-0.0640

(0.0023)

-0.0188

(0.0095)

0.0608

(0.0027)

-0.1142

(0.0037)

-0.1450

(0.0035)

0.0048

(0.0031)

yes

-1.9045

(0.8601)

0.52

511,448

60



Table 2.9: Reduced Form Estimates with CLL (Refinances)

Note Rate LTV Ln Loan

15 YR FRM

20 YR FRM

25 YR FRM

40 YR FRM

Borrowers Total Monthly Income Amount

Borrowers Count

25 < Borrower's Age < 34

35 < Borrower's Age < 49

50 < Borrower's Age < 64

Borrower's Age > 64

Borrower Credit Score

MSA Ln House Price Level

MSA Detrended Ln Qtrly HPI Vol, 2 yr bk

Ln Natl Conforming Loan Limit (CLL)

Second or Vacation Home

Investment Property

-0.4794

(0.0015)

-0.1193

(0.0027)

-0.0001

(0.0056)

0.0514

(0.0157)

-2.2le-06

(2.86e-07)

-0.0569

(0.0015)

-0.0455

(0.0083)

-0.0428

(0.0082)

-0.0108

(0.0083)

0.0291

(0.0085)

-0.0022

(0.0000)

-0.0791

(0.0018)

0.2105

(0.0194)

-10.1575

(0.0510)

-3.3278

(0.0880)

-1.3906

(0.1705)

4.2884

(0.4484)

-2.03e-05

(4.22e-06)

0.0139

(0.0452)

0.3891

(0.2030)

-4.2532

(0.2008)

-9.3221

(0.2036)

-15.3167

(0.2192)

-0.0423

(0.0004)

-10.0698

(0.0604)

-10.8046

(0.7271)

-4.1578 16.2152

(0.2601) (3.2398)

0.0563 0.3487

(0.0054) (0.1947)

0.4309 -0.3460
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-0.2884

(0.0027)

-0.1661

(0.0025)

-0.0998

(0.0047)

0.0928

(0.0123)

2.22e-05

(2.48e-06)

0.1078

(0.0047)

0.1410

(0.0066)

0.1536

(0.0074)

0.0592

(0.0070)

-0.1032

(0.0067)

0.0001

(0.0000)

0.4415

(0.0048)

-0.0291

(0.0209)

0.5485

(0.0684)

-0.1298

(0.0163)

-0.4025



Table 2.9: Reduced Form Estimates with CLL (Refinances)

Female

American Indian/Alaskan Native

Asian/Pacific Islander

Black (and not Hispanic)

Hispanic

Other Race

Year Dummies

Constant

R2

N

Note Rate

(0.0032)

0.0152

(0.0017)

0.0267

(0.0110)

-0.0192

(0.0029)

0.0910

(0.0037)

0.0481

(0.0028)

0.0077

(0.0030)

yes

61.3190

(3.3661)

0.84

524,826

62

LTV

(0.0835)

-1.2255

(0.0529)

1.5164

(0.3392)

3.0556

(0.1015)

3.9347

(0.0981)

2.8145

(0.0850)

1.1464

(0.1007)

yes

22.8425

(41.9260)

0.26

524,826

Ln Loan

(0.0075)

-0.0880

(0.0029)

-0.0321

(0.0097)

0.0953

(0.0027)

-0.0937

(0.0034)

-0.0852

(0.0051)

-0.0059

(0.0027)

yes

-0.7726

(0.8932)

0.51

524,826



Table 2.10: Reduced Form (RF) vs Structural Year Dummies

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

CLL LTV CLL LTVNote Rate - RF w/o

-0.4464

-0.4279

-0.2160

-0.1165

-0.4681

-1.3147

-2.2114

-1.7609

-1.7598

-1.4251

-1.6763

-2.4226

-2.0661

-1.3167

-2.4084

-2.8053

-3.5929

-3.4723

-3.4720

-2.9124

-2.9602

-3.2684

-4.3268

- RF w/o

-0.3400

-3.5460

2.6238

7.7410

1.8135

5.8876

7.9424

7.9588

10.6024

12.1967

11.9782

12.8552

12.9127

12.4798

13.5208

13.6236

14.2203

13.3865

13.4285

14.1060

16.8992

16.0064

13.4723

- Structural

-1.7117

-4.8607

1.9601

7.3831

0.3751

1.8482

1.1479

2.5485

5.1954

7.8182

6.8279

5.4118

6.5646

8.4343

6.1209

5.0041

3.1811

2.7177

2.7608

5.1577

7.8040

5.9641

0.1781

63
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Chapter 3

Loss Aversion and Anchoring in

Commercial Real Estate Pricing:

Empirical Evidence and Price

Index Implications

3.1 Introduction

This is an empirical paper examining the role of two psychological theories in the

marketplace. The first is prospect theory, often suggested as an alternative paradigm

to supersede the utility theory of neoclassical economics. It is based on the concept of

loss aversion, i.e. for equal sized gains and losses around a reference point, individuals

give up more utility for the loss than they receive from the gain. Such a reference

dependent preference function was not recognized in classical economic theory. Today,

despite considerable laboratory evidence in favor of prospect theory, some economists

still believe that loss aversion is merely the result of a mistake made by inexperienced

individuals and through time they will learn, and their behavior will more closely

match predictions from neoclassical models. In the context of the current literature,
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the present paper confirms, extends, and enhances the previous evidence regarding

loss aversion, including a very influential 2001 paper by Genesove & Mayer which

found loss aversion behavior in the Boston housing market of the 1990s.

In this paper, we use market data based on all U.S. sales of commercial property

greater than $5,000,000 from January 2001 through December 2009. We find that

loss aversion plays a significant role in the behavior of investors in commercial real

estate. We thus extend the Genesove-Mayer findings to the commercial property

market where the participants are "professionals" operating in a more purely business

environment (compared to homeowners). Furthermore, contrary to common belief

and some prior evidence, we find the degree of loss aversion to be actually higher the

more sophisticated or experienced the investor is. 1

The second piece of theory tested in this paper is known as the anchoring-and-

adjustment heuristic. Specifically, an asking price could serve as an anchor or heuristic

used by a buyer to judge the value of a property, and they may not be able to adjust

sufficiently away from the anchor to arrive at what would otherwise be a fair market

price. As a result, real estate could be mis-priced if sellers play to this behavior by

buyers. We find that there is considerable evidence for the predictions of this theory

in the marketplace.

A feature of the present paper is that we develop longitudinal price indices of U.S.

commercial property that control for and reflect both the anchoring and the prospect

theory phenomena. We show that explicitly including these behavioral factors can

greatly improve the construction of a traditional hedonic price index. We also com-

bine our behavioral pricing model with price indices to demonstrate the magnitude

and nature of the effect of the behavioral pricing phenomena during the dramatic

commercial property market cycle of the 2000s.

While we study both loss aversion and anchoring, the focus of the present paper

is primarily on loss aversion. One hypothesis has been that loss aversion may play a

'Although the motivation or cause of this behavior is beyond the scope of the present paper,
discussions we have had with participants in the commercial property market suggest to us that
behavioral phenomena among professional investors in that market may be due to the reluctance on
the part of agents to realize losses to the stakeholders in their companies. Further research is needed
to document the decision-making process for the various investor types.
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significant role in real estate's famously dramatic pro-cyclical variation in asset trad-

ing volume, causing property markets to be excessively illiquid during down markets.

The hypothesis is that loss aversion could cause transaction prices of completed deals

(those that are reflected in the market-wide average prices on which price indices are

based) to be "sticky" or fail to register much of a drop during the early phase of a

sharp downturn in the market, as compared to movements on the demand side of the

market ("constant-liquidity" prices). Sticky pricing and related illiquidity certainly

seemed to be present in the 2007-09 drop in the U.S. commercial property market.

For example, in the early phase of that downturn from 2Q2007 through 1Q2008, the

"TBI" index published by the MIT Center for Real Estate dropped 15% on the de-

mand side while actually rising 2% on the supply side leading to only a 7% drop in

consummated transaction prices, while trading volume of major commercial property

assets fell during that same period from $136 billion to $48 billion.2 However, there is

a question how much of this "sticky pricing" behavior is due to prospect theory based

"psychological" loss aversion, as distinct from more classical and rational explana-

tions. With this in mind, we examine the impact of prospect theory at the aggregate

market level, and find that while our models attest to the economic importance of loss

aversion at the individual property level, they suggest that psychological loss aversion

had a relatively small impact on overall average transaction prices (and therefore on

trading volume) during the recent market peak and downturn. Most of the "sticky

pricing" behavior was either explainable by classical explanations, or may be due to

other behavioral phenomena besides psychological loss aversion not examined in the

current paper.

The rest of the paper is organized as follows. We begin with an overview of

prospect theory and the anchoring-and-adjustment heuristic. We then develop an

empirical model to test these theories. We then describe the data source and high-

2These volume numbers are based on sales of assets greater than $5,000,000 as reported by Real
Capital Analytics Inc (RCA), the datasource used for this study. The TBI demand and supply indices
employ the Fisher et al (2003) methodology based on NCREIF property sales to measure movements
in reservations prices on the two sides of the market. Hence, the implication is that property owners
(the supply side) actually raised their willing-to-receive prices by 2% while potential property buyers
dropped their willing-to-pay prices by 15%, resulting in the huge drop in transaction volume.
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light some of the features of the data used in this study. The empirical results are

then presented in Section 3.5. Finally our analysis of the implications for commercial

property price indices and the aggregate market-wide effects of loss aversion are pre-

sented in Section 3.6. A final section then concludes the paper with some finishing

remarks.

3.2 Prospect Theory and the Anchoring and Ad-

justment Heuristic

3.2.1 Prospect Theory

Prospect theory, which helped gain a Nobel Prize in economics for Daniel Kahneman

in 2002, is characterized by three essential features [Kahneman and Tverksy (1979);

Tversky and Kahneman (1991)]. First, gains and losses are examined relative to a

reference point. Second, the value function is steeper for losses than for equivalently

sized gains. Third, the marginal value of gains or losses diminishes with the size of

the gain or loss. Thus, under prospect theory, people behave as if maximizing an

S-shaped value function as shown in figure 3-1.

A difficulty in applying prospect theory to empirical studies is that the reference

point is seldom observed in the data. An influential exception has been Genesove

and Mayer's 2001 study (hereafter "G-M"), examining seller behavior in the Boston

housing market using the home purchase price as the reference point. They find

evidence that loss aversion explained the behavior of condominium sellers in their

choices of asking prices and in their decisions as to whether to accept an offer or not.

They find that property owners, faced with a prospective loss, set a higher asking

price and in fact do sell at a higher price than other sellers, suffering as a result less

sale frequency or, in effect, a longer time on the market. The first contribution of the

current study is our attempt to replicate G-M using data on U.S. commercial real

estate instead of housing. Thus, a key aspect of the present paper is that it examines

the evidence on loss aversion among sellers that are primarily investors (as opposed
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to being owner-occupiers who are arguably primarily consumers). A commonly held

view is that property owners have a sentimental attachment to their homes, as well as

being not full-time "in the business" of real estate investment, and as a result could be

overly optimistic or overly influenced by emotions in their listing and sales behavior.

Therefore, owner-occupants may understandably behave in a loss-averse manner while

it remains unclear if commercial property investors, who typically should not have

sentimental motivations, would behave in a similar way.

Under prospect theory, a seller with a potential loss compared to his purchase price

would be expected to set a higher reservation price than a seller with a prospective

gain. The former can avoid or mitigate loss by setting a sufficiently high reserva-

tion price and sticking with it until trade goes through. To formalize this intuition,

consider the following simple model.

Assume that the utility from sale, U(P) is increasing in price (U(P)' > 0) and

greater than the utility from no sale ( U(P) > Uo), for all relevant prices. Also assume

that the probability of a sale is decreasing in price (prob(P)' < 0). The seller would

then maximize their expected utility from a sale by choosing a reservation price P:

maxp prob(P) * U(P) + (1 - prob(P)) * U0

U(P)' * prob(P) = prob(P)' * (U(P) - U0 )

The above first order condition states that the seller would set a price so as to equate

(in expectations) the marginal gain from an increase in price to its marginal cost.

Next, we examine the behavior of a loss-averse seller compared to that of a risk-neutral

seller. This can be illustrated with a simple reference-dependent utility function where

the reference point is the price that the seller first paid for the property, Pf

U(P) = (P - Pf) if P >= P5

= A\*(Pf-P) if P<Pf

where A > 1 is the loss aversion parameter. The first-order conditions can then be
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written as:

prob(P) = -prob(P)' * ((P - Pf) + U0 ) if P >= Pf

A * prob(P) = -prob(P)' * (A * (P - Pf) + Uo) if P < Pf

Figure 3-2 below shows the difference between the loss-averse seller and risk-neutral

seller (A = 1), where the prior price (reference point) Pf is at a hypothetical value

of 50. We make the following points about the behavior of these two types of sellers.

When the market value is greater than the purchase price (P > Pf), there is no effect

of loss aversion. There is bunching at P = Pf , and when P < Pf , the marginal

benefit and marginal cost from an increase in price disproportionately increase for

the loss-averse agent compared to the risk-neutral seller. Thus, when faced with a

loss, a loss-averse seller (as compared to the risk-neutral seller) would find it optimal

to set a higher price since for that seller the difference between the marginal benefit

and the marginal cost of an increase in price is greater at every price level.

The simple prospect theory based value function formalized above and illustrated

in figure 3-2 allows us to propose a finer and more rigorous distinction in the defini-

tion of loss aversion behavior. In particular, it is only the behavior of agents who are

to the left of the prospect theory value function "kink-point" in figure 3-1, or to the

left of the reference price of 50 in figure 3-2, who are in a position to exhibit the sort

of psychological loss aversion behavior that is distinguished by prospect theory. This

"behavioral loss aversion" will be the major focus of the current paper, and we will

identify it by looking for empirical evidence of asymmetric pricing behavior between

sellers facing a loss (those to the left of the reference point) versus those facing a gain.

More broadly, however, agents may display other types of strategic pricing behavior

based on a reference point, possibly including the prior purchase price that we con-

sider as the reference point in our model. Some such behavior could be "rational"

(or consistent with classical utility theory, not reflective of prospect theory).3 But

asymmetric pricing behavior around the reference point is nevertheless of interest in

3 For example, rational attempts to avoid realizing a loss relative to an outstanding mortgage
balance could be correlated with loss relative to the prior purchase price.
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understanding the behavior of market participants and how the commercial property

market functions. Nor will we ignore some broader aspects of reference point based

pricing behavior, as we will also consider both the symmetric as well as asymmetric

component of the reference point's impact on sellers' pricing strategy.

These considerations highlight another behavioral phenomenon that is closely re-

lated to loss aversion and predicted by Prospect Theory, known as the Disposition

Effect - the tendency to sell winners quickly and hold on to losers. This phenomenon

has been documented extensively in the finance literature (see, for example, Odean

(1998), Feng et al (2005), Locke et al (2000) and Shapira et al (2001)). In the real

estate literature, Crane and Hartzell (2009) find evidence for the disposition effect

in REITs. They find that managers of REITs are more likely to sell properties that

have performed well and accept lower prices when selling profitable investments. In a

relevant paper not focused on behavioral factors, Fisher et al (2004) find that there is

a greater likelihood of a sale following increases in the national index of commercial

real estate returns and for properties that have outperformed that index. But to date,

and unlike the case with housing and the G-M study, there has been no empirical

documentation of loss aversion behavior per se among commercial property market

participants in general.

Loss Aversion and Experience

If loss aversion was a fundamental and stable component of preferences as advocated

by prospect theory, then it must be the case that the market experience of an indi-

vidual and loss aversion would be uncorrelated. For instance, if an investor with little

experience behaved in a loss-averse manner (during a down market), then that same

investor once he has gained experience would behave in the same fashion in a similar

situation.

G-M's study of the Boston housing market in the 1990s found that investors in

condominiums were less loss-averse than their owner-occupant counterparts. Presum-

ably, condominium sellers are more experienced in the market than homeowners. 4 List

4This would be because condominiums are better suited to investment trading than houses, and
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(2003) is an example of a recent experimental field study that also supports the no-

tion that loss aversion can be attenuated with market experience. Examining trading

rates of sport memorabilia in an actual marketplace, List observed an inefficiently

low number of trades by naive traders, consistent with prospect theory.

On the other hand, there is some evidence that even sophisticated traders are

sometimes subject to behavioral biases. Haigh and List (2005) provide experimental

evidence that CBOT traders are more likely to suffer from myopic loss aversion 5 than

student participants. The 2009 Crane-Hartzell study suggests that even experienced

REIT managers can exhibit loss aversion behavior.

In this paper, we shed new light on this question by studying the degree of loss

aversion across different types of investors as well as among groups of investors that

have significant differences in trading experience.

3.2.2 Anchoring-and-Adjustment

Besides prospect theory, psychological anchors could also affect the valuation of real

estate. Specifically, an asking price could serve as an anchor or heuristic used by a

buyer to judge the value of a property, and they may not be able to adjust sufficiently

away from the anchor to arrive at a rational market value'. In the context of housing,

Northcraft and Neale (1987) took local real estate agents to a house and asked them

to appraise it. Each group of agents was given the same information packet about the

house that they could use to appraise the property. However, a key difference was that

different groups had been given different asking prices. The appraised values turned

out to be positively related to the provided anchor, the asking price. Interestingly,

the G-M study incorporated a period of a condominium boom in Boston, attracting considerable

speculative investment in the market.
5Myopic loss aversion is a term first coined by Benartzi and Thaler (1995) that combines the

concepts of loss aversion and mental accounting (see Thaler (1985)) to provide an explanation for

the equity-premium puzzle in the stock market. A myopically loss-averse agent would tend to make

shorter-term choices and evaluate losses and gains more frequently.
6The anchoring heuristic was first demonstrated by Tversky and Kahnemann (1974) in an ex-

periment where they asked participants to estimate a number such as the percentage of African

countries that are members of the United Nations. The experiment began with the subjects being

given a number (between 1 and a 100) generated by the spin of a wheel. It turned out that the

subjects showed a bias in their final estimates toward the number they were originally given.
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most participants reported that the asking price should be irrelevant to the appraised

value, yet they were nonetheless influenced by it. It should be noted that in that study,

group differences in the appraisals could not be explained by individual differences in

appraisals methods alone.

In the present study, a hypothesis generated by the Northcraft and Neale study is

that any over- or under-pricing (i.e. the extent to which the asking price is above or

below the expected sale price) by a seller could influence a buyer's valuation and thus

have an effect on the subsequent transaction price. Black and Diaz (1995) tested this

hypothesis in a laboratory experimental setting and found that manipulated asking

prices influenced both the buyer's opening offer and the eventual transaction price,

indicating a strong anchoring effect of the asking price.

However, it is important to note that another theory common in the urban eco-

nomics literature makes a similar prediction based on neoclassical ("rational" rather

than "behavioral") economics. Yavas and Yang (1995) propose a game theoretic

model in which they argue that a seller strategically lists an asking price that reflects

his bargaining power in an attempt to signal to certain types of buyers. For instance,

a seller who can wait for a high-paying buyer may post a high asking price to attract

only those buyers that would value his property higher than the going market value.

This is clearly a different behavior than anchoring, which would say that any asking

price influences the valuation of all buyers (although only buyers whose influenced

valuations are sufficiently high would come forth to negotiate with the seller).

Another type of signaling behavior in the seller's asking price that would be ra-

tional and not inconsistent with classical economic theory would be for the seller to

use his asking price to signal private information that he has about the (true market)

value of the property. Properties are unique, and no one knows the property as well

as its current owner.

Due to the nature of the market data used in this study, which reflects the re-

sults from the interactions between a buyer and a seller and our inability to observe

their respective bargaining powers, we cannot distinguish between "irrational" psy-

chologically based anchoring behavior versus "rational" signaling behavior such as
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that described above. However, we are able to test their joint predictions.

3.3 Empirical Model

In this section we develop an empirically testable model that reflects the prospect

theory and anchoring phenomena described above. The model developed here is

similar to that employed by G-M, but extends and enhances their model by explicitly

incorporating the prospect theory reference point in the value function.7

To test for prospect theory, the structural model specifies that the log asking price,

L is a linear function of the expected log selling price in the quarter of entry (when

the property is put up for sale), labeled p, and a variable defining the reference point,

RF*:

Life = ao + apie + mRFi* e + Cie (3.1)

Here i indicates the unit, f the quarter of previous or first sale and e the quarter of

entry into the market. If there were no behavioral effects: m=0. Furthermore, the

expected log selling price is a linear function of a vector of observable attributes of the

property (Xi3), the quarter of entry Qe and unobservable quality, v. The unobserved

quality is observable to a buyer or a seller but not to the analyst:

Pie = Xi0+ Qe +vi (3.2)

We define the reference-point variable, RF* as the difference between the previous

log selling price and the expected log selling price:

RF*e - (Pif - Pie)

RFife is therefore positive if there is an expected loss. Assuming that equation (3.2)

'One advantage of the model presented here compared to the G-M model is that we are able
to estimate a single unbiased coefficient measuring loss aversion, whereas G-M were only able to
produce upward and lower biased estimates which they used to provide a range.
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holds for all periods, the previous log selling price can be written as:

Pif = 1-if + Wif = Xi3 + Q5 + Vi + Wif

where wif is the over- or under- payment by the current seller to the previous seller

at the time of the current seller's purchase.

Thus the true reference-point term is

RF*e = (1pif + Wif - Pie) = (Q5 - Qe) + Wie (3.3)

The interpretation of the first term is the change in the market price index between

the quarter of original purchase and the quarter of listing.8 If RF* < 0, then the

seller faces a prospective gain but if RF* > 0, then they face a prospective loss.

Combining equations (3.1), (3.2) and (3.3):

Life = ao + ai(Xi3 + Qe + vi) + m(Qj - Qe + Wif) + Cie (3.4)

The specification above cannot be estimated since wif and vi are unobserved. How-

ever, we proceed by substituting a noisy measure of the reference-point variable in

place of the true term:

Life = ao + ai(Xif + Qe) + mRFzfe + ??ie (3.5)

where

RFife = (Pif - X - Qe) =(Q - Qe + vi + wif) (3.6)

i.e. RF is estimated as the difference between the purchase price and the predicted

selling price from a hedonic regression at the quarter of listing. Substituting (3.6)

8 1t is interesting to note that Pryke and Du Gay (2002) find, in their cultural study of the
commercial real estate market in the UK after the crash in the late 1980s, that there was a conscious
effort by investors to evaluate the performance of their property relative to a market index. Such a
phenomenon has also clearly been present in the U.S. since the mid-1990s (e.g., Geltner 2000).
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into (3.5), we get:

Life = ao + ai(Xi O + Qe) + m(Qf - Qe +Vi + Wif) + The

where

The = avli + m((Qf - Qe + wif) - (Qe - Qe + vi + wi)) + Cie

= (a1 - m)vi + Cie

Thus, vi is an omitted variable, correlated with the reference-point term, RF. Thus

m is expected to be biased since RF is correlated with vi.

To address this omitted variable bias, we can add to our model the residual of the

previous selling price, v + w, as a noisy proxy for unobserved quality, v :

Life = ao + a1(Xi3 + Qe) + a1(Pif - Xi0 - Qe) + m(Qf - Qe + Vi + wif ) + uie

= ao + a1Xi3 + a1Qe + a1(vi + Wif) + m(Qf - Qe + Vi + Wif) + Uie (3.7)

The residual Uje now contains the following terms:

Uje = aiv + m((Qf - Qe + Wif) - (Qf - Qe + Vi + Wif)) - (a1 - m)(vi + Wif) + Cie

- (m - ai)Wif + Cie (3.8)

Expanding and rewriting equation (3.7) as:

Life = ao + a1XiO + a1Qe + a 1 (vi + Wif) + m(Qf - Qe + Vi + Wif) + (m - ai)Wif + Cie

= ao + a1(Xi3 + Qe + vi) + m(Qf - Qe + Wif) + Cie (3.9)

We can see that equation (3.9) is equivalent to equation (3.4) and thus our specifica-

tion is fully identified and estimable. In section 3.5 where we estimate this model, the

reference point variable is broken into two components representing prospective gain

or loss. We would expect that the coefficient m on the loss component would be pos-
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itive (significantly different from 0) and higher in magnitude as well as significantly

different from the coefficient on the gain component. Such a result would confirm the

presence of loss aversion in the market.'

In order to test for anchoring/signaling effects, we have to switch focus from the

listing price to the transaction price. Equation (3.9) above is a listing price regression

and its residuals represent the extent to which the asking price is above or below the

average or typical asking price, after taking into account any possible effects of loss

aversion. Thus, in order to test for the effect of the asking price on the eventual sale of

the property, the residuals from equation (3.9) are used as a right-hand side variable

in a hedonic regression on the achieved sale price of a property. In section 3.5 where

we estimate this model, these residuals are referred to as the Anchoring/Degree of

Over-Pricing. The coefficient on this variable would have to be significantly different

from 0 in order to make any conclusive statement about the presence of psychological

anchoring and/or signaling in the marketplace.

3.4 Data

The sales data used in this study comes from Real Capital Analytics (RCA), a New

York based firm that is widely used to provide commercial property transactions data

among institutional investment firms in the U.S. RCA attempts to collect price and

other information about all commercial property sales in the U.S. of greater than

$5,000,000 in price. RCA estimates that they achieve at least 90 percent coverage

of that sales population. The sample period is from January 2001 until December

2009. This time period includes the largest and most dramatic rise and fall in the

U.S. commercial property market at least since the Great Depression, and therefore

provides an ideal sample for the present study.

The dataset covers all four "core" investment property sectors (usage types: of-

9 Note that by comparing the magnitude of the estimate of m on the sales with a loss with that of

the estimate of m on sales with a gain, and considering only the difference between those two, we are

focusing on a narrow and pure definition of loss aversion as an explicitly "behavioral" phenomenon

of prospect theory, as sales that face a gain instead of a loss are "beyond the kinkpoint" of figure

3-1, that is, beyond the reference point of the prospect theory value function.
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fice, retail, industrial and apartments) and has information on location and physical

attributes. The raw data obtained from RCA consisted of about 100,000 commercial

properties. For the purpose of this study, we discard properties that have incomplete

information on property location, sales dates, listing dates as well as those with miss-

ing information on prices. To filter observations with a greater likelihood of error,

we dropped properties that had a first sale before 1988. All properties that were not

part of an arms length transaction are not included. Furthermore, to avoid any over-

statement in the calculation of the market price appreciation, we exclude properties

that were held for less than 1.5 years ("flipped" properties).10 Finally, properties

that sold as part of a portfolio (multiple property) transaction are filtered out, as it is

not possible to determine each property's contribution to the portfolio's transaction

price.

Table 3.1 provides a summary of the remaining data. There are 6,767 total listings

of which 4,782 properties actually sold in the market. The other 1,985 properties

were delisted or pulled from the market without a sale. Of the 4782 completed

transactions, 3723 were sold at a gain, and 1059 at a loss." All the properties have

complete information on the first sale price and the asking price, the two key variables

required to compute our empirical model. As Table 3.1 shows, about one-fourth of the

total listings over the sample period faced a loss at the time of entering the market.

Moreover, properties that sold spent less time on the market (37 weeks) than delisted,

unsold properties.

To construct a variable for experience, we exploit the fact that the RCA data

contains the names of buyers and sellers. The same investor is often both a buyer

and a seller in the market. Thus we calculate trading experience by counting the

number of times an investor's name has appeared in either the buyer or seller name

10 Other filters were also imposed to ensure the integrity and appropriateness of the data. Details
are available from the authors upon request. Examination the data suggests that the smaller analysis
sample did not differ significantly from the larger raw data sample in several summary measures
including average sale price and number of metro areas covered.

"This included 1186 properties sold during the 2007 peak of the market cycle, including (perhaps
surprisingly) 234 properties sold at a loss (compared to their prior purchase price) during that peak
year (suggesting the extent of heterogeneity or idiosyncratic risk at the asset level in commercial
property). A further 1068 properties were sold during 2008-09 including 309 at a loss.
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lists. The mean number of trades per seller is 101 for sold listings and slightly less at

88 for all listings, which include unsold, delisted properties.

The RCA data also contains information on the type of investor the seller is.

There are primarily four groups of investors: "Institutional" (consisting of banks,

insurance companies, pension and hedge funds; national and international entities

who tend to purchase larger properties); "Private" (consisting of generally smaller and

more local companies geared towards operating, developing or investing in commercial

real estate); "Public" (consisting of companies that are listed on public markets like

REITS and REOCs); and "Users" (consisting of owner-occupiers such as government,

educational, and religious institutions or business that own commercial property for

their own use). Of these four groups, the institutional investors and the publicly

traded companies are the most experienced in the market which is reflected in our

dataset as they make up the majority of the 100-plus trades investors over the given

time period.

3.5 Empirical Analysis

3.5.1 Effects of Loss Aversion on Asking Prices

Table 3.2 presents our main empirical results of the test of loss aversion behavior. It

shows the equation (3.9) regression of asking prices onto prospective gains and losses,

as well as onto the estimated value of the property (Xio), the residual from a first

sale price regression so as to control for unobserved quality, and dummy variables for

the quarter of entry into the market for sale (results for the latter omitted, available

from the authors). All price variables are measured in logs. The results confirm that

losses play a greater role than gains: the coefficient on Loss is higher and different

with statistical significance compared to that on Gain. The estimated coefficient of

0.38 on Loss suggests that a 10 percent increase in a prospective loss (referenced

on the seller's purchase price), leads the seller to set an asking price approximately
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3.8 percent higher than she otherwise would." In other words, commercial property

sellers faced with a loss relative to their purchase price tend to post asking prices

higher than otherwise-similar sellers not facing a loss, by a magnitude of about 38%

of their loss exposure. The comparable finding in the G-M housing study was 25% to

35%.

It is important to note that it is the difference between the coefficient on "Loss"

and that on "Gain" that suggests a type of psychological loss aversion based on

prospect theory that is inconsistent with classical utility-based economic models. Re-

ferring back to figure 3-2, sellers facing a gain are beyond the kink-point in the

prospect theory value function, and hence their pricing behavior presumably does

not reflect prospect theory based loss aversion. However, the fact that sellers facing

a gain also price differentially is still interesting from an economic perspective. It

suggests a type of pricing strategy influenced by a reference point (in this case the

property's prior purchase price). In particular, the positive coefficient on the "Gain"

variable suggests that sellers facing a gain set a lower price than they otherwise would,

while sellers facing a loss set a higher price, in the latter case, asymmetrically so. The

asymmetry in this behavior likely reflects the "behavioral" loss aversion phenomenon

of prospect theory. But even the symmetrical reference point based pricing behavior

may involve "behavioral" components. For example, the pricing behavior discovered

here would be consistent with the "sell winners/hold losers" behavior referred to as

the "disposition effect", and found by Crane & Hartzell (2009) in their study of REIT

behavior. We will discuss these issues further in the next section about participants'

experience and in section 3.6 where we quantify the historical magnitude of these

pricing strategies during the 2000s commercial property market cycle.13

12More precisely, this is a point elasticity based on log-differences, so the arc elasticity based on

a 10% loss might be slightly different. The mean value of the Loss variable among sold properties

with a loss was 0.32 which implies a price loss of 27% of the prior purchase price.
13We should note that loss aversion, and the disposition effect, may have "rational" components.

However, Crane & Hartzell (2009) argue that the disposition effect they find in REITs cannot be

explained by rational motivations such as mean reversion in asset prices. Asymmetric loss aversion

such as we find here also can be rational if the seller has a mortgage whose balance exceeds the

likely current value of the property. Unlike Genesove & Mayer who are able to control for this

consideration, we do not have data on sellers' loan balances. However, we note that certain types of

institutions typically rely less on property-level debt, including REITs, pension funds, and foreign
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Finally, Table 3.2 also shows the coefficient on the residual from the first sale

regression, which is a proxy for unobserved quality. This coefficient is positive and

statistically significant, implying that controlling for unobserved property heterogene-

ity is important.

3.5.2 Loss Aversion and Experience

We next divide the data into two groups; investors that engaged in more than a

hundred trades were labeled the "more experienced investors" group, and those with

less than a hundred trades, the "less experienced investors" group. In Table 3.3, we

find that there is no significant difference between the two groups when they are faced

with a gain. However, contrary to previous findings in the literature, we find that the

more experienced investor group exhibits a higher degree of loss aversion than their

less experienced counterparts. A test of the equality of coefficients on "Loss - more

experienced investors" and "Loss - less experienced investors", significantly rejects

the null hypothesis that the two groups behave the same.

It is interesting to note that over 40 percent of the more experienced investors trad-

ing group consists of institutional investors. In Table 3.4, we compare the degree of

loss aversion across different investor types and find that consistent with the findings

in Table 3.3, the coefficient on Loss for institutional investors (0.485) is among the

highest. It is not significantly different from equity fund investors (0.515), who also

make large investments in commercial real estate. The next most experienced group

is publicly traded companies, which, with a coefficient of 0.346 is more loss-averse

than private investors (0.26), although the difference is not statistically significant.

The difference in the loss coefficient of private investors and that of institutional

as well as equity fund investors is statistically significant, and we find this difference

intriguing. Perhaps local knowledge that's available to private investors has a role

in explaining this difference, cutting through the psychological behavioral tendency

to indulge in loss aversion (possibly by giving such investors a greater self-confidence

investors, and as we will note in the next section, we find that such institutions exhibit even greater
than average loss aversion pricing.
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to sell at a loss recognizing that it does reflect the current true state of the local

market). Or perhaps private investors tend to employ more property-level debt, and

their creditors enforce a more ruthless business logic on their sales in the face of loss.

Furthermore, large institutions tend to be "agents" managing the capital of other

investors ("principals"). Agents may fear judgment by their stakeholders, making

them more reluctant to realize losses. Also, investment management incentive fee

structures, such as IRR hurdles and promotes, may incentivize agents to realize gains

early, and perhaps to postpone loss recognition.

3.5.3 Evidence of Behavioral Effects on Transaction Prices

In this section, we turn our analysis to the final transaction price. It could be argued

that since the results in the previous sections were not based on the selling price

(they were based only on asking price), the anomalies exhibited by the sellers would

disappear once they enter into a bargaining environment with the buyer. We test if

loss aversion still plays a role in the final transaction price. We also test if the asking

price has any influence on the sale price when the asking price is set above, or below,

the market value (as predicted by the hedonic model). This analysis is achieved by

taking the residual from the asking price equation (3.9) and including it in the final

sale price regression. This residual will be positive and larger in cases where the asking

price is higher than normal relative to the average asking price (controlling for other

characteristics of the sale and effect of loss aversion), and vice versa. This residual

from equation (3.9) is termed the "degree-of-overpricing" (DOP). It captures both

the signaling aspect of the bargaining process as well as the psychological anchoring-

and-adjustment process.

We present the results in Table 3.5 in two different ways. In column 1 of Table

3.5, we include the Loss variable in the same way as in earlier regressions. How-

ever, in column 2, we divide the Loss variable into three regimes; LossPre07 (Loss

before 2007), Loss07 (the Loss variable for the market transition year of 2007), and

LossPost07 (for the post 2007 regime of 2008-09).

The rationale for this breakdown is that the commercial real estate property mar-
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ket arguably passed through three distinct regimes during the past decade. The

period through 2006 was characterized by first a stable and strong market then rising

to a full-scale boom (or perhaps a bubble) of historic proportions in the latter few

years of that period. The year 2007 was a transition year when the market suddenly

and dramatically turned, but with such rapidity that market participants were faced

with great uncertainty. Finally, by 2008 it had become clear that commercial real

estate property prices were in a serious tailspin the likes of which had not been seen

even in the previous "crash" of the early 1990s (which had been the worst fall since

the Great Depression of the 1930s).

Consider first the transaction price model presented in column 1, which applies to

the overall average during the entire 2001-09 sample, and which is therefore directly

comparable to the previous results on the asking price. We note that in the transaction

price the effect of loss aversion is smaller in magnitude (0.25) than we found it to

be in the asking price in Table 3.2 (0.38)." Nevertheless, it is still both statistically

and economically significant. This suggests that, while the loss aversion effect carries

through to actual transactions, there is some degree of learning in the market through

the deal negotiation process. Sellers are not able to achieve in actual sale prices as

much loss aversion as they attempt to achieve (or signal) in their asking prices.

Interestingly, the anchoring effect, or degree of over-pricing, turns out to be not

only statistically significant but larger than the effect of loss aversion. The coefficient

of 0.77 implies that a 10 percent increase in the asking price over the market value

results in the seller obtaining a higher transaction price by approximately 7.7 percent.

This result implies that signaling and/or psychological anchoring is a potentially very

powerful influence on the transaction price (within the range of the DOP observed in

the data 15). However, it is important to recall that the data do not allow us to know

how much of the DOP effect we are quantifying here is actually anchoring versus

signaling true (superior) quality attributes of a property which buyers subsequently

discover and agree with the seller about. It seems possible that the signaling effect

' 4 The difference would probably be not so big if we restricted the sample in the asking price
regression to only the properties that eventually sold.

i5 Bucchianeri and Minson (2011) find a similar result in the housing market.
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could quite large, particularly in cases where the asking price deviates widely from

the expected market value.

Next consider the results in column 2 of Table 3.5 where we show the transaction

price model with the three different regimes of loss aversion. The coefficient on the

Loss variable is statistically significant in all three regimes, but of greater interest is

the fact that it is different between and across each of the three regimes, and the

nature of these differences is quite interesting.16 First, during the stable and growing

market regime of 2001-06 we find that the coefficient of 0.28 on LossPre07 is similar

to the overall average result from column 1 discussed above (0.25). This might be

viewed as reflecting the "normal" or typical effect of loss aversion in the commercial

property market transaction prices. (Note that this coefficient is statistically signif-

icantly different from the coefficient of 0.155 on the Gain variable, again confirming

the power of the prospect theory based behavioral loss aversion phenomenon even

in transaction prices.) But of particular interest is what then happens to the loss

aversion phenomenon in the following two exceptional market regimes.

First came the transition period of 2007 at the peak of the market cycle when

the turnaround first hit and the market was dealing with great uncertainty. During

this period loss aversion in the achieved transaction prices grew greatly in magnitude,

to 0.38, significantly different from its prior and more "normal" level of 0.28. This

reflected an extreme aversion of sellers (property owners) to facing the possibility of

the dramatic change in fortunes that was occurring in 2007. They reacted by simply

avoiding agreeing to any sales that did not reflect substantially greater than normal

loss aversion. And they apparently succeeded in finding buyers who exhibited a

larger-than-normal tendency to reach up toward the sellers' higher loss-averse asking

prices (relative to the otherwise-expected market value). The result, of course, was a

dramatic drop off in consummated sales volume in the latter part of 2007.

Finally this transition period was followed by an even more curious behavior.

During the drastic downfall in the market of 2008-09 loss-aversion actually weakened

16 Though not reported here, we also examined this issue in a slightly different manner, by dividing
the dataset into two sub-samples: before 2007 and after 2007, with results substantially the same as
those reported here.
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to less-than-normal levels, falling statistically significantly below the "normal" level

(the 0.16 coefficient on LossPost07 is less than the 0.28 coefficient on LossPre07 with

statistical significance). Furthermore, the coefficient on LossPost07 is not significantly

different from the coefficient on Gain, suggesting that in some sense there was perhaps

very little loss aversion (of the prospect theory based behavioral form) during the most

dramatic downturn in the market. We hypothesize that this suggests an ability for

what one might term "extreme reality" to "break through" psychological behavior

and enforce a more rational or "cold-eyed" business behavior. After all, loss aversion

is based on a sort of psychological "wishful thinking" or illusion, an illusion that can

indeed be realized to some extent in normal times (but only at the cost of lost liquidity

and greater time on the market). It may be more difficult cognitively to keep up this

type of thinking in the face of the magnitude of downturn that the market faced in

2008-09. It is also possible, of course, that the demand side of the market collapsed

to such an extent in 2008-09 that loss-aversion behavior on the part of sellers could

no longer be effective in consummated transaction prices. Indeed, this could be the

actual market mechanism by which the sellers are forced to face reality; they simply

can no longer find any buyers at all who will deal at prices that reflect loss aversion.

In summary, the results reported in column 2 of Table 3.5 suggest a wide temporal

variation in loss aversion over the market cycle (at least when the cycle is as strong

as it was during the 2000s decade). During "normal" times, loss aversion results in

average transaction prices slightly higher than they would otherwise be (with con-

comitantly lower volume). During transition periods of a major market turning point

(from up to down), we see that sellers facing a prospective loss during the year 2007

were able to obtain higher prices more so than they normally could (on a reduced

volume of closed deals). We conjecture that the uncertainty in the market during

that year made it difficult for the demand side to determine the true market value.

Then, during 2008-09, the demand side revised downwards drastically its reserva-

tion prices, making it unrealistic for potential loss-averse sellers to continue holding

out. The coefficient on LossPost07 is similar in magnitude to the coefficient on Gain,

implying that loss-averse sellers could not do any different than other sellers in the
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market. This finding gives a unique perspective on how the market can correct be-

havioral anomalies. To our knowledge, this type of behavior has not been discovered

previously in the literature.

3.5.4 Effects of Loss Aversion on Time on the Market

Consistent with the transaction price evidence of the preceding section, we would

expect that if sellers facing a prospective loss have a higher reservation price, then

they must also experience a longer time on the market, or equivalently, a lower hazard

rate of sale. The hazard rate is defined as the probability that a property sells in any

given week, given that the seller has listed the property for sale but it hasn't sold

as yet. In this section, we estimate the effect of loss aversion on the hazard rate of

sale. The hazard rate is specified as h(t) = ho(t) exp(aX), where X is a vector of

covariates (in particular, "determinants" of sale propensity), with a being the vector

of coefficients. The variable measuring the time spent on the market is the listing

duration in weeks. For sold listings, duration is defined by the weeks elapsed between

the date of entry into the market and the date of eventual sale. For properties

that were delisted without sale (or "pulled" properties), their time on the market is

measured by the weeks that elapsed between the dates of entry and exit from the

market. In other words, they are treated as being censored at exit.

In Table 3.6, we estimate a Cox proportional hazard model (the classical method-

ology for calibrating this type of model). As expected, the coefficient on Loss is neg-

ative (-0.32) and statistically significant. This indicates for example that investors

facing a 10 percent loss (when entering the market and therefore tending to post a

higher asking price due to loss aversion behavior), experience approximately a 3%

[= exp(0.32 * 0.1) - 1] reduction in the weekly sale hazard (with a resulting con-

comitant increase in the expected time to sale). The comparative result in the G-M

housing study was 3% to 6% (in other words, a slightly greater TOM effect in the

1990s Boston housing market). We also note that the positive and significant coef-

ficient on Estimated Value indicates that higher quality or larger properties have a

higher hazard of sale (or shorter time on the market).
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3.6 Implications for Price Indices and Aggregate

Market Pricing

This section presents two extensions to the previous literature on loss aversion. First,

we consider the effect of incorporating the behavioral phenomena, described in sec-

tions 3.2 & 3.3 and quantified in section 3.5, on the construction of hedonic price

indices. We will see that hedonic index construction can be greatly improved by

incorporating the behavioral variables1 7 Second, we consider the magnitude of the

impact of prospect theory based loss aversion on the aggregate market in terms of

the effect on the market-wide average realized transaction price. This effect will also

be pictured relative to an historical price index so as to enable a better visualization

of the relevant context. Finally, we will demonstrate the magnitude and nature of

the entirety of the reference point based pricing that we have quantified in our trans-

action price model, including symmetric as well as asymmetric effects, and including

the three-regime model of the 2000s market cycle.

3.6.1 Hedonic Index Construction

Consider first the role of the behavioral variables in the construction of a hedonic

price index. Figure 3-3 presents a direct comparison of two hedonic indices based on

the same database, the 4782 repeat-sales observations with sufficient hedonic data

to employ the behavioral variables, the same database used in the empirical analysis

presented in section 3.5. The hedonic indices presented here are pooled models of the

Court-Griliches form in which the hedonic variables are treated as constant across

17It should be noted that the price indices developed here are not directly comparable to
Moody's/REAL Commercial Property Price Indices (CPPI) that are based on RCA data and pub-
lished by Moody's Investors Service. The indices developed here are based on hedonic models (with
an implied "representative property"), rather than the same-property repeat-sales model employed
in the CPPI. The estimation dataset is also somewhat different, including here less than 5,000 sold
properties greater than $5,000,000 containing the necessary hedonic and behavioral variables, versus
the CPPI which is based on approximately 17,000 repeat-sales of generally over $2,500,000 in price
and some different data filters than what is employed here. Finally, for practical reasons the CPPI
is a "frozen" index that is not revised with new data, whereas the present analysis of course includes
all of the historical effects in the current dataset. The indices presented here have been developed
solely for academic research purposes.
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time and the price index is thus constructed purely from the coefficients on the time-

dummy variables. The smoother index indicated by the blue squares includes the

behavioral variables in the hedonic price model, while the more choppy index indicated

by the green triangles is based on an otherwise identical hedonic model only without

the behavioral variables. The model underlying the blue index is that of column

1 of Table 3.5 and therefore does not reflect the differential effect of loss aversion

over time. The comparison with the green index shows that including the behavioral

variables greatly improves the index, as the blue index clearly is less noisy than the

green.18 The index without the behavioral variables also does not capture as much

of the downturn in prices, as it falls only 26% from 3Q07 to 2Q09 compared to 33%

for the blue index.

Next, consider figure 3-4. We note that we had to eliminate a large number of

otherwise potentially usable sales observations from the RCA database in order to

construct the behavioral index, because we needed information on the reference point

(prior sale price) and the asking price, data which was not available for most RCA

transaction observations. The result is that the behavioral index must be estimated

with barely more than one-tenth the sample size that could otherwise be used for

a hedonic index. Figure 3-4 compares the behavioral index (the same blue index

indicated by squares as in figure 3-3) with a straight hedonic index based on a much

larger dataset. The index in figure 3-4 indicated by the red squares is estimated

without behavioral variables, like the green index of figure 3-3, only now based on the

full dataset of 45,870 single-sale observations. The much greater sample size tames

the noise that we saw in the non-behavioral index of figure 3-3, but the red-squares

hedonic index in figure 3-4 is still arguably not as good as the behavioral index

even though the latter is based on a much smaller dataset. Without the behavioral

variables the hedonic index fails to adequately capture the 2007-09 market downturn,

dropping only 19% instead of the 33% of the blue index.

18 This comparison can be quantified more rigorously by comparing the standard errors on the

index log levels across the two models. As seen in Table 3.7, the average standard error in the index

without the behavioral controls is almost seven times that of the index with the behavioral controls.
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3.6.2 Aggregate Market Impact of Behavioral Loss Aversion

As we noted at the outset, an interesting question is the extent to which behavioral loss

aversion is responsible for a salient feature of commercial property markets, namely,

their tendency to lose liquidity during down markets. Clearly, the drastic drop in

trading volume that occurs at the beginning of a price downturn results from a pulling

apart of the demand and supply sides of the market. In principle, loss aversion could

explain at least part of the tendency of property owners (the supply side) to hold up

their reservation prices rather than following the demand down to pricing at which

the market would maintain its normal liquidity.

Figure 3-5 presents a graphical image of the light our study can shed on this ques-

tion, using the Moody's/REAL CPPI as a sort of "benchmark" to frame the history

of the U.S. commercial property market.' 9 Four price indices are presented in the

chart. The solid black line is the CPPI, indicating the history of the average realized

prices in the market, prices which therefore reflect whatever effect loss aversion be-

havior has at the aggregate level in the actual marketplace.2 o The red-squares and

blue-diamonds indices track the movements of, respectively, the demand and supply

sides' reservation prices, as measured by the TBI, presented here relative to the real-

ized market transaction prices tracked by the CPPI.2 1 Note that the potential buyers'

reservation prices on the demand side began dropping after 2Q2007 but a gap between

demand and supply did not open up until 1Q2008, increasing dramatically further

by 1Q2009 to over 25% of the then-prevailing average transaction price. This was

19The Moody's/REAL CPPI is a useful benchmark because it is widely followed by industry
participants and is viewed as presenting a good picture of actual transaction price movements in the
market. Like the rest of this study, the CPPI is based on repeat-sales data from RCA. However, as

noted previously there are some database differences that should be kept in mind.
20The CPPI depicted in figure 3-5 has been reset to have a starting value of 1.0 as of 1Q2001, as

that is the first date in our analysis.
21MIT Center for Real Estate: http://web.mit.edu/cre/research/credl/tbi.html. The indices de-

picted in figure 3-5 are based on the "Liquidity Metric" published by the MIT/CRE. This metric is
constructed as the percentage difference, each period, between the demand (supply) index and the
TBI price index, normalized to starting values set so that the average value level of all the indices
is equal over the entire 1984-2009 history of the TBI. The result is a reasonably good measure of
the percentage gap between demand and supply prices as a fraction of current transaction prices,
such that when the gap is zero there is approximately normal (long-term average) liquidity (trading
volume) in the market. In figure 3-5 we simply take that same gap (each period) and apply it to
the CPPI in the same way that the MIT/CRE applies it to the TBI.
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accompanied by a drop in RCA major-asset trading volume from $136B in 2Q07 to

$48B in 1Q08 to a nadir of $10B in 1Q09. In the early part of this drop the increase

in the demand-supply gap was due in part to actual increases in the property owners'

supply side reservation prices. The question is to what extent this behavior in the

marketplace can be attributed to the type of prospect theory based psychological loss

aversion behavior we have focused on in the present paper.

One way to answer this question is presented by the green line (indicated by "x"

hash marks) in figure 3-5. This index presents a picture of how different the prevailing

average market transaction prices would have been had there been no behavioral loss

aversion of the type modeled in Table 3.5 of section 3.5. This "adjusted" market

index is constructed using a three-regimes model of loss aversion similar to what was

discussed in section 3.5.

The index is constructed as follows. First, a behavioral transaction price model

similar to that in Table 3.5 is estimated, including three regimes for both the "Gain"

and "Loss" variables. The regimes are defined as before: Pre-2007, 2007, and Post-

2007 (ending with 4Q2009); and as before we see that the Loss coefficient is signifi-

cantly larger than the Gain coefficient in the first two regimes but not in the third.

Next, we take the difference, within each regime, of the Loss coefficient minus the

Gain coefficient. As noted in section 3.5, this difference reflects the purely "behav-

ioral" loss aversion phenomenon associated with the kink-point in the prospect theory

value function. 2 2 We then multiply this difference by the average magnitude of the

Loss variable within each regime to arrive at the magnitude of impact on the average

transaction price within each regime conditional on the sold property facing a loss.

22
In other words, there may be some influence of prior purchase price on sellers' asking prices

that is "rational" (consistent with classical economic theory), included in the magnitude of the
coefficient on the properties that have no loss (the "Gain" coefficient). For example, sellers booking
a gain might rationally decide to ask a lower price than they otherwise would in order to apply some
portion of their potential profits to selling more quickly, or selling a larger number of properties,
rather than taking it all in price appreciation. Similarly, sellers facing a loss may rationally (and
symmetrically) decide to do the opposite, asking a higher price in order to trade off some otherwise-
expected book loss against taking a longer time to sell or selling fewer properties. This rational
component of pricing behavior is not the loss aversion behavior rooted in prospect theory and that
we are primarily focusing on in the current paper, though it also is an interesting phenomenon which
we will consider further shortly.
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Finally, we multiply that conditional loss impact times the proportion of transactions

actually facing a loss (within our 4782-observation dataset), within each regime. We

then subtract these regime-specific market-weighted impact factors from the CPPI,

to produce a "loss-aversion adjusted" price index that presumably reflects something

like what the overall market-wide average prices would have been had there been no

prospect theory based loss aversion behavior.2 3

If behavioral loss aversion played a substantial role in "sticky pricing", keeping

sellers' reservation prices high and thereby successfully influencing transaction prices

to not fall far enough to maintain normal liquidity, then we would see the loss-

aversion adjusted price index in figure 3-5 drop rapidly and substantially below the

actual CPPI, with the loss-aversion-adjusted index tracing a path similar to that of

the demand-side reservation price index (the red-squares index in figure 3-5) during

the 2007-09 period. But we don't see this. In fact, the impact of behavioral loss

aversion is relatively minor. As thusly computed, loss aversion increased aggregate

market-wide average prices by only 0.7% during the 2001-06 regime, by 1.2% in 2007,

and by 0.4% during 2008-09.

Thus, prospect theory based "behavioral" loss aversion did not apparently have a

large impact on the broad macro-behavior (average transaction prices and volumes)

within the U.S. commercial property market during the great cycle of the 2000s

decade. However, as noted in section 3.5, behavioral phenomena are evidently impor-

tant at the disaggregate, individual property level, and they may represent much of

the strategic pricing behavior in the marketplace. Figure 3-6 presents one way to pic-

ture this, in a framework similar to what we have just used to evoke the macro-level

impact.

23Technically, we first take the log of the CPPI level, then subtract the described loss-aversion
adjustment factors, then exponentiate to convert back to straight levels.
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3.6.3 Magnitude & Nature of Reference Point Based Pricing

Behavior

The chart in figure 3-6 is again keyed on the Moody's/REAL CPPI. The index indi-

cated by purple circles above the CPPI is the total effect of loss aversion pricing on

properties facing a loss. Unlike the previous loss-aversion-adjusted market index in

figure 3-5, the loss-properties price effect index in figure 3-6 reflects total loss aver-

sion. It shows how much higher are the prices achieved by sellers facing a loss due to

the pricing strategy of such sellers, including both the "rational" and "behavioral"

components of that strategy. Because they are facing a loss, such sellers set prices

higher than they otherwise would. (This is what is implied by the coefficient on the

"Loss" variable in the price model in Table 3.5 discussed in the previous section.) The

difference above the market-average CPPI price level indicated in the loss-properties

price effect index is computed as the entire coefficient on the "Loss" variable times

the mean magnitude of loss among sold properties that were facing an expected loss

when they entered the market. It thus includes the component of loss-properties

pricing that is symmetric with that of properties facing a gain (as well as the asym-

metric "extra" component reflected in figure 3-5). The indicated difference between

the loss-properties price effect index and the CPPI reflects the three regimes described

previously, and is approximately 9%, 13%, and 7.5% above the average price indicated

by the CPPI in each of the three regimes respectively: 2001-06, 2007, and 2008-09.

This is therefore how much higher were the prices achieved (on average) by sellers

facing a loss, compared to what they would have obtained if they were facing neither

a loss nor a gain, over the 2000s market cycle.

Correspondingly, the orange-diamonds index showing the gain-properties price

effect indicates how much lower was the average price obtained by properties sold

conditional on the fact that they were facing an expected gain when they entered

the market. As noted, such sellers take a lower price than they otherwise would (i.e.,

if they were facing neither a gain nor a loss). Such sellers are beyond the "kink-

point" in the prospect theory value function, and their pricing strategy could reflect
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"rational" motivations consistent with classical economic utility theory, for example,

to sell properties faster or to sell a larger volume of such properties. However, as

noted in section 3.5, there could also be "behavioral" components in this pricing

strategy, such as the "disposition effect" found by Crane and Hartzell (2009) in their

study of REITs property sales. The gain-properties price effect index is computed

similarly to the loss-properties price effect index, as the CPPI price level minus the

hedonic transaction price model coefficient on the "Gain" variable times the mean

magnitude of the "Gain" variable (among sold properties facing a gain), within each

temporal regime.2 4 This price reduction effect is estimated to be approximately 8%,

10%, and 8% below the average transaction price in the market as a whole indicated

by the CPPI in each of the three regimes respectively: 2001-06, 2007, and 2008-

09. The gain-properties price effect is thus only slightly less in magnitude than the

loss-properties price effect. This is because, even though the coefficient on "Gain" is

generally smaller than the coefficient on "Loss" (as reported in Table 3.5), the average

magnitude of "Gain" is much greater than the average magnitude of "Loss" (at least

during the 2001-09 cycle). Thus, the pricing impact is nearly symmetrical between

the two cases (gainers vs losers).

The gap in pricing achieved by sold properties facing a loss versus those facing

a gain, relative to what they would otherwise fetch (as a percentage of that average

market price), is thus seen to be approximately 18%, 23%, and 15.5% within the three

temporal regimes of the 2000s commercial property cycle (summing the magnitude

of the two gaps noted above). These are clearly very substantially different pricing

strategies employed by sellers facing a loss versus those facing a gain. Note also that

the gap widened during the peak and turnaround year of 2007, and closed during

the severe downturn of 2008-09, reflecting the previously-noted greater-than-normal

strength of loss-aversion during the 2007 turning point and the weaker-than-normal

loss-aversion of the severe downturn. As noted, not all of the difference between

2 4 For the gain-properties index the difference is subtracted (versus added for the loss-properties
index), because the "Gain" coefficient is positive and the "Gain" variable is defined to have a negative
sign (prior purchase price minus expected current sale price: same definition as that for "Loss" in

the case of loss-properties, giving the "Loss" variable a positive sign).

93



gainers and losers pricing is due to prospect theory based psychological loss aversion

behavior, and the effect on overall average market prices is partly attenuated by

the offsetting nature of the two effects, although the greater proportion of gainers

compared to losers in combination with the nearly symmetrical price gap suggests

that the gain properties price effect exceeds that of the loss properties in the overall

market average price. 2 5

The magnitude of the gap between the loss-properties and gain-properties pricing

portrayed in figure 3-6 suggests the importance of differential pricing strategy among

sellers facing a loss versus those facing a gain. While some of this strategy may

reflect purely rational profit-maximizing concerns, the findings of the present paper

combined with those of Crane & Hartzell (2009) on the disposition effect in REITs

suggests that at least an important part of the revealed pricing gap may be reflect

psychological behavior.

3.7 Conclusion

Using data on U.S commercial property sales of greater than $5,000,000 during the

January 2001 - December 2009 period, this paper has explored the effect of loss

aversion and anchoring on both asking prices and realized transaction prices, and we

have developed historical price indices that are controlled for loss aversion behavior.

This study has replicated and extended and enhanced the seminal study of Genesove

& Mayer that discovered loss aversion behavior in housing markets, and has also

added importantly to the Crane & Hartzell findings about the disposition effect in

REITs. We confirm not only that such behavior exists also in the commercial property

market, but indeed that loss aversion is of similar magnitude and impact as in the

housing market that G-M studied. We furthermore find, contrary to some prior

25Note that the loss properties and gain properties price effect indices in figure 3-6 do not reflect
the market weights of the two types of sales (gainers and losers). The indices simply represent the
pricing differential of each type of sale relative to the market average. A combined and weighted
market index adjusted to remove the effect of all reference point based pricing (both symmetric
and asymmetric) would lie above the CPPI by 6.1%, 7.4%, and 4.2%, respectively during 2001-06,
2007, and 2008-09. Such an index would have fallen about 2% farther peak-to-trough in the 2007-09
downturn than the CPPI (as a percent of peak value).
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literature, that loss aversion behavior in asking prices is actually greater among more

experienced investors and among larger more "professional" institutions such as funds

and REITs than among smaller private investors. The loss aversion behavior carries

through to higher transaction prices (on average), and longer time on the market.

During the particularly dramatic commercial market cycle of the 2000s decade

we find the effect of loss aversion behavior varied interestingly, first increasing in the

early stage of the market peak and turning point, then collapsing in the face of the

overwhelming reality of lack of buyers on the demand side. We explore the role of

behavioral variables in the construction of hedonic price indices, finding that they can

greatly improve such indices. We use our three-regime model to analyze the nature

and magnitude of prospect theory based behavioral loss aversion on market-wide

average prices at the aggregate level. We find that this impact is small and appears

not to be the major source of the pulling apart of buyer (demand) and seller (supply)

reservation prices that caused the severe illiquidity of the 2008-09 market collapse.

However, we also use the same three-regime behavioral pricing model to develop

indices of the pricing strategy of sellers facing a loss juxtaposed with that of sellers

facing a gain. This illustrates the magnitude and cyclical nature of the differential

pricing strategy of "losers" and "gainers" during the historic property market cycle

of 2001-09, and may be at least partly reflective of a "disposition effect". We see

both the substantial relative magnitude of this pricing strategy difference, as well

as the way that it changed during the cycle, increasing during the peak and turning

point year of 2007, and then attenuating during the subsequent severe downturn. The

magnitude of the pricing strategy difference between gainers vs losers is substantial,

as much as 23% during the peak and turning point year of 2007 and falling to 15.5%

in the crash of 2008-09.
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Value Function

Figure 3-1: Value Function of Prospect Theory

Marginal Benefit (MB) & Marginal Cost (MC) vs. Price
(with Reference Price = 50)

*MB Risk-Neutral
-*-MB Loss-Averse
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Figure 3-2: Marginal Benefit and Marginal Cost of an Increase in Price
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Hedonic Indexes with and without Behavioral Controls
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Figure 3-3: Hedonic Indexes with and without Behavioral Controls

Hedonic Indexes: Behavioral Controls vs Larger Sample
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Figure 3-4: Hedonic Indexes: Behavioral Controls vs Larger Samples
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U.S. Commerical Property Prices:
Effects of Supply & Demand, and Behavioral Loss Aversion
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Figure 3-5: US Commercial Property Prices: Effects of Demand/Supply and Loss
Aversion

U.S. Commerical Property Prices:
Relative Magnitude of Loss/Gain Pricing Effect on Price Levels (3-regime model)
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Figure 3-6: US Commercial Property Prices: Relative Magnitude of Loss/Gain Pric-
ing Effect on Price Levels
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Number of Observations

Second Sale Price

First Sale Price

Asking Price

Square Footage

Percent with First Sale Price
> Expected Selling Price

Months Since Last Sale

Time on the Market (weeks)

Trading Experience

Table 3.1: D

All Listings

6767

$20,537,628
(50,984,144)

$29,863,672
(71,117,741)

176551
(218,790)

25%

48
(42)

50
(38)

88
(174)

ata Summary

Sold Listings

4782

$31,775,301
(77,510,785)

$22,084,851
(5,359,336)

$32,857,296
(78,344,285)

186250
(217,986)

22%

57

(44)
37

(31)

101
(185)

LogAskingPrice

Gain 0.223
(0.031)

Loss 0.380
(0.057)

Estimated Value 0.943
(0.006)

Residuals from first sale 0.346
(0.031)

Months since first sale 0.001
(0.000)

Dummies for Quarter of Entry yes

Constant 8.028
(0.116)

R2  0.87
N 6,767

Table 3.2: Loss Aversion and Asking Prices
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LogAskingPrice

Gain - Less experienced traders 0.219
(0.031)

Gain - More experienced traders 0.233
(0.036)

Loss - Less experienced traders 0.350
(0.065)

Loss - More experienced traders 0.463
(0.055)

Estimated Value 0.942
(0.006)

Residuals from first sale 0.347
(0.031)

Months since first sale 0.001
(0.000)

Dummies for Quarter of Entry yes

Constant 8.061
(0.117)

R 2 0.87
N 6,767

Table 3.3: Loss Aversion and Trading Experience
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LogAskingPrice

Gain 0.193
(0.029)

Loss - Institutional Investors 0.485
(0.066)

Loss - Private Investors 0.260
(0.071)

Loss - Equity Fund 0.515
(0.082)

Loss - Public Investors 0.346
(0.106)

Loss - User/Other Investors 0.335
(0.213)

Estimated Value 0.935
(0.006)

Residuals from first sale 0.381
(0.029)

Months since first sale 0.000
(0.000)

Dummies for Quarter of Entry yes

Constant 8.072
(0.096)

R 2 0.87
N 6,767

Table 3.4: Loss Aversion and Investor Types
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Gain

Loss

Anchoring/Degree of over-pricing

Estimated Value

Residuals from first sale

LossPre07

Loss07

LossPost07

Dummies for

Constant

R2
N

LogSecondSalePrice LogSecondSalePrice

0.155 0.154
(0.013) (0.013)

0.245
(0.030)

0.774 0.771
(0.019) (0.019)

0.961 0.961
(0.004) (0.004)

0.467 0.465
(0.014) (0.014)

Quarter of Sale yes

7.788
(0.054)

0.96
4,782

Table 3.5: Loss Aversion and Anchoring/Signaling

TOM (in weeks)

Gain 0.024
(0.092)

Loss -0.321
(0.127)

Estimated Value 0.275
(0.017)

Residuals from first sale 0.254

(0.095)

Months since first sale 0.007
(0.001)

Dummies for Quarter of Entry 0.007

N 6,737

Table 3.6: Hazard Rate of Sale
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0.280
(0.049)

0.383
(0.045)

0.160
(0.038)

yes

7.791
(0.054)

0.96
4,782



Hedonic Index with Average Loss Hedonic Index based on Repeat Sales Hedonic Index based on Single
Aversion (4782 Ohs) I Data (4782 Obs) Transactions Data (45870 Ohs)

Quarters Cum. Log Levels Std. Errors T-Statistic Cum. Log Levels Std. Errors T-Statistic Cum. Log Levels Std. Errors T-Statistic

1Q 2001
2Q 2001

3Q 2001

4Q 2001

1Q 2002
2Q 2002

3Q 2002

4Q 2002

IQ 2003

2Q 2003

3Q 2003

4Q 2003

1Q 2004

2Q 2004

3Q 2004

4Q 2004

1Q 2005
2Q 2005

3Q 2005

4Q 2005

IQ 2006
2Q 2006

3Q 2006

4Q 2006

IQ 2007
2Q 2007

3Q 2007

4Q 2007

1Q 2008
2Q 2008

3Q 2008

4Q 2008

IQ 2009

2Q 2009

3Q 2009

4Q 2009

-0.111

-0.122

-0.1

-0.147

-0.145

-0.103

-0.103

-0.064

-0.09

-0.056

-0.004

0.008

-0.013

0.046

0.085

0.067

0.127

0.162

0.234

0.238'

0.232

0.232

0.242

0.259

0.271

0.269

0.292

0.268

0.26

0.22

0.183

0.128

-0.014

0.043

-0.1

-0.082

0.05

0.04

0.041

0.042

0.048

0.045

0.04

0.044

0.041

0.043

0.044

0.037

0.041

0.038

0.037

0.037

0.038

0.039

0.038

0.037

0.036

0.036

0.036

0.036

0.036

0.035

0.037

0.036

0.037

0.036

0.038

0.039

0.047

0.041

0.047

0.04

-2.21

-3.02

-2.48

-3.48

-3.03

-2.3

-2.59

-1.47

-2.17

-1.32

-0.09

0.21

-0.31

1.21

2.27

1.83

3.36

4.13

6.23

6.51

6.4

6.47

6.69

7.23

7.43

7.7

7.97

7.42

7.01

6.09

4.77

3.29

-0.29

1.04

-2.11

-2.05

0.094

0.24

0.056

0.18

0.26

0.324

0.258

0.236

0.203

0.295

0.344

0.358

0.225

0.379

0.433

0.429

0.389

0.503

0.533

0.636

0.546

0.541

0.598

0.604

0.58

0.564

0.638

0.558

0.565

0.511

0.529

0.507

0.431

0.489

0.339

0.372

0.292

0.287

0.279

0.275

0.286

0.281

0.277

0.278

0.273

0.278

0.278

0.271

0.272

0.272

0.27

0.27

0.27

0.27

0.269

0.27

0.27

0.27

0.269

0.269

0.269

0.27

0.27

0.27

0.27

0.27

0.271

0.271

0.275

0.274

0.274

0.272

0.32

0.84

0.2

0.66

0.91

1.15

0.93

0.85

0.74

1.06

1.24

1.32

0.83

1.4

1.6

1.59

1.44

1.86

1.98

2.36

2.03

2

2.22

2.24

2.15

2.09

2.36

2.07

2.09

1.89

1.95

1.87

1.57

1.78

1.23

1.37

0.02

0.065

0.022

0.08

0.075

0.042

0.078

0.083

0.045

0.075

0.107

0.127

0.134

0.153

0.167

0.215

0.203

0.285

0.318

0.342

0.331

0.318

0.334

0.368

0.367

0.377

0.426

0.399

0.366

0.396

0.361

0.301

0.266

0.226

0.24

0.216

0.059

0.059

0.059

0.058

0.059

0.058

0.058

0.058

0.058

0.058

0.058

0.057

0.057

0.057

0.057

0.057

0.057

0.057

0.056

0.056

0.056

0.056

0.056

0.056

0.056

0.056

0.057

0.057

0.057

0.057

0.058

0.058

0.06

0.06

0.061

0.059

0.33

1.1

0.38

1.37

1.28

0.72

1.34

1.44

0.78

1.29

1.84

2.23

2.35

2.69

2.94

3.79

3.59

5.03

5.64

6.07

5.87

5.63

5.91

6.52

6.5

6.68

7.53

7.03

6.4

6.91

6.24

5.16

4.42

3.78

3.93

3.65

Table 3.7: Cumulative Log-Level Hedonic Indexes - Estimates and Comparison
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Chapter 4

Estimating Real Estate Price

Movements for High Frequency

Tradable Indexes in a Scarce Data

Environment

4.1 Introduction and Background

In the world of transaction price indexes used to track market movements in real

estate, it is a fundamental fact of statistics that there is an inherent trade-off be-

tween the frequency of a price-change index and the amount of "noise" or statistical

"error" in the individual periodic price-change or "capital return" estimates.1 Gelt-

ner & Ling (2006) discussed the trade-off that arises, as higher-frequency indexes are

more useful, but ceteris paribus are more noisy and noise makes indexes less useful.

More generally, the fundamental problem is transaction data scarcity for index es-

timation, and this is a particular problem with commercial property price indexes,

because commercial transactions are much scarcer than housing transactions.2 How-

OCo-authored with David Geltner
'The terms "noise" and "error" are used more or less interchangeably in this paper.
2There are over 100 million single-family homes in the U.S., but less than 2 million commercial

properties.
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ever, the greater utility of higher frequency indexes has recently come to the fore

with the advent of tradable derivatives based on real estate price indexes.3 Tradabil-

ity increases the value of frequent, up-to-date information about market movements,

because the lower transactions and management costs of synthetic investment via in-

dex derivatives compared to direct cash investment in physical property allows profit

to be made at higher frequency based on the market movements tracked by the index.

Higher-frequency indexes also allow more frequent "marking" of the value of deriva-

tives contracts, which in turn allows smaller margin requirements, which increases

the utility of the derivatives. 4

In the present paper we propose a two-stage frequency-conversion estimation pro-

cedure in which, after a first-stage regression is run to construct a low frequency

index, a second-stage operation is performed to convert a staggered series of such

low-frequency indexes to a higher-frequency index. The first-stage regression can be

performed using any desirable index-estimation technique and based on either hedo-

nic or repeat sales data.' The proposed frequency conversion procedure is optimal in

the sense that it minimizes noise at each stage or frequency. We find that while the

resulting high-frequency index does not have as high a signal/noise ratio (SNR) as the

underlying low-frequency indexes, it adds no noise in an absolute sense to what is in

the low-frequency indexes, and it generally has less noise than direct high-frequency

estimation. The 2-stage procedure thus preserves essentially all of the advantage of

the low-frequency estimation while providing the additional advantage of a higher-

frequency index.

3 Over-the-counter trading of the IPD Index of commercial property in the UK took off in 2004
and after growing rapidly through 2007 the market remained active through the financial crisis of
2008-09. Trading on the appraisal-based NCREIF Property Index (NPI) of commercial property in
the US commenced in the summer of 2007. The Moody's/REAL Commercial Property Price Index,
launched in September 2007 based on Real Capital Analytics Inc (RCA) data, is also designed to be
a tradable index and is, like the Case-Shiller house price index, a repeat-sales transaction price-based
index.

4 For example, margin requirements in a swap contract are dictated by the likely net magnitude
of the next payment owed, which is essentially a function of the periodic volatility of the index, and
volatility (per period) is a decreasing function of index frequency (simply because there is less time
for market price change deviations around prior expectations to accumulate between index return
reports that cover shorter time spans). Lower margin requirements allow greater use of synthetic
leverage which facilitates greater liquidity in the derivatives market.

'It could even be based on appraisal data if the reappraisals occur staggered throughout the year.
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The rest of the paper is organized into the following sections. In section 4.2, we

briefly review the existing literature on estimating real estate price indexes and intro-

duce the frequency-conversion technique, which we label as the "Generalized Inverse

Estimator" (GIE) based on the mathematical procedure it employs. In sections 4.3

and 4.4 respectively, we discuss the hypothesized merits of the proposed procedure

and provide an empirical comparison between the proposed technique and other pop-

ular methods of high frequency price index estimation. We conclude in a final section

that the frequency conversion procedure tends to be more accurate at the higher

frequency than direct high-frequency estimation in a data scarce environment.

4.2 Prior Work and the Proposed Frequency Con-

version Procedure

Goetzmann (1992) introduced into the real estate literature what is perhaps the major

approach to date for addressing small-sample problems in price indexes, namely, the

use of biased ridge or Stein-like estimators in a Bayesian framework. Other approaches

that have been explored in recent years include various types of parsimonious regres-

sion specifications that effectively parameterize the historical time dimension (see e.g.

Schwann (1998), McMillen et al (2001), and Francke (2009)), as well as procedures

that make use of temporal and spatial correlation in real estate markets (see for in-

stance, Clapp (2004) and Pace et al (2004)). Some such techniques show promise,

but are perhaps more appropriate in the housing market than in commercial prop-

erty markets. Spatial correlation is more straightforward in housing markets, and

the need for transparency in a tradable index can make it problematical to estimate

the index on sales outside of the subject market segment. Another concern that is

of particular importance in indexes supporting derivatives trading is that the index

estimation procedure should minimize the constraints placed on the temporal struc-

ture and dynamics of the estimated returns series, allowing each consecutive periodic

return estimate to be as independent as possible, in particular so as to avoid lag bias
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and to capture turning points in the market as they occur even if these are inconsis-

tent with prior temporal patterns in the index.6 Most of the previously noted recent

techniques are unable to fully address these issues.

Bayesian procedures such as that introduced by Goetzmann (1992) can have the

desirable feature of not inducing a lag bias and not hampering the contemporaneous

representation in the index of turning points in the market. Such a technique, applied

if necessary at the underlying low-frequency first stage, can therefore complement

the frequency-conversion procedure we propose, and we explore such synergy in the

present paper, finding that the frequency-conversion technique can further enhance

indexes that are already optimized by such Bayesian methods.

We now introduce the frequency conversion procedure.7 For illustrative pur-

poses, we derive a quarterly-frequency index from four underlying staggered annual-

frequency indexes. Other frequency conversions are equally possible in principle (e.g.,

from quarterly to monthly, or semi-annual to quarterly). Also for illustrative purposes

and because they represent a scarce-data environment, we use a repeat sales database

in this paper to assess the frequency-conversion technique. However, as mentioned

earlier, the application of the proposed procedure is in principle not limited to any

particular type of dataset, sample-size or choice of first-stage estimation methodology.

As noted, commercial property transaction price data in particular is scarce (e.g.,

compared to housing data). To the extent the market wants to trade specific segments,

such as, say, San Francisco office buildings, the transaction sample becomes so small

that we may need to accumulate a full year's worth of data before we have enough to

produce a good transactions-based estimate of market price movement. This is the

type of context in which we propose the following two-stage procedure to produce a

6This is particularly important to allow the derivatives to hedge the type of risk that traders on
the short side of the derivatives market are typically trying to manage. For example, developers or
investment managers seek to hedge against exposure to unexpected and unpredictable downturns in
the commercial property market.

7 1t should be noted that the procedure introduced here is similar to what has been recently
suggested in the regional economics literature, where Pavia et al (2008) provide a method for es-
timating quarterly accounts of regions from the national quarterly and annual regional accounts.
The two methods are similar in that both use the generalized inverse, in the regional economics case
to construct a quarterly regional series with movements that closely track the underlying annual
figures.
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quarterly index.

4.2.1 The Proposed Methodology

We begin by estimating annual indexes in four versions with quarterly staggered

starting dates, beginning in January, April, July, and October. Label these four

annual indexes: "CY", "FYM", "FYJ", and "FYS", to refer to "calendar years"

and "fiscal years" identified by their ending months. Each index is a true annual

index, not a rolling or moving average within itself, but consisting of independent

consecutive annual returns. 8 It is important to use time-weighted dummy variables

in the low-frequency stage in order to eliminate temporal aggregation. For example,

for the calendar year (CY) index beginning January 1st, a repeat-sale observation

of a property that is bought September 30 2004 and sold September 30 2007 has

time-dummy values of zero prior to CY2004 and subsequent to CY2007, and dummy-

variable values of 0.25 for CY2004, 1.0 for CY2005 and CY2006, and 0.75 for CY2007. 9

The result will look something like what is pictured in figure 4-1 for an example index

based on the Real Capital Analytics repeat-sales database for San Francisco Bay area

office property. If properly specified, these annual indexes generally have no lag bias

and essentially represent end-of-year to end-of-year price changes.10 Each of these

indexes also has as little noise as is possible given the amount of data that can be

accumulated over the annual spans of time. It is of course important for the low-

frequency indexes to minimize noise and, while not the focus of the present paper,

the annual-frequency indexes depicted here employ the previously noted Goetzmann

Bayesian ridge regression method, which as noted does not introduce a general lag

bias."

8That is, independent within each index. Obviously, there is temporal overlap across the indexes.
9This specification, attributable to Bryon & Colwell (1982), eliminates the averaging of the

values within the years, and effectively pegs the returns to end-of-year points in time. See Geltner
& Pollakowski (2007) for more details.

ioHowever, it should be noted that in the early stages of a sharp downturn in the market, loss
aversion behavior on the part of property owners can cause a data imbalance that can make it
difficult for an annual-frequency index to fully register the downturn at first. This consideration will
be discussed shortly.

1Note that according to the Goetzmann Bayesian approach, the ridge is not necessary when the
resulting indexes are sufficiently smooth without the ridge. This turns out to be the case for the

109



Next, a frequency-conversion is applied to this suite of annual-frequency indexes to

obtain a quarterly-frequency price index implied by the four staggered annual indexes.

We want to perform this frequency conversion in the most accurate way possible, with

as little additional noise and bias as possible. How can we use those staggered annual

indexes to derive an up-to-date quarterly-frequency index? Looking at the staggered

annual-frequency index levels pictured in figure 4-1, one is tempted to try to construct

a quarterly-frequency index by simply averaging across the levels of the four indexes

at each point in time. (Try to fit a curve "between" the four index levels.) But such a

process would entail a delay of three quarters in computing the most recent quarterly

return (while we accumulate all four annual indexes spanning that quarter), which for

derivatives trading purposes would defeat the purpose of the higher-frequency index.

Such a levels-averaging procedure would also considerably smooth the true quarterly

returns (it would effectively be a time-centered rolling average of the annual returns).

The approach we propose to the frequency-conversion procedure is a matrix op-

eration which can be conceived of as a second-stage "repeat-sales" regression at the

quarterly frequency using the four staggered annual indexes as the input repeated-

measures data." Each annual return on each of the four staggered indexes is treated

like a "repeat-sale" observation in this "second-stage regression". If we have T years

of history, we will have 4T-3 such repeated-measures observations (the row dimension

of the second-stage regression data matrix), and we will have 4T quarters for which we

have time-dummies (the columns dimension in the regression data matrix, the quar-

ters of history for which we want to estimate returns). We are missing "1st-sales"

observations for the first three quarters of the history, the quarters that precede the

starting dates for all of the annual indexes other than the one that starts earliest in

time (the CY index in our present example), as the staggered annual indexes each

must start one quarter after the previous. Obviously, with fewer rows than columns

eight regional indexes examined later in the present paper, but not for the MSA-level indexes such
as the San Francisco Office index depicted in figure 4-1.

"As noted, the input annual indexes from the first stage do not need to be repeat-sales indexes, in
principle. They could be any good transactions-price based type of index, such as a hedonic index.
They provide "repeated measures" in the sense that they provide repeated observations of index
levels or price changes over time.
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in the estimation data matrix, our regression is "under-identified", that is, the system

has fewer equations than unknowns." Basic linear algebra tells us that such a system

has an infinite number of exact solutions (that is, quarterly index return estimates

that will cause the predicted quarterly values to exactly match the repeated-measures

observations on the left-hand-side of the second-stage regression, i.e., a regression R 2

of 100%, a perfect fit to the data which is the low-frequency index returns). How-

ever, of all of those infinite solutions, there is a particular solution that minimizes

the variance of the estimated parameters, i.e., that minimizes the additional noise

in the quarterly returns, noise added by the frequency-conversion procedure. This

solution is obtained using what is called the "Moore-Penrose pseudoinverse" matrix

of the data (see original papers by Penrose (1955, 1956) and its applications in Al-

bert (1972)). We shall refer to this frequency-conversion method as the "Generalized

Inverse Estimator", or GIE for short. This estimator is the "Best Linear Minimum

Bias Estimator" (BLMBE) (see (Chipman, 1964) for proof).

How good is the GIE as a frequency-conversion method? It adds effectively no

noise and very little bias to the underlying annual-frequency returns. Appendix B

shows a way to see that the bias resulting from such an estimation decreases as the

number of index periods to be estimated (T) becomes large, approaching zero as the

history approaches an infinite number of periods. From the simulation analysis in

figure 4-2, it can be seen that with even small values of T, the amount of bias is small

and economically insignificant. In the simulation in figure 4-2 the history consists of

less than seven years, converting to 27 quarters. Figure 4-2 depicts a typical randomly-

generated history of true quarterly market values (the thick black line, which in the

real world would be unobservable), the corresponding staggered annual index levels

(thin, dashed lines, here without any noise, to reveal any noise added purely by the

frequency-conversion second stage), and the resulting second-stage GIE-estimated

quarterly index levels (thin red line with triangles, labeled "ATQ" for "Annual-to-

13We cannot simply drop out the first three quarters from the second-stage index, as that will
then impute the first three annual returns entirely to the first quarter (only) of the index history
and thereby bias the estimation of all of the quarterly returns.
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Quarterly")." Clearly, the derived GIE quarterly index almost exactly matches the

true quarterly market value levels. The slight deviation reflects the bias. Numerous

simulations of random histories and varying market patterns over time give similar

results to those depicted in figure 4-2. The GIE-based frequency-conversion adds only

minimal and economically insignificant bias to the staggered annual indexes, while

increasing the index frequency to quarterly. Unlike other techniques that require a

procedure for choosing an optimal value for a parameter, the GIE is already optimal

in the class of linear estimators, and it is relatively simple to compute (see Appendix

A).

4.2.2 An Illustration of the Setup for the 2nd Stage Regres-

sion

To clarify and summarize the proposed procedure, consider this illustration. Suppose

the following staggered annual returns were estimated from the 1st stage regression:

Annual CY Re- Annual FYM Annual FYJ Annual FYS
Period turns Period Return Period Return Period Return
1Q00- a 2Q00- b 3Q00- c 4Q00- d
4Q00 1Q01 2Q01 3Q01
1Q01- e
4Q01

Then, as shown in the next table below, the left-hand side variable for the 2 "d

stage regression will be the stack of annual returns (left-most column in the data

table) and the right-hand side variables would be time-dummies that are set equal

to 1 for the four quarters that make up a particular annual return observation (the

other columns in the table below).

As seen above, there are more quarterly returns to estimate than there are stag-

gered annual return observations. Specifically, for the ATQ frequency conversion,
14 In figure 4-2 the first (CY) annual index starts arbitrarily at a value of 1.0, and the subsequent

three staggered annual indexes are pegged to start at the interpolated level of the just-prior annual

index at the time of the subsequent index's start date. This is merely a convention and does not

impact the quarterly return estimates, as all indexes are only indicators of relative price movements

across time, not absolute price levels.
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Stacked- 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q
Returns 2000 2000 2000 2000 2001 2001 2001 2001
a 1 1 1 1 0 0 0 0
b 0 1 1 1 1 0 0 0
c 0 0 1 1 1 1 0 0
d 0 0 0 1 1 1 1 0
e 0 0 0 0 1 1 1 1

there are always 3 extra parameters to estimate. Appendix A outlines the method

used for this estimation and Appendix B shows a way to see that the bias resulting

from such an estimation decreases as T becomes large. Indeed, intuitively, the reader

can convince oneself that as T becomes large, the percentage difference between T

and T + 3 decreases. Hence, the system gets closer to being effectively exactly iden-

tified and thus the bias goes down over time. From the simulation analysis in figure

4-2, it can be seen that with even small values of T, the amount of the bias is small.

It should also be noted that since the 2nd-stage regression fits the stacked returns

observations exactly, any noise in the estimation of the staggered annual returns gets

carried over to the estimated quarterly returns, but no new noise is added. Thus,

there is a direct relationship between statistically reliable 1st and 2nd stage esti-

mations. For this reason the frequency conversion procedure should be viewed as a

complement or "add-on" to good lower-frequency index estimation, not a substitute

for such current best practice.

4.2.3 General Characteristics of the Resulting Derived Quar-

terly Index

Based on the foregoing argument, the 2-stage derived quarterly index (which we

shall refer to here as the "GIE/ATQ", for "annual-to-quarterly") offers the prospect

of being more precise than a directly-estimated single-stage quarterly index, as it

is based fundamentally on a year's worth of data instead of just a quarter's worth.

However, though better than direct quarterly estimation in terms of precision or noise

minimization, in one sense the 2-stage index cannot be as "good" as the corresponding

underlying annual-frequency indexes, if we define the index quality by the signal/noise
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ratio. But the GIE/ATQ will provide information more frequently than the annual

indexes, and this may make a lower signal/noise ratio worthwhile. To see this, consider

the following.

In the signal/noise ratio (SNR) the numerator is defined theoretically as the pe-

riodic return volatility (longitudinal standard deviation) of the (true) market price

changes, and the denominator is defined as the standard deviation of the error in the

estimated periodic returns.15 The GIE/ATQ frequency-conversion procedure gives a

SNR denominator for the estimated quarterly index which is no larger than that of

the underlying annual-frequency indexes (due to the exact matching of the underly-

ing annual returns noted in the previous section). That is, the standard deviation of

the error in the second-stage quarterly return estimates is no larger than that in the

first-stage annual return estimates, as evident in the simulation depicted in figure 4-2

by the fact that the ATQ adds essentially no error. But the numerator of the SNR

is governed by the fundamental dynamics of the (true) real estate market. These dy-

namics dictate that the periodic return volatility will be smaller for higher frequency

returns. For example, if the market follows a random walk (serially uncorrelated

returns), the quarterly volatility will be 1/SQRT = 1/2 the annual volatility. This

means that, even though the theoretical SNR denominator does not increase at all (no

additional estimation error), the SNR in the ATQ would still be one-half that in the

underlying annual indexes. If the market has some sluggishness or inertia (positive

autocorrelation in the quarterly returns, as is likely in real estate markets) then the

SNR will be even more reduced in the ATQ below that in the annual indexes.

"The theoretical SNR cannot be observed or quantified in the real world, where the true market
returns cannot be observed, and hence the true market volatility (SNR numerator) cannot be ob-
served. Empirical estimates of the theoretical SNR are confounded by the fact that the volatility of
any empirically estimated index will itself be "contaminated" by the noise in the estimated index
(the denominator in the SNR). Furthermore, the denominator of the theoretical SNR should equal
the theoretical cross-sectional standard deviation in the return estimates, which is not exactly what
is measured by the regression's standard errors of its coefficients. To see this, consider conceptu-
ally a "perfect" index whose return estimates always exactly equal the unobservable true market
returns each period. The regression producing such an index would have zero in the denominator
of its theoretical SNR and yet would still have positive standard errors for its coefficients for any
empirical estimation sample, as there is noise in the estimation database (cross-sectional dispersion
in the price changes), causing the regression to have non-zero residuals in the data. In spite of these
practical limitations, the theoretical SNR is a useful construct for conceptual analysis purposes (and
also in simulation analysis, where "true" returns can be simulated and observed).
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Importantly, the SNR of the GIE/ATQ can still be greater than that of a directly-

estimated (single-stage) quarterly index. To see this, suppose price observations occur

uniformly over time. Then there will be four times as much data for estimating the

typical annual return in the annual-frequency indexes compared to the typical quar-

terly return in the directly-estimated quarterly-frequency index. By the basic "Square

Root of N Rule" of statistics, this implies that the directly-estimated quarterly index

will tend to have SQRT 2 times greater standard deviation of error in its (quarterly)

return estimates than the annual indexes have in their (annual) return estimates.

Thus, the SNR for the direct quarterly index will have a denominator twice that of

the annual indexes and therefore twice that of the GIE/ATQ 2-stage quarterly in-

dex. Of course, either way of producing a quarterly index will still be subject to the

same numerator in the theoretical SNR, which is purely a function of the true market

volatility. Thus, the GIE/ATQ will have a lower SNR than the underlying annual-

frequency indexes, but it will have a higher theoretical SNR than a directly-estimated

quarterly index. In data-scarce situations, this can make an important difference. 16

To return to the essential point of the contribution of this technique, while the

GIE/ATQ does not have as good a SNR as the annual indexes, it does provide more

frequent returns than the annual indexes (quarterly instead of annual), and thereby

does provide additional information.1 7 Thus, there is a useful trade-off between the

staggered annual indexes and the derived quarterly index. The GIE/ATQ gives up

some SNR information usefulness in the accuracy of its return estimates, but in return

provides higher frequency return information.

1 6The fact that the GIE/ATQ theoretical SNR is greater than that of direct quarterly estimation
does not mean that in every empirical instance it would necessarily be greater. It should be noted
that formal definition and computation of a "standard error" for the GIE is not straightforward. As
noted, the regression is under-identified, which means there are no "residuals" in the second stage.

'7 Among the four staggered annual indexes we do get new information every quarter, but that
information is only for the entire previous 4-quarter span, which is not as useful as information
about the most recent quarter itself, which is what is provided by the ATQ. For example, a turning
point in the most recent quarter will not necessarily show up in the most recent annual index, as
the latter is still influenced by market movement earlier in the 4-quarter span it covers.
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4.2.4 An Illustrative Example of Annual-to-Quarterly Deriva-

tion in Data-Scarce Markets

To gain a more concrete feeling for the above-described methodology and application,

consider one of the smaller (and therefore more data-scarce) markets among the

29 Moody's/REAL Commercial Property Price Indexes that are based on the RCA

repeat-sales database: San Francisco Bay metro area office properties. 18

First consider direct quarterly repeat-sales estimation of a San Francisco office

market price index. Figure 4-3 depicts a standard Case-Shiller version of such an

index based on the 3-stage WLS procedure first proposed by Case and Shiller (1987).

This index is labeled "CS" in the chart and is indicated by the thin blue line with

solid diamonds. The scarcity of the data gives the CS index so much noise that the

resulting spikiness practically obscures the signal of the fall, rise, and fall again in

that office property market subsequent to the dot-com bust, the following recovery,

and the 2008-09 financial crisis and recession. The thicker green line marked by open

diamonds labeled CSG adds the Goetzmann Bayesian ridge noise filter to the basic

CS approach. The CSG index allows most of the market price trajectory signal to

come through. But this index still may be excessively noisy for supporting derivatives

trading, where index noise equates to "basis risk" that undercuts the value of hedging

and adds spurious volatility that will turn off synthetic investors.

Now observe how the 2-stage procedure works in the San Francisco office mar-

ket example. Figure 4-4 depicts the CSG-based direct-quarterly index which we just

described together with the GIE/ATQ-based 2-stage quarterly index (indicated by

the red line marked by open triangles). Figure 4-4 also shows the staggered annual-

frequency indexes that underlie the ATQ (as thin fainter solid lines without markers).

These indexes are themselves CSG-based repeat-sales indexes of the same methodol-

ogy as the direct-quarterly index, only estimated at the annual rather than quarterly

frequency. Thus, the annual indexes that underlie the ATQ index already employ

18 The Moody's/REAL Commercial Property Price Index is produced by Moody's Investor Services
under license from Real Estate Analytics LLC (REAL). During the 2006-09 period the San Francisco
Office index averaged 12 repeat-sales transaction price observations (second-sales) per quarter, and
in the most recent quarter (3Q09) there were only 2 observations.
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the state-of-the-art noise filtering of the Goetzmann procedure. In figure 4-4, note

how the ATQ index is generally consistent with the annual returns that span each

quarter.19 However, the quarterly index picks up and quantifies the changes implied

by changes in the staggered annual indexes. For example, while the CY annual index

ending at the end of 4Q2007 was positive (up 14.7%), it was less positive than the im-

mediately preceding FYS annual index ending in 3Q2007 (up 26.7%). The resulting

derived ATQ quarterly index indicated a downturn in 4Q2007 (-2.1%). Meanwhile,

the direct-quarterly CSG index picked up a sharp downturn in 3Q2007, a quarter

sooner than the ATQ, but the CSG then indicated a positive rebound of +1.6% in

4Q2007, which is probably noise. The smoother pattern in the ATQ index suggests

less noise and therefore less spurious quarterly return estimates.

At first it may seem odd that the derived quarterly index can be negative when all

of the staggered annual indexes that underlie it are positive. The intuition behind a

result such as the above example is that an annual index could still be increasing as a

result of rises during the earlier quarters of its 4-quarter time-span, with a drop in the

last quarter that does not wipe out all of the previous three quarters' gains. When the

most recent annual index is rising at a lower rate than the next-most-recent annual

index, it can (although does not necessarily) indicate that the most recent quarter was

negative. The derived quarterly return (ATQ) methodology is designed to discover

and quantify such situations in an optimal (i.e., "BLMBE") manner. As noted, simple

curve-fitting of the annual indexes introduces excessive smoothing, and will not be

able to pick up in a timely manner the kind of turning point just described.

The San Francisco office market depicted in figure 4-4 offers an excellent example of

both the strengths and weaknesses of the GIE/ATQ method versus direct quarterly

estimation using state-of-the-art methods such as the CSG index depicted in the

19 In fact, as noted previously, the ATQ returns are exactly equivalent to the corresponding un-
derlying annual-frequency returns over each 4-quarter span of time covered by each of the staggered
annual indices periodic returns. The depicted ATQ index level in the figure does not exactly touch
each annual index periodic end-point value only because of the arbitrary starting value for the an-
nual indexes. Note that the ATQ and CY indexes exactly match at the end of each calendar year,
as both these indexes have the same starting value of 1.0 at the same time (2000Q4). The same
would be true of the other three annual indexes if we set their starting values equal to the level of
the ATQ at their starting points in time during 2001.
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chart. Even though it uses Bayesian noise filtering, the CSG index is relatively

noisy, as indicated by its spikiness during much of the history depicted (even when

the transaction data was most plentiful). The CSG index differs importantly from

the staggered annual indexes estimated from the same repeat-sales data. Arguably,

the direct quarterly index does not as well represent what was going on in the San

Francisco Bay office market during a number of individual quarters of the 2001-2008

period. For example, down movements of -9.1% in 2Q2005, -1.7% in 1Q2006, and

-4.3% in 3Q2006 seem out of step with the strong bull market of that period, while up

movements of +6.3% in 2Q2001 in the midst of the Bay Area's tech bust, and +1.6%

in 4Q2007 and +1.2% in 3Q2009 seem out of step with the big downturn of 2007-09.

The staggered annual indexes and the ATQ seem to better represent the tech-bust-

related fall in the Bay Area office market during 2001-03 and the strong bull market

of the 2004-07 period, and indeed in this particular case the ATQ appears visually

to be about as good as the annual indexes (by the smoothness of the index lines'

appearance), in addition to being more frequent. The directly-estimated quarterly

index has considerably greater quarterly volatility than the ATQ, a likely indication

of greater noise in the former index. On the other hand, in spite of the anomalous

uptick in 4Q2007, the directly-estimated quarterly index shows some sign of slightly

temporally leading the ATQ and the annual-frequency indexes. This is most notable

in the direct quarterly index's beginning to turn down in 3Q2007, one quarter ahead

of the ATQ in the 2007-09 market crash. Thus, there is some suggestion in our San

Francisco office example that the GIE/ATQ method may not be quite as "quick"

as direct quarterly estimation at picking up a sharp market downturn, although it

appears to rapidly catch up.
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4.3 Hypothesized Strengths & Weaknesses of the

Frequency Conversion Approach

The preceding section presented a concrete example of both the strengths and weak-

nesses of the 2-stage/frequency-conversion procedure for providing higher-frequency

market information in small markets. The suggestion is that the advantage for the

2-stage approach over direct (single-stage) high-frequency estimation would lie in the

GIE's greater precision (less noise). However, even though the 2-stage procedure is

more accurate in theory than direct high-frequency estimation, either procedure may

be more accurate in a given specific empirical instance, particularly if the effective

increase in sample size is small, which would be the case if the change in frequency is

not great. In the empirical analysis in this paper the increase in going from quarterly

to annual estimation is a fourfold increase in frequency (doubling of the "square root

of N"), and we shall see what sort of results obtain.

While precision is a potential strength of the ATQ, there may be a weakness as

well. The preceding examination of the San Francisco office index during the 2007-

09 market downturn suggested that perhaps direct single-stage quarterly estimation

is better at capturing the early stages of a sharp downturn in the market. Recall

that the directly-estimated index turned down one quarter sooner than the ATQ in

the San Francisco office market in 2007. In other words, the hypothesis would be

that direct quarterly estimation might show a slight temporal lead ahead of annual

estimation (and the resulting ATQ) in such market circumstances. This could result

from the effect of loss aversion behavior on the part of property owners during the

early stages of a sharp market downturn. Property owners react conservatively, not

revising their reservation prices downward (perhaps even ratcheting them upwards,

effectively pulling out of the asset market). Unless and until property owners are

under pressure to sell in a down market, the result is a sharp drop-off in trading

volume.

This has two impacts relevant for transaction price index estimation. First, the

relatively few transactions that do clear during the early stages of the downturn
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reflect relatively positive or eager buyers. This dampens the price reduction actually

realized in the market (as reflected in the prices observable in closed transactions).

But it does not prevent a directly-estimated high-frequency index from reflecting that

market price reduction (such as it is), as best such an index can do so (given the data

scarcity, which increases the noise in the index), in the sense that the index does not

have a lag bias.

The second effect of the fall-off in sales volume, however, poses a particular is-

sue for annual-frequency indexes as compared to higher-frequency directly-estimated

indexes. An annual index reflects an entire 4-quarter span of time in each periodic

return, and in the downturn/loss-aversion circumstance just described the most re-

cent part of that 4-quarter time span has markedly fewer transaction observations

than the earlier part of the span. Thus, the data used to estimate the annual index's

most recent annual return is dominated by the earlier, pre-downturn sales transac-

tions. Even though the annual index uses Bryon-Colwell-type time-weighted dummy

variables (as described previously), the sparser data in the more recent part of the

time span may make it difficult for the annual index to fully reflect the recent market

movement. Such a difficulty in the annual indexes would then carry over into the

quarterly GIE/ATQ indexes derived from them.

4.4 An Empirical Comparison of Frequency Con-

version versus Direct Estimation in Data-Scarce

Markets

The RCA repeat-sales database and the Moody's/REAL Commercial Property Price

Indexes based on that data present an opportunity to begin an empirical comparison

of the two approaches. As noted, computation of index estimated returns standard

errors is not straightforward for the GIE/ATQ, and "apples-to-apples" comparisons

of estimated standard errors across the two procedures is not attempted in the present

120



paper.2 0 However, there are two statistical characteristics of an estimated real estate

asset market price index that can provide practical, objective information about the

quality of the index. These two characteristics are the volatility and the first-order

autocorrelation of the index's estimated returns series. Based on statistical consider-

ations, we know that noise or random error in the index return estimates will tend to

increase the observed volatility in the index returns and to drive the index returns'

first-order autocorrelation down toward negative 50%.2

Considering this, it would seem reasonable to compare the two index estimation

methodologies based on the volatilities and first-order autocorrelations of the resulting

estimated historical indexes. Lower volatility, and higher first-order autocorrelation,

would be indicative of an index that is likely to have less noise or error in its individual

periodic returns. For example, in the San Francisco office index that we considered

previously in figure 4-4, the GIE/ATQ index has 4.4% quarterly volatility, versus

6.8% in the directly-estimated CSG index that seemed more noisy.

Among the Moody's/REAL Commercial Property Price Indexes there are 16 in-

dexes (including the San Francisco office index we have previously examined) that

are currently published at only the annual frequency (with four staggered versions,

as described above), because the available transaction price data is deemed to be

insufficient to support quarterly estimation. An examination of the relative values of

the quarterly volatilities and first-order autocorrelations resulting from estimation of

quarterly indexes by the two alternative procedures across these 16 market segments

can provide an interesting empirical comparison of the two procedures in a realistic

setting.

The 16 annual-frequency Moody's/REAL indexes include eight at the MSA level

and eight at the multi-state regional level. The eight MSA-level indexes are: four

20For one thing, consider that the second-stage regression itself has no residuals, as it makes a

perfect fit to the staggered lower-frequency indexes that are its dependent variable. Furthermore, as

noted, the objective of a price index regression is not the minimization of transaction price residuals

per se, but rather the minimization of error in the coefficient estimates (the index's periodic returns).

While bootstrapping or simulation could be employed, the present paper focuses on the empirical

analysis to follow.
2These are basic characteristics of the statistics of indexes. (See, e.g., Geltner & Miller et al

(2007), Chapter 25.)
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different property sectors (apartment, industrial, office, retail) for Southern Califor-

nia (Los Angeles and San Diego combined), three other MSA-level office indexes

(New York, Washington DC, and San Francisco), and one other apartment index (for

Southern Florida, which combines Miami, Ft Lauderdale, West Palm Beach, Tampa

Bay, and Orlando). The eight multi-state regional indexes include the four property

sectors each within each of two NCREIF-defined regions: the East and the South.2 2

Table 4.1 summarizes the comparison of the precision of the two approaches based

on a volatility and autocorrelation comparison of the two quarterly index procedures

(labeled "FC" and "DirQ" in the figure , for "Frequency-Conversion" and "Direct-

Quarterly"). The volatility test is defined as the ratio of the FC quarterly volatility

divided by the DirQ quarterly volatility. The autocorrelation test is defined by the

arithmetic difference between the FC first-order autocorrelation minus that of the

DirQ. Both tests are applied separately to the entire 33-quarter available history 2001-

2009Q3 and to the more recent 19-quarter period 2005-09Q3. The RCA repeat-sales

database "matured" to a considerable degree by 2005, with many more repeat-sales

observations available since that time (until the recent crash and liquidity crisis).

The comparison is made for each of the 16 indexes and also averaged across the eight

MSA-level and eight regional-level indexes.

This comparison indicates that the 2-stage GIE/ATQ frequency conversion ap-

proach provided lower volatility and higher 1st-order autocorrelation in almost all

cases, suggesting that this approach is more precise (less noisy). Of the 64 individual

index comparisons (16 indexes X 2 time frames X 2 tests), the GIE/ATQ performed

better than the DirQ in all but one case (the AC test for the Southern California

Industrial Index during 2005-09).

However, while the frequency conversion procedure seems clearly to be less noisy

at the quarterly frequency on the basis of the table 4.1 comparison, recall that we

2 2The East Region includes all the 15 states north and east of country-regionGeorgia, StateTen-
nessee, and Ohio. The South Region includes the 9 states encompassed inclusively between and
within Florida, Georgia, Tennessee, Arkansas, Oklahoma, and Texas. There is thus some geograph-
ical overlap between the MSA-level and regional-level indexes, in the sense that three of the eight
MSA-level indexes are also within two of the regional-level indexes. The New York and Washington
DC office indexes are within the East Office regional index, and the South-Florida Apartments index
is within the South Apartment regional index.
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raised a possible weak point about the 2-stage procedure in its ability to quickly and

fully reflect the early stages of a sudden and sharp market downturn, such as occurred

during 2007-09 in the U.S. commercial property markets. We suggested that during

such times property-owner loss-aversion behavior could cause the underlying annual-

frequency indexes to experience difficulty fully reflecting a late-period price drop in

the market.

Table 4.2 presents some empirical evidence relevant to this point from the same

16 Moody's/REAL market-segment indexes examined in table 4.1. The table shows

the percentage price change from the 2007 peak (within each index) through the

most recently available 3Q2009 data as tracked in each market by the frequency-

conversion index and the directly-estimated quarterly index. The table also presents

two measures of the lead-lag relationship. In the left-hand columns are the calendar

quarters of the peak for each index, and in the right-most column is the lead-minus-

lag cross-correlation between the two indexes. We see that the direct quarterly index

turned down first in six out of the 16 indexes (but only with a one quarter difference

in five out of the six cases), while the frequency conversion index beat the direct

quarterly in two cases (Washington DC & New York Metro office), with the two

methods indicating the same peak quarter in eight cases. In the last column, if

the lead-minus-lag cross-correlation is negative, it indicates that the correlation of

the direct-quarterly index with the 2-stage index one quarter later is greater than

the correlation of the converse, suggesting that the direct-quarterly index leads the

frequency-conversion index. This is the case in 13 out of the 16 indexes, which

suggests that the direct-quarterly index does show some tendency to slightly lead the

frequency-conversion index in time.

4.5 Conclusion

This paper has described a methodology for estimating higher frequency (e.g., quar-

terly) price indexes from staggered lower-frequency (e.g., annual) indexes. The appli-

cation examined here is to provide higher-frequency information about market move-
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ments in data-scarce environments that otherwise require low-frequency indexes. The

proposed frequency-conversion approach takes advantage of the lower frequency to, in

effect, accumulate more data over the longer-interval time periods which can be used

to estimate returns with less error. Then it applies the Moore-Penrose pseudoinverse

matrix in a second-stage operation in which the staggered low-frequency indexes are

converted into a higher-frequency index. Linear algebra theory establishes that this

frequency conversion procedure exactly matches the lower-frequency index returns

and is optimal in the sense that it minimizes any variance or bias added in the sec-

ond stage. Numerical simulation and empirical comparisons described here confirm

that the two-stage frequency-conversion technique results in less noise than direct

high-frequency estimation in realistic annual-to-quarterly indexes for practical U.S.

commercial property price indexes such as the Moody's/REAL CPPI annual indexes

(e.g., situations with second-sales observational frequency averaging in the mid-20s

or less per quarter). The result is higher-frequency indexes that, while they have

signal/noise ratios lower than the underlying low-frequency indexes, nevertheless add

higher frequency information that may be useful in the marketplace, especially in

the context of tradable derivatives. The only major drawback is that the frequency-

conversion procedure may tend to slightly lag behind direct quarterly estimation,

particularly during the early stage of a sharp market downturn. The lag appears to

generally be no more than one quarter.

Finally, we would propose two strands of possibly productive directions for future

research. First, throughout this paper no consideration was given to the covariance

structure among the observations. Thus, more efficient estimators may exist if rea-

sonable distribution assumptions were made and accounted for in the estimation of

the high frequency series. Second, exploration of approaches that employ multiple

imputation techniques in a Bayesian framework or a Markov Chain Monte Carlo con-

text might lead to a better way of estimating high frequency indexes in a data scarce

environment and in quantifying the noise that remains in the resulting indexes. With

this in mind the current paper presents only a first step which may be improved upon

by subsequent researchers, but which in itself appears to already have some practical
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value.

Figures 4-5 and 4-6 present charts of the GIE/ATQ and direct-quarterly indexes

for all 16 annual-frequency Moody's/REAL Indexes.
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Figure 4-1: Staggered Annual Indexes
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San Francisco Bay Office Properties:

1.6 Four Staggered Annual Indexes
(Set to starting value 1.0 at first observation)
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True vs Estimated vs UnderNng Staggered Annual indexes (simulation)
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Figure 4-2: Simulation of True vs Estimated Quarterly Price Indexes: Annual to

Quarterly
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CS vs CSG at Quarterly Frequency, San Francisco Bay Office Index
(Based on RCA repeat-sales database as of Dec 2009)
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Figure 4-3: Direct Quarterly Estimation: Case-Shiller 3-stage WLS estimation (CS)
versus Case-Shiller enhanced with Goetzmann Bayesian procedure (CSG)

Figure 4-4: CSG direct quarterly estimation and derived GIE/ATQ estimation, to-
gether with the staggered annual indexes
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Figure 4-5: ATQ Index Suite - East and South Regions
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Data*: Vol Test**: AC(1) Test***:
MSA-level indexes:
Index: 2005-09 2001-09 2005-09 2001-09
NY Office 20 (4) 0.55 0.47 80% 98%
DC Office 14 (5) 0.69 0.57 71% 90%
SF Office 12 (2) 0.67 0.64 91% 82%
SC Office 27 (7) 0.63 0.58 77% 92%
SC Industrial 30 (15) 0.59 0.4 -48% 77%
SC Retail 16 (5) 0.61 0.55 60% 85%
SC Apts 43 (16) 0.64 0.5 88% 109%
FL Apts 18 (7) 0.62 0.62 76% 77%
Average: 23(8) 0.63 0.54 62% 89%
Regional-level indexes:
Index: 2005-09 2001-09 2005-09 2001-09
E Office 55 (19) 0.69 0.6 87% 103%
S Office 39 (13) 0.65 0.49 86% 113%
E Industrial 37 (14) 0.54 0.56 67% 69%
S Industrial 30 (8) 0.75 0.73 91% 77%
E Retail 29 (14) 0.81 0.67 67% 83%
S Retail 38 (9) 0.78 0.69 50% 78%
E Apts 56(21) 0.59 0.56 62% 74%
S Apts 58(23) 0.75 0.68 71% 83%
Average: 43(15) 0.7 0.62 73% 85%
*Avg number of 2nd-sales obs/qtr 2006-09. Database was "immature" with considerably

fewer 2nd-sales observations prior to 2005. (In parentheses number of obs in most recent
3009 ntr-)
** Ratio of FC volatility/DirQ volatility: <1 ==> FC better; >1 ==> DirQ better.

*** Difference: AC(1)FC - AC(1)DirQ. >0 ==> FC better; <0 ==> DirQ better.

Table 4.1: Volatility and Autocorrelation Tests: Frequency Conversion (GIE/ATQ)
versus Direct Quarterly (CSG) Estimation
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Downturn Magnitude:
Peak-3Q09: Lead - Lag

Correl**:
2007 Peak*:

Index: FC DirQ FC DirQ
NY Office 3Q07 4Q07 -43.50% -53.70% 8%
DC Office 4Q07 1Q08 -24.40% -26.30% 6%
SF Office 3Q07 2Q07 -38.30% -38.70% -7%
SC Office 4Q07 3Q07 -39.50% -40.90% -22%
SC Industrial 4Q07 4Q07 -31.30% -35.90% -32%
SC Retail 4Q07 3Q07 -33.70% -34.90% -32%
SC Apts 3Q07 3Q07 -26.00% -27.80% -17%
FL Apts 3Q07 3Q07 -53.40% -56.20% -55%
Average: -36.30% -39.30% -19%
Index: FC DirQ FC DirQ Lead-Lag
E Office 1Q08 1Q08 -43.00% -46.90% 0%
S Office 1Q08 1Q08 -40.10% -37.30% -31%
E Industrial 4Q07 3Q07 -28.00% -27.20% -26%
S Industrial 3Q07 3Q07 -47.90% -43.20% -8%
E Retail 3Q07 3Q07 -38.90% -32.20% -21%
S Retail 3Q07 2Q07 -20.60% -18.20% -47%
E Apts 3Q07 3Q07 -25.30% -33.40% -41%

S Apts 3Q07 1Q07 -53.60% -56.60% -22%
Average: -37.20% -36.90% -24%

*Peak qtr before 2007 downturn. Sooner is presumably better, so:
FC earlier + FC leads; DirQ earlier 4 DirQ leads.
** Difference: Correl(FC(t),DirQ(t+1)) - Correl(DirQ(t),FC(t+1)):
Positive ==> FC leads; Negative ==> DirQ leads.

Table 4.2: Downturn Magnitude and Lead Minus Lag Cross-Correlation: Frequency
Conversion (GIE/ATQ) versus Direct Quarterly (CSG) Estimation
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Appendix A

Appendix to Chapter 2

A.1 Mathematical Appendix

Optimal Default Rule

Let P* be the price below which the borrower defaults. The borrower objective

function can be written as:

v[(Y - (1 - L))(1 + e)]f (P)dP

+ JP v[(Y - ( - L))(1 + e)) + P -
I H

L(1 + r)]f(P)dP

Maximizing Q w.r.t P* and applying Leibniz's rule, we get:

dQ setd =[v[(Y-(1-L))(1+e)]f(P*)-v[(Y-(1-L))(1+e)+P*-L(1+r)]f(P*)] = 0

The P* that makes this expression equal to zero is P* = L(1 + r)
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Expected Utility w.r.t to e and r

Based on the optimal default rule derived above in (i), the borrower's objective func-

tion can be written as follows:

Q = u[Y - (1 - L)] + J L(1+r)
PLI 6 PH

+6+

v[(Y - (1 - L))(1 + e)]f(P)dP

v[(Y - (1 - L))(1 + e) + P - L(1 + r)]f(P)dP
r)

Maximizing w.r.t to e, we find that d > 0:

dQ L(1+r)
= 6[Y - 1+ L]

de JPL

+ 6[Y - 1 + L] JPH
L(1±r-.I)

v'[(Y - (1 - L))(1 + e)]f(P)dP

>0 by assumption

>0 by assumption

Similarly, maximizing w.r.t to r and applying Leibniz's rule we get:

dQdQ= 6 [ L(1 + r)]v[(Y
dr r

- [L(1 + r)]v[(Y

- 1+L)(1 + e)]f (L(1 + r))

- 1 + L)(1 + e) + L(1 + r) - L(1 + r)]f(L(1 + r))

PH

-L6 v[L(1+r) (Y-(1-L))(1e)+P-L(+)]f(P)dP

Simplifying, we find that ! < 0

dQ PH

=r - L r v'[(Y - (1 - L))(1 + e) + P - L(1 + r)]f (P)dP

>0 by assumption

(A.2)

From (A.1) and (A.2), it follows that 9 -!L > 0 and -(! - 9) < 0.
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Optimal LTV when e > r

For the case where e > r, we maximize the borrower objective function in (ii) above

by choosing an optimal L: The first order condition is as follows:

dQ
dL

= u'[Y- 1+L]+ dL[L(1+r)]v[(Y -1+ L)(1+e)]f[L(1+r)]

(I±r

+ 6(1 + e) I
JPL

-od [L(+r)]

+ 6(e -r) I
J PH+ r) L(1+r)

v'[(Y - (1 - L))(1 + e)]f(P)dP

[(Y - 1+ L)(1+ e)+ L(1+r) - L(+r)]f[L(1+r)]

v'[(Y - 1)(1 + e) + P + L(e - r)]f(P)dP

Simplifying, we see that !I- > 0 no matter what the loan rate:

= u'[Y-1+L]

>0 by assumption

+ 6(1 + e) j
PTL

|PH
+L (1 +r)

>0

v'[(Y - (1 - L))(1 + e)]f(P)dP

>0 by assumption

v'[(Y - 1)(1 + e) + P + L(e - r)]f (P)dP

>0 by assumption

Thus, the borrower will choose to borrow as much as possible, which is the maxi-

mum allowable LTV of 1.

Proof of Proposition 1

FOC: First, we derive the first-order condition for the borrower's objective function

when e < r. The objective function is:

[L (1+ r)
Q = U[Y - (1 -- L)] + 6 fL

PH

v[o]f(P)dP + 6 /
JL(1+r)

v[P - L(1+r)]f(P)dP

for e < r
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Maximizing w.r.t L and applying Leibniz's rule is:

dQ
dL Su'[Y-+L]+6 d [L(dL

- 6 d[L(1 +r)]v[0]f [L(1
dL

1 + r)]v[0]f[L(1

+r)] -6(1+r)

L(1+r)

+r01]+6 
JLI,

J PH
L(1+r)

0

v'[P - L(1 + r)]f(P)dP

Simplifying, we verify (2.2), the first-order condition in the text:

u'[Y - 1 + L] - 6(1 + r) v'[P - L(1 + r))f(P)d(P) = 0
L(1+r)

1.1: As r increases, the minimum LTV would be such that u'[Y - 1 + L] = 0, i.e

when L = 1 - Y for Y < 1. If Y > 1, the LTV demand would fall to 0.

1.2: As r goes to e, the model reduces to that given in (iii) above and L will be equal

to 1, the maximum allowable leverage.

1.3: To prove that LD is a downward sloping curve w.r.t loan rate r, we need to show

that < 0. By taking the total derivative of the first-order condition (2.2) w.r.t L
dr

and r, we can derive dLD = Lr* We proceed to derive QLL and QLr:dr _ iLL

d2Q

dL2
= u"[Y- 1+L]+6 d[L(1-+ r)]v'[L(1+r) - L(1+ r)]f[L(1+r)]

dL

+ 6(1+r)2
L(1_+r)

V"[P - L(1 + r)]f(P)dP

Simplifying and using the assumption that the derivative of the utility function

at zero wealth is zero (i.e v'(0) = 0), we find that d2 < 0:

d2 Q
d 2 = u"[Y - 1 + L] +6(1 + r) 2

dL2 by a p
<0 by assumption

PH

v"[P - L(1 + r)]f(P)dP
L(±r)'

<0 by assumption
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Next, taking the derivative of the first order condition w.r.t r, we get:

d2Q

dLdr
- d [L(l+ r)]v'[L(1+ r) - L(1+ r)]f[L(1+ r)]

+ 6(1+r) 2 /
JL(1+r)

I PHL(1+r)

v"[P - L(1 + r)]f(P)dP

v'[P - L(1 + r))]f(P)d(P)

Using the assumption that v'(0) = 0, we find that d2  < 0:
dLdr

PH PH
v"[P - L(1 + r)]f(P)dP- v'[P - L(1 + r))]f(P)d(P)]

JL(1+r)' 'JL(1+r)'
<0 by assumption

It follows from (A.3) and (A.4) that dL= -D < 0

1.4: We need to show that d < 0, which can be derived as d

denominator is given by (A.3), so we just need to derive QL6:

d2 Q

dLd6
-( + r)j

(PH
v'[P - L(1 + r))f(P)d(P)

>0 by assumption

(A.5)

Since d6 < 0, it follows that d = - < 0

1.5 It is straightforward to see that d2 < 0:dLdY

d2Q
d2QY= u"[Y - 1 + L]d LdY I- %

(A.6)
<0 by assumption

Again, it follows from (A.3) and (A.5) that dLD - , < 0dY - LL

1.6 If P first-order stochastically dominates P', then by definition E[v|P] E[vlP'].

Since v is increasing, it follows that E[v'IP] E[v'IP']. From (2.2), the left hand side

can thus be written as u'[Y - 1 + LP] u'[Y - 1 + LP']. Since u is increasing in L,

this implies that LP > LP'.

1.7 If P second-order stochastically dominates P', then by definition E[vjP] >

E[vlP'). The rest of the proof is the same as above, showing that LP > LP'.
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Rank Condition

For the structural demand equation, (2.3), to be identified, we need to check if the

rank condition is satisfied. We begin with arranging the structural parameters in a

matrix and also writing out the restrictions for (2.3):

1 --y1

-0o -7o

A= -0 4) 1 0 0 0 0 0

-#2 - 72 0 0 0 0 0 1

0 -74

The one's in the first and second columns of A are the normalizations on the

coefficients of L and r in (2.3) and (2.4), respectively. The zero in column 1 is the

exclusion restriction on the coefficient of CLL in the demand equation, (2.3). The

matrix 41 collects the normalization and exclusion restrictions for (2.3). Multiplying

41 and A gives:

qjA = (i Yi

(0 -Y4

The rank(51A) = 2 if -y4 $ 0. Thus, as long as the coefficient on CLL in (2.4) is

non-zero, the demand equation, (2.3), is identified.

Reduced Form Parameters

Let the dimension of X and T be n by k and n by m, respectively. The structural

equations, (2.3) and (2.4) can be expanded as follows:

L = /3o+ O1r+#21xi+...+#02kXk+#031t1+...±+3mtm+e (2.3)

r = -o+ 71L+7y2 lxl+...+7 2 kXk+-31tl+...+-y3mtm + 4 CLL+v (2.4)
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Using the assumption that under equilibrium, leverage demand equals leverage

supply, we can substitute (2.4) for r in (2.3) and obtain:

L = #0 +#01[70 +7-1L + 721X1 +.. + 72krk + 7 31t1 + ... - 3mtm, + 74CLL + v]

+ 021X1 + ... +#2kXk + #31t1 + ... + 3mtm + e

which gives the expanded reduced form equation (2.5) as:

L ++170 +#01Y 2 1 + 021 #(+ 17Y2k + 02k)

1 - 11 1 -- 171 1 - #171i
+ #1731 + #31 ti+17-- 3m3 + 03m #1+0-4CL+OV + IE(25+ )1+...+3m+ 174CLL+ (2.5)

1 - #1/i 1 - 1 1-#171

The coefficients above represent the 7ri's in the text and in particular, the coefficient

on CLL is #174. Similarly, upon substituting (2.3) for L in (2.4), we obtain:

r = yo + 1[#O + 01r + #21X1 + . .. + #2kk + #31t1 + .. .- 33mtm + e]

+ 121X1 + . .. + 712kXk + 7 .311l . .. + 73mtm + 7 4 CLL + v

which gives the reduced form equation (2.6) as:

YO + 7100 ( 7121 + 721 7+Y1+02k + 72k'
r=+1 x 1 +...+I Ixk

1 - #1 -1 1 - #171i 1 - #171i

± 71#331 + 731 ti + ... + 713m + 73m) tm+ -Y 4CLL + (2.6)
1 - #171) 1- #171 ) 1 - #3171

As before, the coefficients above represent the zi's in the text and in particular,

the coefficient on CLL is uncontaminated, i.e., it is the structural coefficient -y4.

Furthermore, the ratio of the coefficient on CLL in (2.5) to that in (2.6), gives the

coefficient #1 = Y4
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A.2 Data Appendix

A.2.1 Data Cleaning

We dropped loan-to-value ratios greater than 110%. For purchase mortgages, where

loan-to-value was missing, we calculated it as the ratio of the unpaid loan balance

at origination to the purchase amount. After making this calculation we dropped

observations with missing loan-to-values or note rates. We also could not use the

observations that had missing borrower age, income or gender. We calculated the

Debt Service Coverage Ratio (or Debt to Income Ratio) as the ratio of the Bor-

rower's Total Monthly (non housing) Debt Expenses to their Total Monthly Income.

DSCRs greater than 0.65 we dropped. We dropped monthly incomes below $1000

and dropped credit scores above 850 and below 350. For credit score, we use credit

scores at mortgage origination and where that information is not available, we in-

stead use the credit score at the acquisition of the mortgage by Fannie Mae. To the

extent that there is a large delay between origination and acquisition, these scores

could potentially be different and introduce a measurement error in the credit score.

Robustness tests using only the credit score at origination reveal that there is no

substantial difference in the point estimates. We also drop observations that may

have represented companies instead of a borrower. Finally, for the purposes of this

paper, we restrict our sample to Fixed Rate Mortgages only.

A.2.2 Construction of MSA Price Level and Volatility

The MSA price levels for the year 2000 were constructed by running a hedonic re-

gression of the log house value on housing characteristics and MSA dummies, using

the 2000 PUMS 5% sample. The regression results are shown in Table A.2.1. The

coefficients from this regression were weighted by sample means and proportions of

housing characteristics in each MSA. The predicted log house value was then the sum

of the MSA specific dummy and the hedonic sum of characteristics in each market.

The log value was exponentiated to arrive at the 2000 MSA price level. These price
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levels are mapped in Figure D.1 and show a very reasonable distribution across the

US. The final step in calculating the MSA price level for the years 1986 to 2010 was

achieved by extrapolating the 2000 price level using the MSA repeat sale price indices

published by FHFA.

The detrended HPI volatility variable was calculated by first running a regression

of Ln MSA House Price Level (constructed as detailed above) on a continuous time

variable plus MSA dummies. The log residuals from this regression were then used

to calculate the 2-year lagged, standard deviation used in the text.

Table A.2.1: Price Level Regression - PUMS 5 percent sample

rooms==2

rooms==3

rooms==4

rooms==5

rooms==6

rooms==7

rooms==8

rooms==9

builtyr==2-5 years

builtyr==6-10 years

builtyr==11-20 years

Log House Value

0.20

(0.03)

0.35

(0.03)

0.35

(0.03)

0.50

(0.03)

0.65

(0.03)

0.81

(0.03)

0.97

(0.03)

1.24

(0.03)

-0.05

(0.00)

-0.12

(0.00)

-0.23

(0.00)
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Table A.2. 1: Price Level Regression - PUMS 5 percent sample

Log House Value

builtyr==21-30 years

builtyr==31-40 years

builtyr==41-50 years

builtyr==51-60 years

builtyr==61+ years

unitsstr= =1-family house, attached

kitchen==Yes

msa/cbsa dummies

Constant

N

-0.36

(0.00)

-0.42

(0.00)

-0.48

(0.00)

-0.56

(0.00)

-0.57

(0.00)

-0.20

(0.00)

0.34

(0.01)

yes

10.36

(0.03)

0.50

2,318,561
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NV

MSA House Price Levels ($) in 2000

PriceLevelMap
PriceLevel_2000

52253.340000 - 91471.730000

91471.730001 - 121693.700000

121693.700001 - 178862.700000

178862.700001 - 274027.800000

274027.800001 - 475293.000000

| tI_2008_usstate

Figure A.2.1: MSA 2000 Price Levels

I,

........ .... .
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Appendix B

Appendix to Chapter 4

B.1 The Moore-Penrose Pseudoinverse or the Gen-

eralized Inverse

The Moore-Penrose pseudoinverse is a general way of solving the following system of

linear equations:

y = Xb, y E R, b E Rk, X R

It can be shown that there is a general solution to these equations of the form:

b = Xfy (B.1)

The Xt matrix is the unique Moore-Penrose pseudoinverse of X that satisfies the

following properties:

1. XXtX = X (XXt is not necessarily the identity matrix)

2. XtXXt = Xt

3. (XfX)T = XXt (XXt is Hermitian)

4. (XtX)T = X t X (XtX is also Hermitian)
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The solution given by equation (B.1) is a minimum norm least squares solution.

When X is of full rank (i.e., rank is at most min(n, k)), the generalized inverse can

be calculated as follows:

" Case 1: When n = k (same number of equations as unknowns): Xt = X-1

" Case 2: When n < k (fewer equations than unknowns): Xf = XT(XXT)-'

" Case 3: When n > k (more equations than unknowns): Xt = (XTX)-lXT

In the application for deriving higher frequency indexes from staggered lower

frequency indexes, Case 2 provides the relevant calculation. Furthermore, it should

be noted that when the rank of X is less than k, no unbiased linear estimator,

b, exists. However, for such a case, the generalized inverse provides a minimum

bias estimation.' For the basic references on the Moore-Penrose pseudoinverse see

the references by Penrose (1955, 1956), Chipman (1964), and Albert (1972) in the

bibliography.

B.2 A Note on the Bias in the Generalized Inverse

Estimator (GIE)

Here we consider the case relevant to our present purposes, i.e. where Xf = XT(XXT)-.

Therefore, in our application, the solution (or estimation) of the second-stage regres-

sion (equation (B.1)) can be re-written as:

b = Xt = XT(XXT)-ly

Considering that the true value of the predicted variable (y) is by definition: Xbtre,

therefore the expected value of b is:

E[b|X] = XT(XXT)-1Xbtrue

Properties of the generalized inverse can be found in Penrose (1954) and equation (2) first
appeared in Penrose (1956). Proofs of Cases 1, 2 and 3 can be found in Albert (1972) and a proof
of minimum biasedness is given in Chipman (1964).
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Let R= XT(XXT)- 1 X be the "resolution" matrix, which would have otherwise

been the k by k identity (I) matrix if X had been of full column rank. In our case,

the resolution matrix is instead a symmetric matrix describing how the generalized

inverse solution "smears" out the btrue into a recovered vector b. The bias in the

generalized inverse solution is

E[b|IX] - btrue = Rbtrue - btrue =(R - I)btrue

We can formulate a bound on the norm of the bias:

IIE[bIX] - btrue|| < iR - I|I ||btrue||

Computing ||R - III can give us an idea of how much bias has been introduced

by the generalized inverse solution. However, the bound is not very useful since we

typically have no knowledge of |btrue II.

In practice, we can use the resolution matrix, R, for two purposes. First, we

can examine the diagonal elements of R. Diagonal elements that are close to one

correspond to coefficients for which we can expect good resolution. Conversely, if any

of the diagonal elements are small, then the corresponding coefficients will be poorly

resolved.

For the particular data matrix used in this study, i.e X is Toeplitz, the diagonal

elements of R approach one very fast. For instance, for the annual to quarterly

conversion, a 24 by 27 matrix (24 observations, 27 quarterly return estimates), the

diagonal elements of R have a value of 0.89. For a 50 by 53 matrix, the diagonal

elements have a value of 0.94. By induction, as the number of periods to be estimated

(T) go to infinity, and the percentage difference between T and T-3 becomes negligible,

the diagonal elements of R approach a value of 1. Hence, the bias goes to zero as the

system gets closer to being effectively identified.
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