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Abstract

This dissertation is a collection of three essays in real estate finance. In the first
essay, we observe that between 1985 and 2007, the share of household mortgage debt
as a proportion of the total value of housing in the US increased substantially from
30% to an all-time high of 50%. With the decline in house prices, these high levels
of leverage increased the propensity at which households defaulted. We examine
household decisions on mortgage leverage using new extensive loan-level data from
Fannie Mae over the sample period 1986 to 2010. We conceptualize a market for
leverage per se and develop a theory of leverage demand-and-supply. Empirically,
we estimate an interest rate elasticity of leverage demand of -0.37 or, equivalently, a
movement along the demand curve from an LTV pair of (10%, 72%) to that of (5%,
85%). We find that leverage demand was cyclical and responsive to economic events
but without a general trend. By contrast, leverage supply shifts in the form of lower
mortgage interest rates were concurrently associated with higher average loan-to-value
ratios. We find that in MSAs with higher house prices, households borrowed more
and bought equally more expensive houses. That left leverage unchanged but raised
households’ risk of illiquidity by increasing their loan-to-income ratios. In MSAs with
high house price volatility, we find that both leverage demand and supply were lower.
We also identify that younger, poorer and less credit-worthy borrowers demand more
leverage than their counterparts.

In the second essay, co-authored with David Geltner, we document that loss aver-
sion behavior plays a major role in the pricing of commercial properties, and it varies
both across the type of market participants and across the cycle. We find that sophis-
ticated and more experienced investors are at least as loss averse as their counterparts
and that loss aversion operated most strongly during the cycle peak in 2007. We also
document a possible anchoring effect of the asking price in influencing buyer valua-
tion and subsequent transaction price. We demonstrate the importance of behavioral
phenomena in constructing hedonic price indices, and we find that the impact of loss
aversion is attenuated at the aggregate market level. This suggests that the pricing
and volume cycle during 2001 - 2009 was little affected by loss aversion.

In the third essay, also co-authored with David Geltner, we present a technique to
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address the problem of data scarcity in the construction of high-frequency real estate
price indexes. We introduce a two-stage frequency conversion procedure, by first
estimating lower-frequency indexes staggered in time, and then applying a generalized
inverse estimator to convert from lower to higher frequency return series. The two-
stage procedure can improve the accuracy of high-frequency indexes in scarce data
environments. The method is demonstrated and analyzed by application to empirical
commercial property repeat-sales data.

Thesis Supervisor: William Wheaton
Title: Professor of Economics
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Chapter 1

Introduction

The goal of this thesis is to contribute to our understanding of three current issues
in the area of real estate finance. The three topics are unified by the underlying
microeconomic inquiry of individual decisions and their relation to the performance

of real estate markets. The three areas explored in this thesis are:

e Borrower decision on mortgage leverage, it’s relationship to policy and to per-

formance of real estate markets.

e Psychological biases in the pricing of real estate and their impact on both indi-

vidual and market performance.

e Measuring performance of real estate markets when transactions data is scarce.

In the first essay, we make the observation that there has been a substantial increase in
household mortgage leverage in the US over the past 25 years. To explain this trend,
we develop a theory of how households make decisions on leverage and empirically
test it’s implications on a large longitudinal dataset provided by Fannie Mae. Our
finding is that the increase in leverage can be primarily explained by increases or shifts
in the supply of leverage. We document that increases in the national conforming
loan limit allowed borrowers to borrow cheaply and to lever more. We also show how
leverage varied across markets with different house prices and/or volatilities. Finally,
we find that younger, poorer and less credit-worthy borrowers were leveraged more

than their counterparts.
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In the second essay, we ask whether pricing in real estate markets is affected by
psychological biases of buyers and sellers? Using data on commercial real estate, we
find strong empirical evidence that real estate transactions (listing prices, transaction
prices and time on the market) are affected by both loss aversion on the part of
sellers and anchoring on the part of buyers. We show that controlling for these
behavioral phenomenon can greatly improve the construction of traditional measures
of performance such as a hedonic price index. We also document how loss aversion
varied across the real estate cycle and by type of investor.

In the third essay, we recognize the importance of measuring the performance
of real estate markets accurately and on a frequent basis. The need for such series
is underscored by their demand by both academic research (such as their use in
the previous two essays) and by industry participants seeking frequent information
on where the market is moving. The challenge in constructing an accurate, high-
frequency, localized price index is the thin-ing of data on transactions as one zooms
into a local area such as an MSA or a neighborhood. In this paper, we propose a
new technique for constructing such price indexes in a scarce data environment and
illustrate it’s effectiveness using data on commercial real estate.

It should be noted that while the cases examined in each paper are separate,
the actual theories and methods developed in these papers are generalizable to both
housing and commercial real estate. For instance, one could examine the leverage
decisions of commercial real estate investors, where aspects of our theory such as the
effects of asset prices on leverage can be empirically tested. Similarly, loss aversion
behavior has been documented in the housing market (Genesove and Mayer (2001))
and the technique developed in the third essay is supplemental to existing hedonic

and repeat sales techniques used in housing research.
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Chapter 2

Why did Household Mortgage
Leverage Rise from the mid-1980’s

until the Great Recession?

2.1 Introduction

In the United States, household mortgage leverage increased dramatically in the run-
up to the Great Recession. Figure 2-1 shows that between 1985 and 2007, the share
of household mortgage debt as a proportion of the total value of housing in the US
increased substantially from 30% to 50%. With the decline in house prices and subse-
quently slow de-leveraging, that share further increased to 60% by 2010. These high
levels of mortgage leverage increased the propensity at which households defaulted
on their mortgages and there is evidence that leverage was a primary driver of the
recession (Mian and Sufi (2009), Mian and Sufi (2011)). In fact, it is a characteristic
of highly leveraged economies that they seldom avoid a financial crisis (Reinhart and
Rogoff (2008)). Furthermore, leverage also plays an important role in partly deter-
mining asset prices (Geanakoplos (2009), Lamont and Stein (1999)). As leverage goes
up and down, asset prices also go up and down and that is damaging to the economy.

Given the crucial role of leverage in the economy, it is imperative that we understand
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how households determine an optimal level of mortgage leverage. Thus, our objec-
tive in this article is two-folds. First, we seek to understand why household mortgage
leverage rose so dramatically? Is it leverage demand or leverage supply that primarily
lead to an increase in leverage? Second, and to enable us to empirically answer the
research question, we conceptualize a market for leverage per se and develop a theory

of leverage demand-and-supply.

In our theory of leverage, lenders and households endogenously choose an LTV
ratio in a competitive market and under the possibility of default that depends on
future house prices. The model is set in the tradition of optimal LTV contracts
under asymmetric information (Brueckner (2000), Harrison et al. (2004)). While
earlier studies have focused on the role of asymmetric information on equilibrium
leverage, our paper is different in that it derives separately, an optimal leverage, for
lenders and borrowers without invoking asymmetric information. The predictions
of the models are intuitive. When house prices are volatile, lenders demand more
collateral and rise-averse borrowers demand less leverage. This is because a more
volatile house price distribution increases the risk of borrower default, which adversely
affects both expected profits and collateral payoffs. On the other hand, higher average
prices (holding all else constant) positively affect future payoffs and thus increase
both leverage demand and supply. The model also predicts that the poorer or more
impatient the borrowers are, the higher the leverage they demand at any given interest

rate.

The theoretical model yields structural demand and supply equations to test
econometrically. We identify the demand curve by viewing exogenous changes in
the national conforming loan limit as supply shifts of leverage (e.g. loans that are
jumbo become cheaper to finance over time). We estimate the demand equation and
reduced forms of equilibrium interest rates and loan-to-value ratios using extensive
loan-level data from Fannie Mae over the sample period 1986 to 2010. We estimate
an interest rate elasticity of demand of -0.37, which implies that if the note interest
rate dropped from 10% to 5% (see historical drop shown in Figure 2-2), then from
an initial LTV ratio of 72% (avg. LTV in 1986), leverage demand would rise by
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18.5% to an LTV ratio of 85%. Furthermore, we find that (holding all else constant)
leverage demand has historically been cyclical and without any general upward trend.
It rises and falls in concurrence with economic conditions, which suggests that it had
a limited role in increasing historical household leverage.

We find two pieces of compelling evidence in favor of an increasing leverage supply
hypothesis. First, we estimate that a doubling of the national conforming loan limit
(CLL) would decrease the average note interest rate by 4%. Holding the demand
curve constant, this implies that LTV would rise by 12.5 percentage points, which
is substantial, given that the C'LL has been increased quite a bit over the past two
decades.

Second, the reduced form estimates of equilibrium interest rates and LTV ratios
show that note rates have generally fallen while LTV ratios have concomitantly risen
over the sample period. Given that demand is found to be cyclical in nature and
that outward shifts in demand would instead cause interest rates to rise over time,
this finding strongly suggests that leverage supply has been the primary driver of
increases in household leverage. For e.g., in 2005, when leverage demand was about
2.8 percentage points higher than it’s 1986 level, equilibrium leverage was 13.4 per-
centage points higher. Thus, a rough estimate would be that leverage supply was 10.6
percentage points higher than it’s 1986 level. In the aftermath of the crisis, we find
that while leverage demand had collapsed to it’s 1980’s levels, leverage supply was
still high, possibly reflecting the crucial role played by the GSEs in supplying credit
when the rest of the market was holding back.

Our results on house prices reveal that greater house prices lead borrowers to not
only borrow more but to also buy equally more expensive houses. Although this kept
leverage virtually unchanged, it raised households’ risk exposure. This is because,
controlling for income, a high loan amount implies a higher loan-to-income ratio.
This amounts to a greater debt service and exposure to greater risk of illiquidity
in the future. We also find that in markets with greater house price volatility, both

borrowers and lenders contracted at lower LTV ratios, which is consistent with theory.

Our article is related to the research on mortgage contract choice and demand
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for mortgage debt (Follain (1990), Jones (1993), Brueckner (1994), Follain and Dun-
sky (1997), Ling and McGill (1998), Hendershott et al. (2002), Hendershott and
LaFayette (1997), Leece (2006), Elliehausen (2010))). We complement this research
by using a long historical dataset and go beyond debt demand to look at a market for
leverage per se. In particular, the demand-and-supply framework is unique in that it
helps us in isolating the determinants of (changes in) leverage.

The rest of the paper proceeds as follows. The next section describes the data and
certain stylized facts about leverage. Section 3 presents the theory of leverage. Section

4 outlines the empirical strategy and presents the results, and Section 5 concludes.

2.2 Data and Stylized Facts

Our data are a random sample of single-family home mortgages originated in the U.S.
over the period 1986 to 2010 and purchased by Fannie Mae. The raw sample in each
year includes approximately 120,000 observations with equal-sized shares of purchase
mortgages versus refinance mortgages. For each mortgage we have data summarizing
the characteristics of the loan and the underlying property as well as information on
the borrower.

The loan-to-value (LTV) ratio is lender submitted and defined as the ratio of the
loan amount to the lesser of the sale price or the appraised value of the property.
For second mortgages, a combined LTV ratio is calculated using the sum of the
current unpaid principal balances of the first and second mortgages. Figures 2-3 and
2-4 present empirical cumulative density functions of LTV ratios for purchases and
refinances, respectively. For purchases, we see that close to 40% of the data contains
LTV ratios below 80%. There is considerable bunching (over 20% of the data) at the
80% LTV ratio, the threshold beyond which Private Mortgage Insurance (PMI) is
required for all conforming loans. We see similar bunching at the 90%, 95% and 100%
LTV ratios. Some of the purchase LTV ratios even exceed 100%. For refinances, the
bulk of the data (close to 80%) is at LTV ratios below 80%. These distributions are

suggestive of interior as well as corner solutions to the borrower’s problem of choosing
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an optimal LTV ratio. However, it does not appear to be the case that all borrowers

situate themselves at the PMI threshold.

Next, we sub-divide our sample into three separate time periods, 1986 to 1992,
1993 to 2007 and 2008 to 2010. We choose 1992 as the end point of the first period
because that year marked the passage of the Federal Housing Enterprises Financial
Safety and Soundness Act (FHEFSSA) which had a major impact on the activities
of the Government Sponsored Entities.! The second, largely prosperous, period be-
tween 1993 and 2007 was highlighted by economic growth, low unemployment and
an unprecedented rise in house prices. This was followed by a period marking the
beginning of the Great Recession from early 2008 which continued until the end of our
data in 2010. We see in Figure 2-5 that the distribution of LTV ratios for purchase
mortgages during the 1986 to 1992 period was skewed towards LTV ratios below 80%
with relatively few LTV ratios close to 100%. In comparison, the panel for the 1993
to 2007 period shows that the left tail of the distribution became less pronounced
with the effect that mass accumulated not only at an 80% LTV ratio but also at
very high LTV ratios. In the period following the recession, we see that the mass at
80% LTV rose even further but largely due to a lower density at higher LTV ratios.
There was also an increase in the fraction of the data with LTV ratios less than 80%.

We see a similar but less pronounced effect for refinances (see Figure 2-6).

The above discussion suggests that the fraction of risky high LTV ratio mortgages
increased over time. In Table 2.1, we document that the fraction of mortgages with
an LTV ratio of greater than 90% increased from 7% in 1992 to over 15% by 1999.
In 2007, such loans made up about a fifth of all mortgages in our sample. A similar
pattern arises when we look at the behavior of the sampled mortgages’ Debt-to-
Income (DTI) ratios over time. The DTI ratio is defined as the fraction of the
borrower’s monthly income that is relied upon in paying the monthly mortgage debt
(see histogram in Figure 2-7). Higher DTI ratios are consistent with riskier mortgages

as a greater burden is placed on borrowers’ existing incomes to service their mortgages.

!For example, among other requirements, FHEFSSA mandated GSEs to reach a target percentage
of their mortgage purchases to be secured by homes of low- and moderate-income households.
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The fraction of risky high DTT ratio mortgages also increased over time in our sample.
For example, in Table 2.2, we see that the share of DT ratios between 0.42 and 0.65
increased from less than 10% prior to 1995 to 27% in 2000 and eventually peaked at
41% in 2007.

Figure 2-8 provides a histogram of homeowners’ FICO scores. Notice that the
histogram is noticeably skewed towards lower FICO scores. In Table 2.3 we use
this FICO information and classify our sampled mortgages into the following three
progressively riskier categories: LTV ratio > 80% and/or FICO score < 660, LTV
ratio > 90% and/or FICO < 620 and finally LTV ratio > 95% and/or FICO <
580. The share of the latter two categories generally increased over time, particularly
starting from 1993 onwards. The middle category saw a decrease in it’s share after
2003 but the share of the most risky mortgages (the LTV > 95 and/or FICO < 580
category) kept rising until 2007, when it peaked at 14% of all loans. Consistent with
arguments by Acharya et al. (2011) and others, this analysis suggests that the quality

of loans purchased by Fannie Mae deteriorated over time.

Having investigated the characteristics of the home mortgages purchased by Fannie
Mae, we turn our attention to summary statistics of borrower characteristics. In
Table 2.4 we see that, on average, borrowers’ income and FICO scores rose over time.
However, if we instead turn to Table 2.5 where these characteristics are summarized
for three different LTV ratio categories, we find that generally poorer, younger and
riskier (those with low FICO scores) borrowers are leveraged the highest. Finally,
looking at the occupancy status of the underlying properties, we note in Table 2.6 that
the share of mortgages secured by second homes and investment properties steadily

increased over time.

In summary, we note the following stylized facts about the mortgages purchased
by Fannie Mae. The CDFs of LTV ratios suggest the existence of an interior solution
to the problem of a household’s LTV choice. The fraction of risky mortgages increased
over time, especially after passage of FHEFSSA in 1992. In addition, we document
that borrowers who are younger, poorer and with low FICO scores are leveraged more.

Finally, the share of mortgages secured by second homes and investment properties
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has increased over time.

These stylized facts motivate the research questions to be answered in this article.
First, how does the borrower arrive at an optimal leverage ratio? Second, what
explains the increase in household mortgage leverage over time? Is it due to an
increase in borrower demand for leverage or due to a greater supply of it? We now

turn to addressing these questions.?

2.3 A Demand and Supply Model of Leverage

In this section, we conceptualize a market for leverage. We set up a partial equilib-
rium model where a lender and a borrower optimally choose a leverage ratio, given
default risk that depends on future house prices. The lender model derived below is a
specific form of a more general credit rationing model specified in Jaffee and Stiglitz
(1990). It most closely resembles the model of mortgage strategic default developed
by Brueckner (2000). The major point of departure from that model is that we as-
sume lenders to be price takers. Thus, the note interest rate is taken as given and the
lender maximizes expected profits by choosing an appropriate leverage ratio to supply.
The same exception applies to the borrower model, also based on it’s counterpart in
Brueckner (2000). In addition, we treat borrowers as risk averse (as opposed to risk
neutral) and consider ruthless default instead. This latter assumption is not crucial
to the model and is left out because our task is to derive empirical predictions that
do not depend on variables not available to us in the data (such as the borrower’s
cost of default that serves as asymmetric information and drives strategic default in
Brueckner (2000) and Harrison et al. (2004)).

An advantage in this approach of separately deriving the demand and supply for
leverage is that this gives us results on comparative statics that are specific to the
lender and the borrower, thus enabling us to better understand the factors affecting
the two sides of the market. We first set up the lender’s problem below, followed

by the borrower model and end this section with a discussion of a leverage market

2For further details on the data cleaning process, please refer to the appendix.
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equilibrium.

2.3.1 Lender Model

Lenders are assumed to be risk-neutral and functioning in a competitive market. The
assumption of a competitive market implies that each lender is essentially a price
taker. In the 2-period model derived below, a borrower wishes to buy a house of
value V, which is set equal to 1, so that the choice of the loan amounts to choosing
a loan-to-value (LTV) ratio. In the first period, the lender lends an amount L to the
borrower, earning a payoff of —L. In the second period, the borrower must sell the
house and pay back both the principal and interest (at the rate r). The ability of
the borrower to return the amount L(1+r) depends on the value of the house, P, in
the second period. If value of the house exceeds the amount owed, then the lender’s
payoff is L(1+7). However, if the value of the house is less than the amount owed, we
assume that the borrower ruthlessly defaults and the lender’s payoff is P, the proceeds
from the sale of the house under foreclosure. Furthermore, it will be convenient to
assume that second period house prices are uniformly distributed with pdf f(P) and
support [P, Py].® The lender’s expected profits are therefore given as:
L(1+r) Py
.7r=—L+77/ Pf(P)dP+n/ L(1+r)f(P)dP
PL L(1+7)

This expected profit equation is the expected utility of the payoffs in the two
periods. When the house price, P, is between P, and what is owed, L(1+r), the
borrower defaults and the lender receives the low payoff of P (discounted to the first
period by lender patience or discount factor, ). In the case where the house price
is higher than what is owed, (i.e. it is between L(1+r) and Py), the lender’s payoff
is the high outcome of a full repayment of the principal and interest. Furthermore,
under the assumption that the value of the house in the first period is 1, all the
variables in the model can be expressed in terms of the numeraire. For e.g., L can be

expressed as a fraction of the value of the house and will therefore represent a loan-

3The mean is given by Q—)%P”). The range of prices is Py — Pr.
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to-value ratio. Next, we derive what the optimal LTV a lender is willing to supply
at a given interest rate, r. In other words, our objective is to derive the lender’s offer
curve for various 7-LTV combinations. Maximizing expected profit w.r.t L, we get
the following first-order condition:

dm Py —L(1+r)

=—1+(1+7r)n P = P1)

set
i~ =0

It is easily verified that expected profit are indeed maximized.* The first-order

condition yields the optimal amount loaned:

Py (Pu—P)
(1+7) (1+7)2n

L = (2.1)

Comparative statics of the loan offer curve gives a number of results. First, taking

the derivative of (2.1) with respect to r, we get:

dLs Py 2Py—Pp)

= +
dr (1+ r)2 (1+ r)3n

For the loan offer curve to be upward sloping, % > 0. This implies that the
interest rate, 7, cannot exceed (1 +r) = Z(—P}’;I—:—WI—DL—).This is analogous to having a
maximum loan size beyond which the lender’s offer curve begins to bend backwards.
At some high loan level, the borrower’s liability, L(1+7), may exceed the upper bound
on house prices Pg. Since this would guarantee default, the lender won’t offer any
higher loan amounts beyond a certain maximum amount. For all r, the maximum
LTV given in (2.1) is I—Pf%. The backward-bending portions are not relevant to us
but such a feature is characteristic of the loan offer curves in general models of credit
rationing.’

This model also makes empirical predictions with regards to house prices. In order
to derive the effects of expected prices and the range of prices on leverage supply,

let’s look first at the individual effects of P;, and Py separately. If we increase Py,

holding Py (and all else) constant, then given our assumptions on f(P), this results in

4The second order condition is: Zz" =—(1+ T)Q(P_H’—]T-"’E <0
5See Jaffee and Modigliani (1969), Jaffee and Russell (1976) and Jaffee and Stiglitz (1990).
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simultaneously higher expected prices but a lesser range of prices. Taking the partial
derivative of L® with respect to Py,
oL’ 1

= >0
OPL  (1+71)y

This implies that the supply curve shifts outwards. The interpretation is that in
markets with higher average prices and lesser range of prices, the supply of credit will
be more. This is not particularly useful at the moment because we are ultimately
interested in separating out the pure effects of higher prices and greater range. We

will address this shortly but next we look at the effect of increasing Py.

If we increase Py holding P, (and all else) constant, we increase both expected

prices and the range of prices. Taking the partial derivative of L® with respect to Py,

oLS 1 1

0Py (1+7) (1+7)n

This has an ambiguous sign. In order for L° to be increasing in Py, i.e. % > 0,
interest rates would have to satisfy the condition, (1 + r) > }7 The increase in
Py increases expected profits but also increases the probability of default due to a
greater range in realized prices. For the lender to actually increase the supply of
credit, he/she has to be compensated by a higher interest rate, as reflected by the
condition (1+7) > % For interest rates lower than this, % < 0, and the increase in
Py would result in a fall in supply. Thus, the two parts of the supply curve behave

differently depending on the prevailing interest rates.

Now that we have obtained the pure effects of Py and P, we next look at the
effect of the range in prices, holding the mean of the distribution constant. If we
increase Py by one unit and decrease P, by one unit, then the mean of the resulting
distribution would be the same as the old distribution. The new distribution would

also be riskier in the Diamond-Rothschild-Stiglitz (mean-preserving spread) sense.
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Formally, we can see the effect of this as:

aLS_aLS_[1 1 - 1
OPy 0P, '(1+r) 14+ QA+

0LS  oL® 1 2

8PH_8PL (1+7‘)_(1+r)27]

If the above expression were to be positive, it would imply that (1 +r) > % Even for
a lender discount factor of 0.99, this would imply interest rates of over 100%, which is
an impractical implication. Thus, we can safely conclude that the above expression is
negative, implying that with greater risk (higher range of prices, holding mean prices
(and all else) constant), lenders would supply lower leverage at every interest rate.
Similar to above, we can analyze the effect of an increase in mean prices while
keeping the range of prices constant. If we increase both Py and Py, by one unit, we
increase the mean also by 1 unit but keep the range of prices constant. Formally, the

effect of this can been by:
oL’ N oL 1
OPy 0P, (1+7)

Thus, the supply of LTV increases with higher expected prices, holding the range of

prices constant.

Figure 2-9 illustrates the rate-LTV combinations that a lender is willing to supply
at and the above-derived effects on the offer curve. In particular, three offer curves
are shown with different sets of values for P, and Py. In all three cases, the lender
patience factor is set equal to 0.8 (n = 0.8) and, as mentioned earlier, the value of
the house is equal to 1. In the base case represented by the triangle-blue line, the
values of P are distributed P, = 0.5, Py = 1.1. This curve gives the upward sloping
rate-LTV combinations for this distribution of house prices. In a second case, house
prices are distributed P, = 0.6, Py = 1.2, i.e. where expected prices are higher by
0.1, but the range is kept constant. The circled-black line shows this effect that with
higher expected prices, the supply of leverage is greater than that in the base case. A
third case shows the effect of a mean-preserving spread in the distribution of house

prices. In particular, this is the case where P, = 0.4, Py = 1.2, a distribution with

27



the same mean as that of the base case. The effect of this is that with greater risk ,
the supply of leverage falls or shifts in from the base case to the squared-green line.
Note that only the increasing portion of these loan offer curves are the relevant supply

functions and not the backward-bending portions.

2.3.2 Household Model

In a competitive market, borrowers are price takers and thus maximize their expected
utility over the choice of a leverage or LTV ratio. In the general two-period model
below, a household has a first-period wealth and discounted value of all future in-
comes, Y. The value of the house in the first period is 1, i.e. the purchase decision
is made outside of the model. In the first period, the household chooses a loan of
amount L and enjoys a payoff of Y — (1 — L), where 1 — L is the down payment
and L < 1 (i.e. unsecured debt is not allowed). Any surplus from the first period
is transferred over to the second period, which earns a rate of return of (1 +¢). In
addition, the household has to sell the house for a value of P, realized stochastically
and distributed uniformly (with pdf f(P) and cdf F[P]). If the value of P exceeds the
amount owed, L(14r), the household pays the amount in full and enjoys a surplus of
P—L(+7r)+ (Y —(1—L))(1+e). If, however, the value of the house in the second
period falls below the amount owed, the borrower defaults and enjoys a surplus of

(Y — (1— L)1 +e).

In the model below, households are assumed to be risk-averse.® Household’s utility
functions are assumed to be concave and additively separable over the 2 periods. In
particular, let u and v be the first and second period utility functions, respectively,

with the properties u’ > 0, v/ > 0, v” < 0 and v" < 0. The household expected utility

6An entire household is treated as an individual. The terms household and borrower are used
interchangeably.
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can be written as:

L(1+4r)
Q = uY —(1-L)]+96 A v[(Y = (1= L)1 +e)f(P)dP
+ 4 " v[(Y = (1=L))(1+e)+ P — L(1+7r)]f(P)dP
L(1+4r)

The first term in the household’s expected utility function is the utility of the
first-period payoff of Y — (1 — L). Since the decision on the loan amount is being
made in the first period, the second period expected utility is discounted by the
borrower discount or patience factor, § < 1. The second period expected utility is
the probability of default times the bad outcome at default v[(Y — (1 — L))(1 + ¢)]
plus the probability of no default times the good outcome in the absence of default
v[(Y —(1—L))(1+e€)+ P — L(1+71)]. It can be verified” that it is optimal to default
when P = L(1 + r) and thus the probability of default is given by F[L(1 + r)].

A few key properties of the above general utility function are that:

.1 .. . . . o
1. Utility is increasing in the rate of return on surplus, i.e. £ > 0.

2. Utility is decreasing in the cost of borrowing, i.e. % < 0.

dQ o . dQ o
3. If e > r, then §2 — 22 > 0. However, ife <7, (2 — ) < 0.

The first part of property 3 states that if the rate of return on the surplus exceeds
the rate on the loan (e — r > 0), the borrower utility will always be increasing no
matter what loan rate, r is. It is easily seen from the first-order condition (%) that

this leads the borrower to borrow as much as possible:

7All derivations and proofs are relegated to the appendix.
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dQ )
- — — L
R M)

>0 by assumption

L(1+r)
+ 80re) [ VI - (= D)1 +OI(PF

>0 by assumption

+ d(e—r) / © WY —1)(1+€) + P+ Lie - )] f(P)dP
H;O—’ L(1+4r) ~

>0 by assumption

No matter what the loan rate, % > 0. Thus, the borrower will choose to borrow

as much as possible, and obtain a maximum LTV of L? = 1.8

The second part of property 3 states the converse, i.e. if the rate of return on
the surplus does not exceed the loan rate, (e — r < 0), then the borrower’s utility
will always be decreasing. Furthermore, the borrower can be at a higher utility level
if he/she allocates the first period surplus for either down payment or consumption
instead of transferring it to the second period. This will be higher utility because
utility will then only fall by ‘;—?.9 Note that this does not imply that the borrower will
not borrow. For a given loan rate, the borrower, through his/her choice of L, trades
off (at the margin) an increase in current wealth with a fall in expected (discounted)
future wealth, conditional on house prices. We now turn to formally showing this
result.

For the case (e — r < 0), the borrower’s expected utility can now be written as:
Py

v[0]f(P)dP + 5/ v[P — L(1+1)|f(P)dP

L(1+r)

Q= ulY — (1- L) +5/L(1+T)

P,

fore<r

This model is interpreted as follows. The first-term, again, is the utility of the

first-period payoff of Y — (1 — L). As argued above, any surplus in this period is

8This result is also found in Brueckner (1994) where all households demand 100% LTV ratios if
the return on equity capital (e) exceeds the costs of mortgage debt (7).

9Harrison et al. (2004) make this assumption explicit in their borrower’s objective function. It
is implicitly assumed in the model by Brueckner (2000).
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either consumed or put in the down payment for the reason that that would make
the borrower better off. Thus, in the second period, if realized house prices are below
L(1+r), the borrower defaults and has a utility of surplus 0, v(0). In the event that
realized house prices are between L(1 + r) and Py, the borrower sells the house and
pays the lender what is owed and in return enjoys a surplus of P — L(1 +r).
Maximizing the borrower expected utility w.r.t to L, the following first-order

condition is obtained:

WY —1+L) = 8(1+7) /LZ )v’[P “ LA+ f(P)P) Lo (22)

The interpretation of this equation is that, in equilibrium, a household chooses
an L such that it equates the marginal utility of first period wealth to the expected
(discounted) marginal utility of second period wealth. The tradeoff in the borrower’s
decision is that increasing the loan amount (and thus, leverage) increases the first
period wealth but it also increases the expected future loan payment, thus decreas-
ing second period wealth, conditional on house prices. From (2.2), the household’s

optimal loan demand can be implicitly written as:
LP? = LP[r, P,Y, ]

Comparative statics of (2.2) yields several properties of the optimal leverage de-
mand schedule. These are summarized in the proposition below and all proofs are

provided in the appendix.
Proposition 1. The optimal loan demand LP has the following properties:

1.1 As r rises, the minimum LTV demand is LP = 1 =Y forY < 1 and LP =
0 forY > 1.

1.2 In the lim,_,., the mazimum LTV demand is LP = 1. Forr <e, L? = 1.
1.8 LP has an interior downward sloping schedule w.r.t loan rate r (% <0).
1.4 LP is decreasing in borrower patience 9, (% <0).
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. . . . D
1.5 LP is decreasing in borrower incomes Y, (%~ < 0)

1.6 If a distribution P first-order stochastically dominates a distribution P’, then

Lf > LY.

1.7 If a distribution P second-order stochastically dominates a distribution P’ then

Lf > L*.

In Figure 2-10, Propositions 1.1 to 1.3 are illustrated in panel (a), and Propositions
1.4 to 1.7 are illustrated in panels (b) to (e). As the interest rate on the loan increases,
LTV demanded falls along a downward sloping schedule. The intuition for this result
is that a higher interest rate lowers second period wealth and to smooth wealth over
the two periods, a borrower would decrease their leverage to simultaneously lower
first period wealth and instead increase second period wealth. The minimum LTV
can be 1 — Y for those with Y < 1. It will zero for those that are not constrained by
income (Y > 1). As the rate on the loan falls and approaches the rate of return on the
surplus, e, the maximum LTV demanded would be 1. The same result holds for rates
below e. Proposition 1.4 establishes that more patient borrowers, i.e. borrowers that
value future wealth more, would have lower demand for leverage. In Proposition 1.5,
borrowers with higher Y would find that the marginal increase in first period wealth
(from an increase in L) would not be as much as for them as it would be for those
with lower incomes. Therefore, they would comparatively lever less. Proposition 1.6
states that if there were two house price distributions and one unambiguously yielded
higher average prices, then there would be greater demand for leverage in that market.
Finally, Proposition 1.7 states that if there were two house price distributions and
one had unambiguously greater risk (but same average prices) than the other, then a
risk averse borrower would demand lower leverage in that market.

Equilibrium The highest LTV ratio demanded is 1 while the highest supplied is

lff;, which would often be greater 1 (since Py > 1). The lowest leverage demand is
1 —Y (or 0) while the lowest supplied at r = 0 in (2.1) would be ﬂp—ﬂ]ﬁ + %‘L < %L—.

These would represent small loan balances, L(1+ 1), below P, that are risk-free (and

thus supplied at r = 0). In general, we should not expect these amounts to exceed
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1-Y (Y < 1). Given that demand is downward sloping and supply is upward sloping
between the above fixed points (at high and low rates), this ensures that there is an
interior equilibrium point of intersection between demand and supply as shown in

Figure 2-11.

2.4 Empirical Analysis

2.4.1 Empirical Strategy

The model of leverage derived in the previous section yields two structural equations

describing the demand and supply of leverage, which we specify as follows:
L=0+ir+XB+Thl+e (2.3)

r=%%+nLl+Xn+Ty+uCLL+v (24)

Leverage demand is given by (2.3), where LTV (L) is a linear function of the note rate
(r), a matrix of exogenous variables representing borrower and market characteristics
(X), and a matrix of yearly time dummies (7"). Similarly, leverage supply is given by
(2.4), where the note rate (r) is a linear function of LTV (L) and the same X and T
matrices of characteristics and time dummies. In addition, we include the log of the
national conforming loan limit (CLL) as a supply-shifter.!® Similar to the Adelino et
al. (2011) paper, where changes in the national conforming loan limit were used as an
instrument for changes in the cost of credit, we view these exogenous changes as supply
shifts because over time they make the cost of credit to be cheaper for houses that
would otherwise require financing via a jumbo loan (or part conforming, part more
expensive financing). Since changes in the C'LL are based on national appreciation of
house prices, it is reasonable to assume that these changes are exogenous to individual

mortgages and to local housing market conditions (and thus avoid correlation with

10Up until 2008, the conforming loan limit was set nationally with the exception that it was always
1.5 times higher in Hawaii/Alaska. Starting from 2008, there was an additional county-based CLL
available for areas that were determined as high cost. With the exception of 1990, where CLL fell
by $150 over the previous year, changes in it have always amounted to an increase in the limit.
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our MSA measures in X).

In both of our structural equations, X does not contain any specific demand-only
or supply-only variable. This is because our dataset does not contain any variable that
is observed only by the borrower and not by the lender, and vice versa. Thus, the only
variable excluded from the demand equation is the conforming loan limit (CLL). It
is easy to see that (2.3) is just-identified.!! Furthermore, since there are no demand-
only variables, the supply equation, (2.4), is not identified. However, looking at the
reduced form, the coeflicient on CLL is uncontaminated and it’s estimate would help
answer how leverage supply has changed due to policy changes in this supply-shift
variable:

L=7T()+X7I'1 +T7T2+51’74CLL+U1 (25)
=20+ X221+ T2+ vCLL + u, (26)

The coefficient on CLL in (2.6) also allows for an indirect least squares estimate of the
interest rate elasticity of leverage demand ((3;). This would be obtained by dividing
the reduced form coefficient on CLL in (2.5) by that in (2.6).

We estimate (2.5) and (2.6), equation by equation using OLS.!> We also esti-
mate the leverage demand equation, (2.3), via 2SLS. Since leverage demand is just-
identified, a limitation is that we cannot perform a test of over-identifying restrictions.
In the case of purchase mortgages, we also separately estimate the numerator and de-
nominator in LTV, i.e. loan and housing demand (V') regressions, using the same
exogenous variables. This is because in our theory, we derived results on leverage un-
der the assumption that the housing demand decision was given outside the model.
Empirically, the house purchase decision cannot be included in the leverage regres-

sions as it is an endogenous decision. By including it as a separate reduced form

" The demand equation, (2.3), has one exclusion restriction and one normalization (coefficient on
L is 1). Thus, the sum of the restrictions (2) adds up to the number of endogenous variables (2).
Since the order condition is satisfied with equality, (2.3) is just-identified. The rank condition also
holds as long as the coefficient on CLL in the supply equation is not zero (-4 # 0) (see appendix).
The supply equation, (2.4), fails the order condition as there is only one restriction (normalization
on ) which is less than the number of endogenous variables (2). Thus, (2.4) is not identified.

121t is well known that in a system of linear seemingly unrelated regression equations with identical
regressors, equation by equation OLS yields efficient parameter estimates.
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regression, it allows us to better understand the leverage decision. In the case of refi-
nances, while there is no housing decision being made and V' changes stochastically,

we will still find it useful to add a reduced form loan demand estimation.

2.4.2 Results

The estimates for the structural leverage demand equation are shown in Table 2.7
while the reduced form estimates are shown in Tables 2.8 (purchases) and 2.9 (refi-
nances). We first discuss results for purchases and then compare any differences for
refinances.

Leverage Demand: The 2sls estimates for purchase mortgages are shown in the
first column of Table 2.7. The estimate on the note interest rate is -3.07, which is
also verified via indirect least squares.!> Equivalently, a log-log estimate!* gives an
interest rate elasticity of leverage demand of -0.37. This implies that a 10% increase
in the note rate leads to a 3.7% decrease in the loan-to-value ratio. A few numerical
examples illustrate this effect. From an r-LTV combination of (5%, 100%), if the rate
increases to 6%, then this would lead to 7.4% [2 x 3.7%] fall in LTV to 92.7%. Starting
from an r-LTV combination of (10%, 70%), a subsequent fall in interest rates to 5%
would lead to a 18.5% [5 x 3.7%] increase in LTV to 83%. These are quite plausible
estimates of demand elasticity. Furthermore, holding note rate and all else constant,
the year dummies can be interpreted as changes in taste or preference of borrowers for
LTV. These dummies are used in Figure 2-12 to trace the evolution of LTV demand,
starting with an LTV of 72% (sample mean) for 1986. The first thing to note is
that there is no upward trend and in fact, LTV demand is cyclical. Historical events
that would be expected to negatively effect households and real estate markets are
indeed reflected in down-ticks or falls in leverage demand. LTV demand was relatively
healthy during periods of steady economic growth and particularly strong in the most

recent real estate boom. We now turn to look at leverage supply.

13The coefficients on CLL in Table 2.8 provide an indirect estimate by dividing the coefficient in

the LTV column by that in the Note Rate column (12468 = —3.07).

Y4 There is however a slight attenuation bias in that regression due to the fact that In(1) is unde-
fined.
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Leverage Supply: There are two pieces of evidence that suggest that leverage
supply has increased over time. First, as argued in the previous section, the coefficient
on C'LL in the reduced form note rate regression in Table 2.8 is uncontaminated and
gives it’s structural marginal effect. Also, since all the variation in that variable is
over time, it’s coefficient tells us how much leverage supply has changed due to shifts
caused by changes in CLL. We find that a doubling or a 100% increase in C'LL leads
to a fall in the average note rate by 4% [(4.0568/100) x 100]. Over in the LTV column
of Table 2.8, this increase in C'LL leads to an increase in LTV of 12.5 percentage
points. As expected, this combination of falling rates and rising LTV corresponds to
an outward shift in the leverage supply curve. Furthermore, examining the Ln Loan
and Ln Price columns, a 100% increase in the CLL is associated with an increase in
the average purchase price by 44% and the average loan size by 58%. This would be
consistent with the intuition that increases in the C'LL would make expensive houses
more attractive by making them cheaper to finance. These results indicate a strong

effect of policy changes in CLL on the market for mortgage leverage.

A second look at how leverage supply has changed over time begins by examining
the reduced form yearly time dummies. Since C'LL captures the same variation
over time, we drop that variable and reestimate the note rate and LTV regressions.!®
These yearly time dummies for the reduced forms and the structural demand equation
are shown in Table 2.10. Several observations can be made from the reduced form
columns of note rate and LTV. Relative to 1986, the average note rate fell over time
while the loan-to-value ratio rose concurrently. Specifically, when compared to 1986,
the note rate was 1.75%, 2.4% and 3.47% lower in 1995, 2001 and 2005, respectively.
At the same time, the LTV ratio was higher by 5.9%, 13.5% and 13.4% in 1995,
2001 and 2006, respectively. Comparing the same time periods in the structural LTV

demand column, we see that demand was 5.2%, 6.1% and 2.7% higher.'® These results

strongly suggest that leverage supply had increased substantially over time. For e.g, in

15 All coefficients in Table 2.8 are robust to the exclusion of CLL. Therefore, the full regressions
are not shown but are available upon request.

16Each of these point estimates is statistically significant and significantly different from its coun-
terparts.
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2005, leverage supply was roughly 10.6 percentage points higher (compared to demand
which was only 2.7 percentage points higher) than it’s 1986 level. Furthermore, if
demand was the primary reason for the rise in leverage, then we would have expected
the note rate to have increased, not fallen, over time. We can also see that the reduced
form LTV time dummies stayed relatively high even in 2008 (16%) and 2009 (13%)
while demand collapsed to 0.17% (relative to 1986) in 2009. This is likely due to the
fact that in the aftermath of the crises, the GSEs were the only suppliers of credit
left.

House Prices: We next turn to the MSA Ln House Price Level variable in Table
2.7, constructed by first creating a series of average house price levels (for MSAs)
in 2000 using the 5% PUMS sample of the Census, and then extrapolating those
price levels using the quarterly MSA house price (repeat-sales) indices published by
the Federal Housing Finance Agency (FHFA).!” Thus, this variable measures, over
time, the log house price level both across MSAs and within an MSA. In Table 2.7,
we find that a 10% increase in the average house price level leads to a fall in the
LTV ratio demanded by an economically small 0.57 percentage points (combined
with a virtually insignificant fall in the rate shown in Table 2.8). Examining the
Ln Loan and Ln Price regressions in Table 2.8, we find that this 10% increase in
house prices leads borrowers to increase the size of their loans by 4.9% and to buy
houses that are 5.7% more expensive.!® Our borrower model predicted that with
higher average prices, the borrower should be levered more. However, that result was
derived based on a fixed value of house whereas empirically we find that borrowers
roughly offset larger loans with equally expensive house purchases (holding all else
equal), which implies that they put down more in equity. Moreover, since we control
for income in the regression, a higher loan amount implies a higher loan-to-income
ratio. This may mean greater debt service and exposure to greater risk of illiquidity in
the future. There is corroborating evidence in a study at the aggregate MSA level in

which Goetzmann et al. (2011) find that based on past price appreciation, households

"Further details on the construction of this variable can be found in the data appendix.
18The difference 5.7% - 4.9% = 0.8%, fall in LTV can be shown in a regression where the dependent
variable is Ln LTV.
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borrowed more and purchased more expensive houses. This subsequently lead to an
increase in the loan-to-income ratio, again implying that households were at a greater
risk.

House Price Volatility: The 2-year back, MSA De-trended Ln HPI Quarterly
Volatility variable in Table 2.7 is simply the de-trended log volatility of the FHFA
repeat-sales indices (lagged by 8 quarters).'® In Table 2.7, a increase of 10% in the
past house price volatility leads to a fall in the demand for leverage by 0.2 percentage
points, which is consistent with the borrower theory. This latter figure is small because
the magnitude of log volatility is less than 0.5, which implies that a 10% increase is
a small change (e.g 10% increase from 0.1 is 0.11). Moving to the reduced form
estimates in Table 2.8, the coefficient on HPI Volatility is positive in the note rate
regression and more negative in the LTV regression, suggesting that the net effect
of higher past price volatility is that lenders supply less leverage. This is because
greater house price volatility increases the risk of borrower default which adversely
affects expected profits. Consistent with our theoretical model, lenders would supply
less leverage. Also in Table 2.8, the same 10% increase in past volatility, leads to a
fall in the loan amount and the purchase price by 2.5% and 2.3%, respectively.

Borrower Characteristics: Looking at the Borrower’s Total Monthly Income Amount
variable in Table 2.7, we find that borrowers with monthly incomes higher by $5,000
lever less by an economically insignificant amount (0.41 percentage points) and (in
Table 2.8) pay a rate that’s only 1.6 bps less. Furthermore, the coefficients in the Ln
Loan and Ln Price columns reveal that such borrowers not only carry a loan that’s
bigger by 11.4% [2.28e-05 x 5,000 x 100%] but they also buy a house that’s 11.8%
more expensive. This would explain why the leverage ratio would fall by a very small
amount.

Next, we find in Table 2.7 that borrowers with bad credit scores demand more
leverage. For example, a decrease in the Borrower Credit Score by 100 leads to an

LTV ratio that is higher by 6 percentage points and (in Table 2.8) a note rate higher

19These results are robust to slightly shorter and slightly larger windows of lag. We do not
use longer windows as we lose considerable data. Shorter windows, on the other hand, make the
calculation of standard deviation much less reliable.
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by 23 bps. Also from Table 2.8, borrowers with credit scores lower by 100 take out
loans smaller by 4% and buy houses that are less expensive by 11%. To the extent
that credit scores serve as a signal of riskiness and/or reflect the (asymmetric) default
costs of a borrower, this result would be consistent with the predictions of models by
Brueckner (2000) and Harrison et al. (2004). The reason is that riskier borrowers

(those with low default costs) self-select into higher LTV ratios.

Our next finding is that the demand for leverage is monotonically decreasing with
age. In Table 2.7, the base age group is 16-t0-24 years and we add four age group
dummies of 25-to-34, 35-t0-49, 50-to-64 and above 64 years. Each age group demands
lower leverage relative to the base group and to groups that are younger to it. For
instance, the age group 35-to-49 levers 5.9 percentage points less than the base group
and about 4.2 percentage points less than the 25-t0-34 age group. Furthermore, a
test of equality on the leverage ratios for every pair of these dummy variables rejects
the null hypothesis that these groups behave the same. To the extent that older
borrowers are more patient and value future wealth more than younger borrowers, we
would expect to find that the demand for leverage falls with agé (consistent with our

borrower model).

Gender, Race and Occupancy: In Table 2.7, women demand less leverage than
men. However, in Table 2.8, the sign on the Female variable is positive in the note
rate regression and slightly more negative sign in the LTV regression. This suggests
that women pay more for mortgages than men (leverage supply is less). Since we do
not fully control for wealth, we cannot know for sure if these results are robust to
unobservables. However, they are consistent with recent work by Cheng et al. (2011)
that suggests that women pay higher rates because they are more likely to go to a
lender by recommendation whereas men are more likely to search for (and find) a
lower rate.

Relative to whites, the demand for leverage is higher for all other races. Again,
these results are interesting but inconclusive due to a lack of information on other
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