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Abstract

The intent of this research is to develop a robust, efficient, self-contained localization
module for use in a robotic liquefied petroleum gas (LPG) tank inspection system.
Inspecting large LPG tanks for defects is difficult, expensive and energy intensive.
Replacing the human inspectors with a robotic inspection system will make the in-
spection process faster, less expensive, more reliable and safer. The sensing platform
designed in this work can collect data about the environment and track the robotic
inspection platform, recording the defect locations. It consists of a two axis gimbaled
sensing platform with a single point distance sensor placed in the manhole of the
tank. A collection of algorithms were developed to use in conjunction with the sens-
ing platform to collect and process the 3D data into a map of the environment. The
algorithm's main feature is a robust and efficient method of segmenting and fitting
data to a right capped cylinder that is faster and more robust to noise than current
methods. The improved performance comes from a unique combination of object
shape knowledge, the Gauss image and 3D histogram techniques which achieve accu-
rate segmentation without iteration. The hardware and software were demonstrated
to function robustly in a noisy environment. The unique ability of the system to work
in an LPG tank allows it to be integrated into a robotic inspection system that can
remove the majority of the cost and risk associated with LPG tank inspection.

Thesis Supervisor: Kamal Youcef-Toumi
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

Inspecting large liquefied petroleum gas (LPG) tanks for defects is difficult, expensive

and energy intensive. LPG is stored in steel alloy tanks at approximately -160C. These

tanks are periodically inspected for cracks, corrosion and other defects, despite the

significant hazards to the inspector [11]. External inspection is not possible for the

lowest im of the walls and the floor of the tanks due to structural concrete in these

areas. The current inspection process poses serious safety challenges as it involves

sending human inspectors into the emptied tanks. The tanks need to be taken out of

service and warmed for 10-14 days in order to make them safe for human ingress [12].

The cost of this shutdown is approximately 15 million dollars per day and significant

energy is required to warm the tanks up and then cool them back down.

A robotic inspection system will make the inspection of LPG tanks more efficient.

The down time can be shortened because the tank will not need to be as warm for the

robot inspector as it needs to be for the human inspector. This reduces inspection

cost and there will be less energy used to cool the tank back down to operating

temperatures. The inspection process itself can be done more quickly and thoroughly

because the robots will move along prescribed paths more accurately than human

inspectors. The risk is also diminished because robots are not sensitive to the same

hazards as human inspectors.
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1.2 Research Focus

The purpose of this research is to develop a robust, efficient, self-contained localization

module for use in a robotic liquefied petroleum gas tank inspection system. This

module consists of the hardware sensing platform and the corresponding algorithms

for mapping the environment. It will be used with a new inspection robot being

developed in a joint project between MIT and Qatar University.

The first part of the work is designing a sensor hardware platform. The design

process involves determining the best sensing technology, followed by determining

the optimal layout of the sensors in the LPG tanks. These choices must take into

consideration the environment of the tank as well as the lack of any distinguishing

features besides the presence of a manhole in the walls or roof.

The second part of the work focuses on fitting the 3D data from the sensor platform

to a capped cylinder. The resulting fit creates a map of the environment to be used

in inspection robot path planning and defect localization. The algorithm needs to be

robust to noise because the environment and interaction between the sensor and tank

walls may result in significant error. It also needs to be faster than current fitting

methods to decrease inspection time.

1.3 Background

1.3.1 LPG/LNG

Liquefied Petroleum Gas, or LPG, refers to a class of hydrocarbon fuels composed

mostly of propane and butane [13]. LPG is gaseous at atmospheric temperature and

pressure, but it can be cooled or compressed into a liquid. LPG is commonly used as

fuel in heating, cooking and even vehicles. It is a byproduct of natural gas or crude

oil refining so large tanks are often found on-site at petroleum processing plants [13].

These tanks must be periodically inspected for corrosion, cracking and other defects.

Figure 1-1 shows a few examples of the large LPG storage tanks.

The configuration and internal environment of the LPG tank pose challenges to

22



Figure 1-1: LPG Storage Tanks. (a) Dominion Cove Point LNG facility located in
Lusby, Maryland. Photo courtesy of Dominion Corporation [1]. (b) Two LPG storage
tanks. Photo courtesy of Lusas Corporation [2]. (c) Row of LPG storage tanks. Photo
courtesy of Gauging Systems Inc [3].

- Steel Inner Tank

- Pearlite Insulation

- Carbon Steel Liner

- Concrete Support WallPrimary Steel Bottom

Secondary Bottom

Base Insulation

Carbon Steel Liner

Concrete Base Layer

Figure 1-2: LPG Tank Cross-section. Multilayer construction of steel plating, insu-
lation and support walls. Domed carbon steel top has suspended aluminum deck.
Concrete base layers and support walls make external inspection impossible.
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inspection. LPG tanks are carbon or duplex steel approximately 98m in diameter and

60m tall. The tanks sit on concrete slabs with their walls reinforced by concrete for at

least a meter up from the floor. The details of the tank structure are shown in Figure

1-2. External inspection of the floor and walls behind the concrete is impossible,

so internal inspection is necessary. The temperature inside is cryogenic even after

draining. There is no source of light in the tank and any light source needs to be

low power in order to avoid ignition of residual particles. The residual particles also

impose limitations on other energy imparting systems, such as EM radiation. The

low temperatures, residual flammable particles and lack of light need to be taken into

consideration when designing an inspection system.

1.3.2 Conventional Inspection

Conventional inspection is completed by human inspectors inside the tank with spe-

cialized equipment. The tank must be drained, warmed to habitable temperatures

and cleaned before the inspector is sent in [11]. The inspector collects a sparse amount

of data due to the slow speed of human inspection and limited allowable exposure

time. After inspection the tank must be cooled to cryogenic temperatures before

being put back into service.

Conventional inspection has many negatives including high cost, being hazardous

to the inspection staff, and negative environmental impacts. Taking the tanks out

of service and warming them to habitable temperatures is very costly, approximately

15 million dollars per day of down time for up to two weeks. In addition to the

high cost of inspection, there are significant safety and health challenges to manned

inspection due to the confined space and residual material [12]. Cleaning the tanks

for human ingress involves degassing the tank and cleaning sludge from the bottom.

The release of gas into the environment and the disposal of sludge is hazardous to

the environment. Developing a robotic inspection system that can withstand colder

temperatures and does not require complete degassing or cleaning of the tank floor

removes the safety and health issues and greatly reduces the environmental impact

of tank inspection.
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1.3.3 Robotic Inspection

Robotic inspection has the advantages of not exposing human inspectors to the tank

environment, reducing the cost and environmental impact and being more effective

than human inspection. The temperature of the tank will not need to be raised

to as high a temperature because the robot habitable temperature is much lower

than human habitable temperature. This will reduce the energy needs and down

time resulting in a less expensive inspection. A robot inspection system would not

require complete degassing and cleaning, thereby reducing the environmental impact

of inspection. The robot can also be designed to clean the tank during the inspection

routine much like the Techcorr robot in Figure 1-3 (e). Robot inspection removes the

risk to inspectors because they are not needed in the tank. Finally, robotic inspection

will result in a complete inspection of the tank because the robot can be exposed to

the hazardous environment for longer than a human inspector.

Figure 1-3: Inspection Robots. (a) External crawling inspection robot [4]. (b) Mav-
erick, a remote-controlled, submersible robot for inspection of gasoline tanks [5]. (c)
Neptune, a fuel storage tank inspection robot [6]. (d) ICM climbing robot with in-
stalled NDT sensors [7]. (e) Techcorr cleaning and inspection robot [8].

Current inspection systems are unable to replace human inspectors for the bottom

of LPG tanks.. Robotic inspection of storage tanks is not a novel idea. Some current

inspection robots are shown in Figure 1-3. Most inspection robots can attach to and

inspect the tank externally, such as the robot in Figure 1-3 (a) [14][15]. These robots
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can only inspect the walls above the structural concrete with no way to inspect the

floor of the tank. There are some robots, such as those depicted in Figure 1-3 (b), (c),

(d) and (e), that can access the floor of tank through internal inspection, but they are

designed for tanks storing other substances [11] [16]. These robots are designed for use

in tanks storing products that are in a liquid state and stored at room temperature,

namely kerosene, gasoline, jet-fuel, etc. One of the unique challenges of designing an

inspection robot for LPG tanks is that the tank is held at cryogenic temperatures.

None of the previous designs are applicable to use in this environment, so a system

needs to be developed to specifically address LPG tank inspection.

1.3.4 Proposed System Design

Cable
Management
System

Figure 1-4: Proposed Design of Inspection System. Internal mobile inspection robot
scans inside surfaces of tank for defects. Localization sensor platform locates and
tracks position of inspection robot. Controlling computer is located outside the tank,
away from the hazardous environment inside the tank.

The proposed inspection system design consists of a mobile platform, an ingress

and egress mechanism, non-destructive testing equipment, an external controlling

computer, and a localization system. The layout of these components are shown in

Figure 1-4. The NDT equipment will be mounted on the mobile platform that enters

the tank via the ingress and egress mechanism. A controlling computer will be located
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outside the tank and will communicate with the robot, either through an umbilical

cord or a wireless system. Placing the controlling computer outside the tank reduces

the explosion risk by keeping the majority of the electronic switching outside the

explosive environment. A localization system will be placed in the manhole to create

a reference frame from which a map of the tank will be created.

This thesis encompasses the work done on the design of the localization system

for the robotic LPG tank inspection system. The first component of the work is the

sensor platform design, including the concept definition and hardware selection. The

second part of the work consists of the development and first implementation of data

collection and tank mapping algorithms. The fitting algorithm detailed in this work

is specific to cylindrical tanks with planar caps because it is the most common LPG

storage tank shape.

1.4 Prior Art

The two components of the inspection system detailed in this thesis are the design

of the localization system hardware and the processing of the collected data into a

useful map. This section discusses prior work done on localization systems, followed

by a discussion of the prior work done on fitting a capped cylinder to 3D data.

1.4.1 Localization Method Prior Art

There are four methods of locating a mobile robot discussed here: triangulation,

vision, landmark interaction, and dead reckoning. These three methods are the most

common means of localizing a robot in its environment. The method of localization

and limitations of each of these methods are described below.

One of the most common methods for locating mobile robots is triangulation.

Three or more sensors with known locations send out signals in all directions. The

signals are received and returned by transceivers on the robot [11][17]. The distance

to the robot from each sensor can be calculated from the time of flight of the sensor

signal to and from the robot. The distance from the sensor defines a sphere of possible
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Figure 1-5: Triangulation. Distance from sensor creates a sphere(or circle when in

2D) of possible locations of the point of interest. The intersection of the spheres(or
circles) pinpoints the location of the point of interest.

robot locations. The sphere's intersection pinpoints the location of the robot as shown

in Figure 1-5. A method of repeatedly and accurately placing triangulation sensors

will need to be developed before triangulation is a feasible option for the inspection

localization system.

A second localization method is to use vision sensors to image the environment

[18]. This is most similar to the human method of localization. A robot uses a camera,

instead of eyes, to record its surroundings and then extracts details of the environment

to orient itself by. There are two major difficulties with vision localization in an LPG

tank. The first difficulty is the lack of guaranteed features in the tank. There may

not be any features in the tank that can be extracted from images to orient the robot

with. The second difficulty is the lack of light in the tank. There is no light entering

the tank, and only a low power light source can be used without risking explosion.

Another method that is similar to a vision based system is a method that uses

landmark sightings [19]. Landmarks are placed at known intervals in the environment.

These landmarks can be visual or can use another technology. They are detected

by the robot and its location can be found based on the relative location of the
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landmarks. The difficulty with this method is that the landmarks would need to be

placed accurately. This limits the transportability of the system in the same way that

placing triangulation sensors do.

The above methods are usually combined with dead reckoning [19]. Dead reckon-

ing uses sensors that measure the motion of the robot wheels or tracks. The amount

of rotation is directly related to the distance traveled. Errors in the measurement of

the distance traveled occur when the wheels or tracks slip. Slipping is more likely to

occur on uneven ground, which the tank may have due to uneven build up of partic-

ulates. The slipping error keeps dead reckoning from being a stand alone method for

localization, but it can provide supplemental information when used in conjunction

with another localization method.

All of the localization methods listed above have significant difficulties when ap-

plied to an LPG tank inspection system. A method needs to be designed that can

work in the LPG tank conditions. The requirements and design of a localization

sensor platform that can overcome the difficulties of the environment are described

in Chapter 2.

1.4.2 Data Processing Prior Art

Processing environment data involves segmenting it into sections that are then fit

to geometric primitives such as planes and circles [20][21]. The edges of the shape

are located at the intersection of the geometric primitives. All fitting is done us-

ing a batch least squares optimization method. This thesis focuses on developing a

new segmentation method that is faster and more robust to noise than the current

methods.

There are four categories of segmentation methods: Clustering, Seed and Grow,

Edge detection and Hough Transform. In each of these methods, properties of points

on the surface of the object of interest are used. Usually these properties are the

position and orientation of the surface normal at the point of interest [22]. Each of

these methods is described below.

In clustering, the properties of each data point are compared and points with
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similar properties are grouped together. Points are considered to be part of a cluster

when the properties of the point of interest and the properties defining the cluster are

within a user defined similarity threshold. When a point does not belong to any of the

existing clusters, a new cluster is formed. The comparison process iterates through

each point on the surface until all points have been sorted into a cluster. Each point

now lies in a cluster and each cluster corresponds to a surface.

Seed and Grow is similar to clustering in that it groups together points with

similar properties. The difference is that random seeds are selected and compared

to their neighbors instead of to a set of clusters. Neighboring points are compared

and collected into a group until the discrepancy between the properties of the current

point and its neighbor exceeds a user defined threshold. Once all the neighboring

points next to the grown section fall outside of a threshold for similarity, another

seed is chosen. The process repeats until all points are inside a group. A final sweep

combines homogeneous regions [21] [22].

Edge detection also compares neighboring points, but in this method points defin-

ing the edges of the surfaces are collected instead of points within the surfaces. The

properties of each point are compared to the properties of all its neighbors. An edge

is indicated when discrepancies reach a defined threshold. These edges are collected

and used to define the extents of each section [23].

The Hough Transform relies on a voting procedure to find the most common

geometric parameters for a given area. Several points are chosen and all possible

planes (or whatever shape is of interest) that intersect these points are determined.

A vote is cast for each of the possible solutions. The solution with the most votes is

assumed to be the true fit [24] [25]. Multiple surfaces will result in multiple solutions

with a large number of votes. Each point's properties are then compared to the

solutions and grouped according to the best fit.

These methods are flexible in the shapes they are able to segment and fit, but

there is room for improvement when segmenting inspection environment data. These

methods are flexible because they assume nothing about the environment from which

the data is being extracted. No external information is needed and the solution
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is unconstrained. This flexibility comes at the expense of computation power and

processing time. All the methods mentioned above require iteration to converge on a

solution. The computation expense and processing time can become significant when

the size of the data point cloud is large [26]. Improvement on processing time and

computation needs can be achieved by integrating some knowledge of the solution

into the algorithm. Fortunately, the general shape of the inspection environment is

known in the case of inspection robots. The shape knowledge can be used to remove

iteration which is the major contributor to the time and computational expense. The

knowledge can also be used to reject noise errors in the data, making the fit more

robust to noisy data than the methods mentioned above.

1.5 Scope

This thesis describes the design of a localization sensor platform and corresponding

algorithms for an LPG tank inspection localization system. Chapter 2 discusses

the qualitative design process and selection of technologies for the sensing platform.

Chapter 3 details the data collection and mapping algorithm. Chapter 4 describes

simulated and real world testing of the algorithm and hardware design. Chapter 5

summarizes the work completed on the localization system and provides a discussion

of future work that could be done to improve the system.
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Chapter 2

Sensor Platform Design

The first step in designing a robot localization system is to determine the best

hardware design given the contraints imposed by the environment. This chapter

describes the qualitative design process used to design the localization platform for

a robotic LPG tank inspection system. It begins with a discussion of the system

requirements followed by an evaluation of the available sensing technologies. Eight

sensor layouts are evaluated and the final design concept is discussed in detail.

2.1 Sensor Platform Requirements

The requirements for a localization sensor platform in an LPG tank are driven by three

factors: the environment in which the platform will be operating, the need for the

system to be portable between tanks, and the funding limitations. The requirements

are listed in Table 2.1.

Table 2.1: Sensor
Property

Sensing Distance Range
Operating Temperature

Size (width x length)
Energy Released

Tank Independent
Commercial Availability

Cost

Platform Functional Requirements
Required Desired

0 to 98 0 to 150
-100 to 50 -100 to 50
<0.5 x 0.7 0.1 x 0.1

<0.48 <0.25
Yes Yes

Available Readily Available
<20,000 <10,000
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The tank environment influences the sensing distance range, the operating tem-

perature, the size and the energy released requirements of the sensing platform.The

sensing distance range is determined by the size of the tank. The diameter of the

tank is 98 m so the sensor's minimum required range is 0 to 98 m with a desired

range up to 115 m, the diagonal distance across the tank. The system must be small

enough to fit through the 0.5 m diameter manhole. The environment in the tank can

be down to -100 C, while the temperature outside the tank can reach up to 50 C. The

sensor system may need to operate in both environments, so the required and desired

operating temperature ranges are -100 to 50 C. The tank is also dark so any sensor

system needs to be able to operate in low light or use a low power light source. The

sensors must also emit only a low amount of power due to the explosive nature of the

fumes in the the air. The minimum ignition energy for propane in air is 0.25-0.48 mJ

[27]. Any sensor must be emitting lower than 0.48 mJ energy, preferably less than

0.25 mJ. A final but unlisted requirement driven by the metal tank wall is that only

systems sending signals from within the tank are acceptable. The metal tank acts as

a Faraday cage, thus signals from outside the tank are unreliable.

The second driving factor on the requirements is the need for the system to be

portable which influences the size and tank independent requirements. The system

needs to be small enough to be carried by a single technician so that it can be easily

moved between tanks. The system also needs to be independent of which tank in

which it is being used, thus nothing can be permanently installed in the tank. Finally

the system needs to be tolerant of installation variations.

The final driving factors are the logistical and financial considerations due to

funding limitations. The time limitation of the funding source does not allow for the

design and testing of new technology. Any technology used in the platform needs to

be composed of off-the-shelf components. In addition, the cost of the system should

be reasonable. The cost limitations of $20,000 and $10,000 are order of magnitude

estimates based on the cost of the robot and the amount of the project funding. These

limitations only eliminate expensive technologies that could dominate the system cost.
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2.2 Distance Sensing Technologies

A range of sensing technologies were examined before the optimal technology was

identified. The first technology examined was a vision sensor system as it mimics

how the human inspectors would navigate around the tank. A local GPS system

was considered, followed by Acoustics, otherwise referred to as SONAR. Finally, two

types of EM sensors were considered: RADAR and LIDAR.

2.2.1 Vision Sensors

A vision system was initially considered but immediately discarded. There are three

issues that made the abandonment of vision sensors reasonable. The first is the lack

of available light in the tank. Any vision sensor would have to be able to take images

with very little to no light and the addition of a light source is almost impossible

due to the risk of explosion. The second issue is the lack of distinguishing features

in the tank. Even if images were able to be recorded, there are no features that

could be used as references for locating the robot. The third reason for discarding the

vision system is that it would require a high bandwidth connection to the controlling

computer. Communication between the robot and the controlling computer is going

to be limited so a low bandwidth sensor is preferred.

2.2.2 GPS

Localization via GPS was also immediately discarded. GPS, Global Positioning Sys-

tems, operate by receiving signals from satellites. The location of the sensor is found

relative to the satellites' known locations using triangulation [28]. There are two

problems with this technology when being applied to localization within the tank.

The first is that even high resolution GPS is only accurate to within a few meters

[29]. It is desirable to know the robot localization within a few centimeters which is

orders of magnitude better resolution than the GPS can supply. The second problem

is that the metal tank creates a Faraday cage that will prevent clean signal reception

from external sensors [30].
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2.2.3 Acoustic

A third technology considered for the distance sensor was acoustic sensing, otherwise

known as sound navigation and ranging or SONAR. In these sensors a series of acous-

tic waves, usually in the ultrasonic range, are generated by a transducer and travel

through the environment. When the waves hit an object, they are reflected back to-

ward the receiver. The distance of the object from the sensor is directly proportional

to the time from transmission to detection and the properties of the medium through

which the wave is traveling [31]. The sound waves can be concentrated in a beam to

generate directional information in addition to the distance measurement.

The maximum distance and measurement accuracy of sonar heavily depends on

three factors: the operating frequency, the acoustic impedance of the medium and the

acoustic impedance of sensors. High frequency waves result in better accuracy, but

are attenuated more quickly than low frequency waves. Low impedance environments,

such as air, need larger amplitude waves to achieve enough acoustic power to travel.

To get these large amplitudes low frequencies would be needed. A rule of thumb is

that it is only possible to image a feature that is larger than the wavelength of the

signal. The application needs good resolution so it would need a high frequency signal,

but the high frequency signal would be too attenuated at 98 m to be able to return

to the transducer resulting in conflicting signal needs for the desired rsolution and

sensing range. Conduction between the transducer and the environment also impact

the measurement. Conduction is best when the impedance of the sensor matches that

of the environment. The most common transducer is made of piezoelectric material

which has an impedance of 35 MPas/m [32]. The impedance of air is approximately

420 Pas/m [33]'. The piezoelectric transducer is mismatched to air by about 105. This

large impedance mismatch indicates that the sensor will not generate good signals

in air. The conflicting signal needs for the resolution and range combine with the

mismatch in impedance make conventional transducers poor sensors for an LPG tank

localization system.

There are no commercially available acoustic sensor that will work in air over the
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distances needed to sense the tank. Acoustic sensors for use in air have a max range

of a few meters due to the mismatched impedances. A new transducer would need to

be developed using a material with the same impedance as air to acheive the desired

accuracy and the necessary range. As mentioned in the requirements section, the

development of a new sensor is out of the scope of the project, thus SONAR sensors

are not a good option for the main distance sensor.

2.2.4 Electromagnetic Sensors

The last set of technologies that were explored were electromagnetic sensors. Elec-

tromagnetic distance sensors use a process similar to that of acoustic sensing where a

wave pulse is emitted into the environment and the distance to the object it hits can

be calculated from the time to receive the reflected returning signal. The main dif-

ference is the type of wave used. Conventional radio detection and ranging, RADAR,

uses electromagnetic waves in the radio frequency range where the wavelength ranges

from 1 cm to 100 m [34]. Millimeter wave radar uses waves with 1 mm to 7.5 mm

wavelength [34]. LIDAR, light detection and ranging, uses visible or infrared waves,

generally with 600-1000 nm wavelengths [34].

Conventional Radar

Conventional RADAR is a common technology in marine and air vehicle detection,

but has significant issues that limit its applicability as an LPG localization sensor.

Radar waves are reflected when there is a large change in dialectic or diamagnetic

constants, which is the case for metal vehicles in the air or water [34]. For the tank

inspection application, the boost in signal for metal in air is a hindrance because the

large metallic wall will result in a strong signal that may wash out any signal returned

by the small robot. Another reason that radar is used in vehicle detection is that

the radar sensing range is large due to its long wavelength. While long wavelengths

are a benefit in long range detecting, they are problematic in terms of accuracy. It

is generally considered to only be possible to image a feature about the same size or
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larger than the wavelength [34]. This means that most traditional radar sets would

not be able to sense our robot due to its small size. The minimum range for sensing is

also dependent on the wavelength, with longer wavelengths unable to measure close

distances. For instance, marine RADAR typically has a minimum sensing distance

of 20 m, much larger than the required minimum required by the LPG system [28].

Marine radar was particularly explored because it has the smallest traditional radar

packages. Even so, the size of the marine radar sets were just slightly too large for

the application. Traditional radar is not a good technology for this application due to

its inability to meet the minimum sensing distance, resolution and size requirements.

MM Wave Radar

Millimeter wave radar is a promising modification of conventional radar for sensing

distances in a range appropriate for a tank inspection localization system, but it is

still too young of a technology to apply to this project. MM wave radar operates using

the same principles as conventional radar, but it uses millimeter length wavelengths.

It does not suffer from the same limitations of traditional radar systems, but has

a shorter maximum sensing distance. Its smaller wavelength reduces the minimum

sensing distance to 0.6 m and increases the resolution to 5 mm [35]. This is at the

expense of the maximum sensing range, now 500 m, which is still over the maximum

range the localization system would need. Due to its relatively new nature, it is not

widely in use and not readily available. The majority of users create their own system,

and the commercially available versions are expensive.

Lidar

The final potential technology considered was LIDAR, light detection and ranging.

The wavelength used for LIDAR is in the visible or infrared region of the electromag-

netic spectrum. The short wavelength limits the maximum sensing distance to lower

than 300 m, but it has a shorter minimum sensing distance of 0.2 m, and a better

resolution of 1 mm [36]. LIDAR is commonly used as a distance measuring technology

in many fields such as robotics, manufacturing, mapping, and construction so there
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are many commercially available laser rangefinders.

Commercial LIDAR systems measure distance using one of two methods: phase

shift or time-of-flight. Time-of-flight, TOF, uses the same process described in the

RADAR section except in this case the relationship is related to the speed of light

instead of the speed of sound. The equation governing the relationship between the

time of flight, tf light, and the speed of light c are shown in Equ. (2.1) [37].

dist= c * tflight (2.1)

In phase shift measurements, the sensor emits a wave of known frequency which

bounces off the object to be measured. The phase of the returned wave is measured

by the sensor. The difference in phase, the phase shift, is related to the time of flight

in Equ. (2.2) [37].

0 = 2 (tflight) (f (2.2)

where f is the frequency of the wave. The distance point to the of interest can be

found by solving Equ. (2.2) for tflight and using that value in Equ. (2.1). Aliasing

occurs if the distance to be measured is longer than the wavelength of the signal.

Multiple waves of varying frequency can be used to remove the aliasing effect [37].

Both TOF and phase shift techniques can be used to achieve the requirements

listed above so other considerations were used to determine which technology is the

better option. TOF uses laser pulses instead of continuous laser beams to measure

distance. Although the pulses are powerful enough to measure large distances, they

do not accumulate significant energy due to their short duration. This is important

to the LPG device because there is a risk of igniting the fumes remaining in the tank

if too much energy accumulates. For example, the Acuity AR3000 is a 193 nJ laser

pulsed at 2 khz for 6 ns when using time-of-flight for measuring distances [36]. This

is orders of magnitude smaller than the minimum ignition energy of propane in air of

0.25-0.48 mJ [27]. TOF sensors are also better able to measure wet surfaces, which

may be present in the tank, and TOF is more capable of measuring off oblique surfaces

thus allowing for more freedom in sensor placement [37]. Time-of-flight has multiple
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advantages over phase shift sensing making it a better option for this application.

2.2.5 Sensor Technology Conclusion

Of the three technologies available for distance measuring, LIDAR is the best option

for this application. Vision does not work because of the lack of light and bandwidth

needs. GPS is not acceptable because of the Faraday cage effect of the tank and

its large resolution. Sonar does not work because there is no commercially available

sensor that can achieve the required resolution over the required sensing range. The

three EM sensing technologies are compared with each other with regards to each

design requirement in the un-weighted Pugh chart, Table 2.2. Conventional radar is

eliminated because it does not meet the needed sensing range and does not fit the

size requirement. Millimeter wave radar meets the technical requirements, but it is

not readily commercially available within an acceptable price range. Table 2.2 clearly

shows LIDAR as the best option for this application.

Table 2.2: Pugh Chart of Sensor Technology Options
Technology Sensing Operating Size Energy Commercial Cost Total

Range Temp Released Availability
Acoustic -1 -1 0 0 -1 -1 -4

Radar 0 -1 -1 -1 -1 1 -3
Lidar 1 -1 0 -1 0 0 -1

LIDAR meets all the sensing technology requirements except for the operating

temperature requirement of -100 to 50C. None of the sensors were able to meet this

requirement. Electronic component operating temperatures are only rated down to

-40 C so no sensor manufacturer will quote a lower operating temperature for any

sensing technology. The temperature requirement needs to be removed due to the

inability of any sensor to meet it. The temperature problem will have to be accounted

for in the design of the sensing platform with some form of heating and insulation.
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2.3 Sensor Layout

Several factors need to be considered when determining the optimal way to layout

the sensor or sensors. The first two consideration are the cost and accuracy. Multiple

or expensive sensors increase the cost of the system, but may increase the accuracy.

The trade-off between these two factors needs to be considered for each design. The

third consideration is the complexity of the design in regards to communication and

fabrication. A good design will minimize the complexity because it will reduce con-

struction costs and often is more robust. The last consideration is the flexibility of

the design. It would be preferable if the system that locates the position of the robot

in the tank can also map the environment in order to make a map of the tank extents

and the defect locations.

LIDAR sensors can be bought in two forms: single point sensors and scanning

sensors. A single point sensor measures the distance to one point in the direction

it is facing. The advantage of this type of sensor is that the operating computer

will know the direction the laser is pointing at all times. The disadvantage is that

to take measurements in more than one direction, a platform will have to be built

with actuation in all directions of interest. A scanning sensor already has one degree

of rotation actuated. It is usually made from a single point sensor reflected off of

a rotating angled mirror. The advantage of this type of sensor is that it is already

actuated about one axis so to take measurements in space a platform will only need

to be actuated about one more axis. The first disadvantage is that scanning sensors

usually cannot rotate a full 360 degrees so multiple sensors would be need to be

used. The second disadvantage is that it may be difficult to back out and control the

instantaneous direction from the sensor. The scanning sensors are meant to create a

horizontal slice of the environment, not point at a single entity. This would limit the

flexibility of the sensor platform as it would not be able to track the robot.

There are eight concepts discussed in the following sections. They can be broken

into two categories: those with the main sensor(s) on the robot and those with the

main sensor(s) located elsewhere. The location, number and type of sensors depend
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on the concept. These details and a discussion of the advantages and disadvantages

of each design are discussed in the following sections. At the end of the chapter the

concepts are compared and the final design is chosen.

2.3.1 On Robot

The advantages of a design where the main set of sensors are on the robot include

a decreased chance of communication problems and less of an issue with noise. A

physical communication connection between the sensors and the robots can be used

when the sensors are located on the robot. The physical connection has a lower

probability of encountering communication problems than the wireless system that

will need to be used by sensors not located on the robot. The on robot sensors will

be located in the same location as the robot, so there is no chance of losing the robot

in the measurement noise; the noise just decreases the accuracy of the measurements.

The disadvantages of an on robot sensor system include complexity of localizing

with no unique environment features and the placement of the sensors within the

hazardous environment. A sensing system contained entirely on the robot will need a

reference feature to complete its orientation of the robot. The lack of unique environ-

ment features will require the placement of an external reference item in addition to

the sensors on the robot. The second disadvantage is that all the sensing components

will be thoroughly inside the corrosive and thermally challenging environment. Addi-

tional advantages and disadvantages depend on the specific setup and are discussed

in the concept description.

Concept 1: On Robot Idea #1

The first on robot concept consists of several scanning LIDAR sensors placed on the

robot with a pylon dropped in from the manhole as shown in Figure 2-1. At least

two scanning sensors will be needed to see a full 360 degrees around the robot. These

sensors will map a horizontal plane of the tank walls and pylon in relation to the

robot. The radial position of the robot can be found from the distances to the walls
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Figure 2-1: Concept 1: A set of scanning distance sensors on the robot in a plane
parallel to floor measure to the walls and a drop in locating feature. The large black
circle represents the tank walls. The small black circle is the manhole. The black dot
is the center of the tank. The green rectangle represents the robot. The dashed arrows
represent the measurements taken by the sensors and the dashed line circles show the
possible locations of the robot based on the measurements. The circle intersections
are the possible locations of the robot. These possible locations are narrowed down
to the actual location based on the integration of previous data.

and the orientation is based on the relative direction of the pylon. The pylon is

located below the manhole so its location in known.

In addition to the advantages listed above, the lack of an actuated platform is a

specific advantage of Concept 1. The two scanning sensors can see 360 degrees around

the robot without any additional actuation. Fabrication of a non actuated platform

is easy when compared to the actuated platforms needed in some of the following

concepts.

The disadvantages specific to Concept 1 are that the accurate placement of the

pylon may be difficult and that the system must continually collect multiple points of

data to locate the robot The placement of the pylon is a significant disadvantage of

Concept 1. The placement must be accurate in order to achieve an accurate location

of the robot. Dropping the pylon 60m down into the tank will be difficult to achieve

with accuracy. The second specific disadvantage is that several measurements to the

walls and a measurement to the pylon will be needed each time the position of the

robot is updated. The sensor must continue to take multiple points of data increasing

the bandwidth needed to handle the constant stream of localization information.
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Concept 2: On Robot Idea #2

Figure 2-2: On Robot Concept 2: A set of scanning distance sensors on the robot in
a plane parallel to floor with 1 single point distance sensor measuring to a reflector
in the manhole. The large black circle represents the tank walls. The small black
circle is the manhole. The black dot is the center of the tank. The green rectangle
represents the robot. The dashed arrows represent the measurements taken by the
sensors and the dashed line circles show the possible locations of the robot based on
the measurements. The circle intersections are the possible locations of the robot.
The location is finalized by the measurement to the reflector.

The second on robot concept improves on Concept 1 by replacing the orientation

pylon with a reflector in the manhole and a single point sensor on the robot to

measure the distance to the reflector. This concept is shown in Figure 2-2. The

scanning sensors on the robot still measure the walls 360 degrees around the robot.

The single point sensor is actuated in order to remain locked on the reflector in the

manhole. The orientation of the sensor is measured about two axes which can be

directly related to the orientation of the robot.

The specific advantage of Concept 2 is that an accurate reflector placement is

easier to achieve than the pylon placement from Concept 1. What Concept 2 does that

improves on Concept 1 is the placement of the localization feature in a location that

is easily accessible, the manhole. The ease of installation will increase the accuracy

of the localization system.

The specific disadvantage of Concept 2 is the potential complications with the

tracking mechanism. The single point sensor must be actuated and measured about

two axes in order to track the reflector in the manhole. The additional actuators
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and sensors increase the complexity of the design, thus increasing the risk. They will

also be located in the cold, explosive environment so heating and shielding will be

necessary.

Concept 3: On Robot Idea #3

Sensors leave I DOF
Toreflector Towall unaccountedfor.

Differential comparison
of measurements as the

To wall To wal robot moves will clarify
- ------ 4-...- the robot location.

To wall

* All sensors on robot
* 5 single point distance sensors
* I reflector in manhole

Figure 2-3: Concept 3: A set of single point distance sensors on the robot in a
plane parallel to floor with 1 single point distance sensor measuring to a reflector
in the manhole. The large black circle represents the tank walls. The small black
circle is the manhole. The black dot is the center of the tank. The green rectangle
represents the robot. The dashed arrows represent the measurements taken by the
sensors and the dashed line circles show the possible locations of the robot based on
the measurements. The circle intersections are the possible locations of the robot.
The location is finalized by the measurement to the reflector.

The third on robot concept replaces the scanning sensors in Concept 2 with several

single point distance measuring lasers and keeps the sensor measuring to a reflector

in the manhole. The multiple single point sensors provide the same function as the

scanning sensors in Concept 2. Without the need to measure to a specific feature in

the tank, only a few points to the walls are necessary.

The advantages and disadvantages of the Concept 3 are the same as those of

Concept 2 with one change. The exchange of scanning for single point sensors reduces

the cost of the system at the expense of information about the environment. The

single point sensors are less expensive so replacing the scanning sensors with single

points will decrease the overall cost of the system. The downside of the replacement

is that less information is gathered about the environment so it will take more time to
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create a map of the environment with which the robot location and defect locations

can be mapped. An a priori map of the tank may be necessary because there is no

guarantee enough information will be collected to create the tank map before it is

needed.

2.3.2 Off Robot

The second category of sensor layout concepts contains those concepts where the main

set of sensors are located elsewhere in the tank. One advantage of this type of layout

is that the sensor system can be larger because it is not restricted to fitting on the

robot. The sensor can be placed anywhere within reach of the robot or operator so

its size is only limited by the manhole. The main disadvantage of this type of system

is the communication between the sensor(s), the robot and the controlling computer.

There are now three entities that must communicate with each other increasing the

communication complexity of the system and increasing the potential problems.

Concept 4: Off Robot Idea #1

Drop-in sensor systemn------

* No sensors on robot
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2x 180deg scanning distance
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Figure 2-4: Concept 4: A separate sensor module consisting of a set of scanning
distance sensors dropped into the tank measuring the distance to walls and robot.
The large black circle represents the tank walls. The small black circle is the manhole.

The black dot is the center of the tank. The green rectangle represents the robot,
while the red dot represents the sensor platform. The dashed arrows represent the

measurements taken by the sensors.

The first off robot sensing concept, Concept 4, is to place a separate sensing module
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containing two scanning laser rangefinders into the tank to measure the distance to

the walls and the robot as shown in Figure 2-4. The location of the sensor module is

known to be just below the manhole. The measurements to the walls create a map

of the environment while the measurement that is shorter than expected will be the

one locating the robot.

The specific advantages of Concept 4 are that it gathers information about the

environment and that it acts as both the sensing platform and the reference feature.

As the sensor scans to locate the robot, a map is created of the environment. Each

sweep can improve the quality of the map while also updating the position of the

robot. The sensing module's location is known due to its placement just below the

manhole so it does not need a secondary locating feature to orient by.

The specific disadvantages of Concept 4 are that placing the module accurately

and repeatedly is difficult, that the sensors are still inside the hazardous environment,

that some method of inspecting underneath the module will need to be devised and

that there is the possibility of losing the robot in the noise of the measurements.

It is difficult to repeatedly place an object down 60m with accuracy as expressed

in Concept 1. Concept 4 also does not improve on the on robot concepts in terms

of removing the need for heating and insulating the sensors due to the environment.

The third disadvantage that is specific to Concept 4 is that inspecting underneath the

sensing module would require the removal of the module and loss of the localization

method. The last disadvantage is that there is the possibility of losing the robot in

the measurement noise. Concept 4 relies on there being a significant disturbance in

the distance measurements to locate the robot. The robot is small in comparison to

the distances in the tank so it may be possible to lose the robot in the measurement

noise when it is located next to the wall at a significant distance from the sensor

platform.

Concept 5: Off Robot Idea #2

The second off robot idea, Concept 5, is to attach a physical connection to the robot

from the manhole and monitor the movement and length of the tether to determine
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Figure 2-5: Concept 5: A physical tether to the robot from the manhole. The
orientation and the length of the tether determine position. The large black circle
represents the tank walls. The small black circle is the manhole. The black dot is the
center of the tank. The green rectangle represents the robot. The dashed line circle
shows the possible locations of the robot based on the length of the tether. The two
angle measurements determine where the robot is on the circle defined by the tether
length.

the robot position in relation to the manhole. In this concept a physical tether

is connected to the robot. The orientation of the tether is measured in two axes.

The length of the tether corresponds to the distance from the manhole. The two

axes rotations and the tether lenght define the position of the robot relative to the

manhole.

The specific advantages of Concept 5 are that it will never lose contact with the

robot and that the tether can also function as a communication and an ingress and

egress method. The robot will always be in contact with the controlling computer

through the physical connection. Of all concepts, this is the only one that has no risk

of losing the robot when it is in the tank. The other advantage is that the tether can

act as the communication method between the robot and the controlling computer

instead of a wireless system. It can also act as the ingress and egress method through

a winch system if it is reinforced.

The specific disadvantages of Concept 5 are the management of the tether and

the lack of information about the environment. Managing the tether will be difficult

because it will hinder the robot movement. The tether needs to maintain tension to

accurately measure the distance from the sensor, but it needs to be loose enough that
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it does not hinder the robot movement. The tether also needs to made of a material

that retains flexibility in the cryogenic temperature characteristic of the tank, or it

will need a heating method that will not ignite the fumes. The second disadvantage of

the physical tether is that it provides no information about the environment. There

is no way to determine the extents of the environment using the tether alone, so

another sensing system will need to be integrated or a map of the tank will need to

be provided.

Concept 6: Off Robot Idea #3

* No sensors on robot
- Minimum 3 sensors to define location

in space

Figure 2-6: Concept 6: A local GPS-like system consisting of distance measuring
sensors placed on walls by robot as it heads into tank. The large black circle represents
the tank walls. The small black circle with a central dot is the manhole. The larger
black dot is the center of the tank. The green rectangle represents the robot. The
dashed line circles show the possible locations of the robot based on the distance
measurements from each sensor. The circles' intersection is the location of the robot.

Placing triangulation sensors on the walls by the robot as it heads into the tank

was also considered as an option for the sensor setup. This local GPS-like system,
Concept 6, is shown in Figure 2-6. This concept is dependent upon having a robot

enter the tank by climbing down the walls. As it maneuvers its way down into the tank

the robot places several sensors that scan the environment. The signals are picked up

and returned by receivers and transducers located on the robot. The distance from

each sensor to the robot defines a sphere of the possible locations of the robot. The

intersection of all these spheres will define the position of the robot.
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The main advantage of Concept 6 is that triangulation methods have been thor-

oughly studied and are often used in localization. The mathematics describing trian-

gulation are well developed so it would be easy to put together a system if a set of

appropriate sensors could be fabricated.

The disadvantages of Concept 6 are more numerous than the advantages. The

location of each sensor is important, but would be difficult to achieve with accuracy

and repeatability. Another significant disadvantage is that there are no commercially

available laser sensors that are set up to work in a triangulation system. In addition

to these unique disadvantages, Concept 6 still locates the sensors within the tank.

The sensors sending signals will be located on the walls and the receivers will be on

the robot so they are all still exposed to the hazardous environment.

Concept 7: Off Robot Idea #4
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Figure 2-7: Concept 7: A local GPS-like system consisting of distance measuring
sensors on a expanding scaffolding hanging from the manhole. The large black circle
represents the tank walls. The small black circle with a central dot is the manhole.
The larger black dot is the center of the tank. The green rectangle represents the
robot. The orange triangle represents the expanding network with sensors on each
corner. The dashed line circles show the possible locations of the robot based on the
distance measurements from each sensor. The circles' intersection is the location of
the robot.

Concept 7 is a slight improvement on Concept 6. It consists of triangulation

sensors being used to locate the robot, but the difference is that the sensors would

be attached to a network that expands from the manhole as shown in Figure 2-7.
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This helps remedy the accurate and repeatable placement issue of Concept 6 but it

adds the complexity of fabricating and securing an expanding network. The distance

between the sensors needs to be large to achieve accurate localization, adding to the

complexity of the expanding network. The other advantages and disadvantages of

Concept 6 apply to Concept 7 as well.

Concept 8: Off Robot Idea #5

Manhole

ed

*e

* No sensors on robot
- Distance laser sensor on instrumented

two axis gimbal

Figure 2-8: Concept 8: A sensor module consisting of a single point distance sensor
and two axis angle measurement devices placed in the manhole. The large black
circle represents the tank walls. The small black circle is the manhole. The black dot
is the center of the tank. The green rectangle represents the robot. The measured
distance and the angle of the measurement fully define the location of the robot.
Measurements can also be taken to the walls to collect data for a map of the tank.

The final concept is to place a single point distance sensor on a two-axis actuated

gimbaled platform in the manhole. Concept 8 is shown in Figure 2-8. Each axis

position is measured using angular sensors. The two angle measurements and the

distance to the point of interest fully define the position in space. The method of

localization is the same as that of Concept 5, but a laser rangefinder is used instead

of a physical tether. The platform can scan the distance sensor around tank to locate

the robot and track its location because the computer has complete control of the

position.

The specific advantages of Concept 8 include the ability to place the sensor in

a repeatable manner, the ability to map the environment in addition to locating
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the robot in space, and that the sensors are not completely submerged in the haz-

ardous environment. The gimbal location is known since it is placed in the manhole,

which is easily accessible by the technician. This allows for repeatable and accurate

installation. In addition to a known location, the direction of the measurement is

controlled by the external computer so scanning the environment to build a map can

be completed in addition to tracking the robot location. The sensor placement in

the manhole places it in the boundary between the tank and external environments

which will be the warmest and least hazardous position in the tank.

The specific disadvantages of Concept 8 are that it may need some sort of receiver

on the robot to complete the tracking contro loopl and that it will have some dead

spots. In order to complete feedback control and track the robot, there may need

to be a receiver placed on the robot to indicate that the laser is pointing at it. The

other disadvantage of the system is that it may have some dead spots. The one known

dead spot will be directly behind the sensor platform. The dead spot issue is not a

significant problem because the sensor platform is placed in the manhole so the dead

spot is located out the back of the manhole. The places of interest for the sensor

system will be the floor and a short distance up the wall, which will not be in the

dead spot.

2.3.3 Concept Comparisons

The eight concepts listed in the sections above were evaluated based on five criteria:

cost, robot localization accuracy, system and fabrication complexity, communication

complexity and flexibility. The cost is the expected cost of the components, which

is heavily dominated by the laser sensors. The robot localization accuracy refers to

the accuracy of the measurement given the sensors used, the layout and any other

influencing factor, such as the accuracy of the external feature placements. System

and fabrication complexity is separate from the cost because the complexity is also

related to how often problems may arise and how much development work is needed.

Communication complexity is similar to system and fabrication complexity in that it

is concerned with potential problems during setup and operation, but it refers to all
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Table 2.3: Pew Chart of Sensor Placement Concepts
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Concept 4: Separate sensing module dropped in tank
Concept 5: Physical connection to robot from manhole
with sensor monitoring distance and length
Concept 6: Triangulation sensors placed on walls by
robot as heads into tank (local GPS)
Concept 7: Triangulation sensor network expanding
from manhole
Concept 8: Sensor platform in manhole with single sen-
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communication needed between the robot, the sensors and the controlling computer.

Flexibility refers to the overall system flexibility in performing secondary operations,

namely, being able to measure the environment to make a map of the tank. Table 2.3

shows a comparison of the concepts in the five criteria. Concept 3 was chosen as the

baseline because it is the closest concept to what was proposed in the initial project

description. A negative value indicates worse performance in that category while a

positive value indicates better performance.
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2.3.4 Concept Selection

Concept 8 was determined to be the best fit for the robotic inspection system localiza-

tion sensor platform. The cost is less than any of the other concepts with the exception

of Concept 5 which uses no laser sensor. It is less difficult to accurately place the

platform than any of the other in tank modules because it is placed in the manhole

which is easily accessible by the operator. Concept 8 is about average in terms of

system and fabrication complexity due to it being a single module with two rotating

axes. The communication complexity is no worse than any of the other concepts that

must also communicate with the controlling computer via wireless methods. It has

a slight advantage of being able to connect via cable to the controlling computer so

only the robot is being wirelessly controlled. Finally, it is one of the few concepts

that allows for mapping of the tank in addition to locating the robot.

Figure 2-9: Two surveying total robotic systems. Left: Trimble S8 surveying total
station [9]. Right: Leica TPS1200+ surveying total station[1O].

Concept 8 is similar to the total stations used in surveying. Two surveying total

stations are the Leica TPS1200+ and the Trimble S8, shown in Figure 2-9. These

platforms are used to create 3D images of buildings by scanning. They can also take
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measurements by tracking a target. The reason these are not considered as options for

this thesis is mainly the prohibitive cost. They are too expensive for use in prototype

and lab work, but they may be an option when making the full production system.

Another problem in some of the systems is the limited range of motion in the head.

The Leica system appears to have a large blind spot which would interfere with the

measurements needed to maintain contact with the robot. A third difficulty with

these systems is the larger than desirable minimum range. Most of the systems have

a minimum sensing distance of approximately a meter. The Leica TPS1200+ system

has a minimum sensing distance of 1.5m while the Trimble minimum sensing distance

is 0.2m [10][9]. The final difficulty in using the system is obtaining access to the

data. In a laboratory setting it would be impractical to purchase an expensive piece

of equipment only to try to take it apart. In a final production system it may be

possible to partner with the company that manufactures these sensor platforms to

modify it such that it performs the desired functions.
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Chapter 3

Mapping Algorithm

One contribution of the work described in this thesis is an algorithm that fits

a capped cylinder to data collected by the hardware design from chapter 2. The

algorithm's main feature is a robust and efficient method of segmenting and fitting

data to a right capped cylinder that is faster and more robust to noise than the

current methods which were outlined in the introduction's prior art section. The

improved performance comes from a unique combination of object shape knowledge,

the Gauss image and 3D histogram techniques which achieve accurate segmentation

without iteration. In addition to the segmentation and fitting methods, the algorithm

detailed in this chapter includes an optimized method for collecting data.

This chapter discusses each aspect of the algorithm. It starts with a discussion

of the algorithm requirements which revolve around the intended application. Next

is a coordinate frame and variable overview, followed by a discussion of the optimal

data collection process. Then each step of the segmentation and fitting algorithm will

be discussed in detail. In conclusion, the algorithm's advantages and limitations are

discussed.

3.1 Algorithm Requirements

The algorithm requirements were all derived from the intended application of robotic

inspection of LPG tanks. The algorithm will be used in conjunction with the sensor
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platform from Chapter 2 to create an environment map. Figure 3-1 shows how the

six algorithm requirements are derived from three application needs. The first two

requirements for the algorithm are derived from financial motivations. Since time is

directly related to cost, the actual requirements are time based. The third, forth and

fifth requirements are derived from the inability to guarantee optimal operation by

technicians. The last requirement is driven by the suboptimal operating conditions

in the tank.

L

Figure 3-1: How the tank inspection application drives the algorithm requirements.
The three application needs of minimizing time, being tolerant of technician vari-
ation and error and being tolerant of noise induced by the environment drive the
six algorithm requirements of minimizing iteration, minimizing the amount of data,
determining the parameters automatically, being sensor location and orientation in-
dependent, outputting an easy to understand tank map and being robust to noise.

The fitting algorithm's first requirement is to minimize iteration. Iteration signif-

icantly increases processing time, especially with large amounts of data. Processing

time is proportional to the number of data points raised the to number of iterations.

Time is directly correlated with cost due to the tank downtime expense. One project
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goal was to reduce the inspection cost, thus an algorithm requirement is to rapidly

complete processing. To speed up data processing, a method needed to be developed

that could fit the data without iteration. The unique combination of the Gauss image,

object shape knowledge and a 3D histogram removes the need for iteration.

The second requirement is to minimize the number of data points collected. Even

without iteration, the processing speed is directly proportional to the number of data

points collected. Using the requirements set by the operator, the algorithm should

determine the optimal number of data points. This process is discussed in the data

collection process section below.

The third algorithm requirement is to determine the tank parameters automat-

ically. Accurate a priori information about the tank cannot be guaranteed so all

parameters to need to be determined from the data. Ideally, there would be no input

required by the technician, but to make the algorithm as flexible as possible, some

inputs are necessary. These must be tolerant of significant error as the technician

may have to estimate when specifications are not available. After the initial data col-

lection, parameters for fitting will be determined from the data to remove the reliance

on user inputs.

The fourth algorithm requirement is that segmentation and fitting must function

given any sensor placement in regards to both position and starting orientation. Each

tank is different and the best installation location may vary between tanks. The goal

is to not depend on precise placement by the technician and instead be able to handle

being placed in the tank at any location and in any orientation. By not relying on

the technician placement, repeatable measurement is more likely to be achieved.

The fifth requirement is that the output must be in an easy to understand form.

The end goal of the project is to have a record of defects and their locations. The best

output for this is a tank map with defect locations labeled. The algorithm presented

here can process data into a parametric map which can be used as the foundation for

the defect output map.

The last requirement is that the algorithm must be robust enough to handle

noise and measurement error. The environment will pose challenges to any sensing
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technology. Noise is to be expected. One lidar specific issue that may occur is that the

incidence angle may impact the measurement. Despite these challenges the algorithm

must locate the sensing platform and robot inside the tank repeatedly and accurately.

3.2 Algorithm Overview

The algorithm presented here combines object shape knowledge, the Gauss image and

3D histogram techniques to meet the requirements listed above when fitting arbitrarily

rotated right capped cylinders. Object shape knowledge is knowing the general shape

of the object of interest, but not knowing all the information that defines the shape.

In the case specifically addressed by the algorithm presented here, the shape is known

to be a capped right cylinder, but the orientation in relation to the sensor and the

extents are unknown. By combining the limited information about the shape with

the Gauss image and 3d histogram, the algorithm can fit the data without iteration

and with strong robustness to noise. The knowledge of the shape allows for removing

results that would be inconsistent with that knowledge, thus improving fit robustness.

Using a histogram also helps the algorithm be robust to noise as the variations due

to noise will be averaged out to a common central value.

The algorithm presented here is unique in that it fits and arbitrarily rotated

capped cylinders with planar caps to data. Fitting open, or "infinite" cylinders is

more prevalent in the literature. The caps, or ends, either do not exist as in the

case of fitting to pipes in a building [38], or they have been processed separately [21].

The roof and floor add extra complexity to the fitting problem. The algorithm in

this thesis tackles the problem of fitting capped cylinders because that is the most

common shape for large LPG storage tanks. Arbitrary rotation is handled because

the sensor orientation is unknown.

Coordinate Frames

Consider a cylindrical tank and laser range sensor located on its wall as depicted in

Figure 3-2. The cylinder has a right handed coordinate frame designated by X, Y
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Figure 3-2: Right capped cylinder with tank and sensor coordinate frames. The

cylinder coordinate frame is designated by XYZ where Z is aligned with the center
axis of the cylinder. The sensor has two coordinate frames, 0#z and xyz, where z is

aligned with the starting direction of the sensor for both.

and Z. The Z axis is aligned with the cylinder's center axis. The sensor has its own

coordinate frame designated by 0, # and z where the z axis is aligned with sensor

lens at startup. The 0#z coordinate frame is the algorithm's frame of reference.

The algorithm does not initially know the orientation of XYZ in relation to 0#z.

The sensor orientation upon startup will result in data that appears to be a rotated

cylinder. Various sensor startup orientations in a variety of tanks is shown in Figure

3-3. The amount the tanks appear to be rotated is dependent upon the startup

orientation of the sensor. During the segmentation process, the data is rotated into a

"normal" orientation such that the tank Z axis is vertical, thereby removing effects

of the sensor startup orientation.

The coordinate frames detailed in Figure 3-2 will be used throughout this thesis.

The sensor orientation as it moves during data collection is measured by the rotation

amount in 0 and #. The distance from the sensor to the surface along the z axis will be

referred to as d. Some calculations are easier to accomplish in a rectangular coordinate

frame. In these instances the sensor rectangular coordinate frame, designated by
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Figure 3-3: Resulting data from different sensor platform orientations upon data
collection startup. Tank rotation is dependent upon sensor starting orientation.

x, y, z, can be derived from 0,# and z. xyz and 0#z are related by:

x = d sin # cos6

(3.1)y = d sin # sin O

z = -d cos#

Least Squares Plane Fitting

All fitting is done using standard batch matrix least squares optimization [39].

equation for a plane is defined in Equ. (3.2).

Ax+ By+ Cz= 1

The

(3.2)

The plane normal coordinates are the coefficients, A,B and C, thus the desired

optimization output, E, is defined as:

A B C] (3.3)

The inputs to the system are the coordinates collected for the neighborhood. These
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are placed into a matrix as shown in Equ. (3.4).

x(1) x(2) ... x(n, + 1
41= y(1) y(2) ... y(n + 1) (3.4)

z (1) z (2) ... z(nn + 1

The output is 1 for all inputs, thus the output matrix, w, is defined as:

w= 1(3.5)

Theta can then be found from:

E = (Q T QwT (3.6)

Algorithm Layout

The algorithm is divided into three phases: data collection, segmentation and fitting.

The process is outlined in Figure 3-4. The data collection portion contains details

about the optimal method of collecting surface data given a sensor platform described

in Chapter 2. The normals calculation is included in the data collection phase because

doing so increases the algorithm speed. If data collection is done differently than

described here, the normals calculation must be done in the segmentation step. This

ambiguity is why it is straddling the data collection and segmentation portions in

Figure 3-4. Segmentation consists of creating the Gaussian Image, putting the results

into a histogram to find the most common normal, calculating a rotation matrix using

that normal, rotating the data and finally separating the data into regions based on

location. The last step in the algorithm is to fit geometric primitives, such as planes

and circles, to each region. The intersection of the fits define the tank limits, thereby

creating a parametric tank map. Each phase is discussed in detail in the following

sections.
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Figure 3-4: Alorithm processing flow. Process movement is shown by black arrows
Note the repeating steps within the data collection process. Data passed from one
step to the next is shown by large arrows.
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3.2.1 Data Collection and Normal Calculation Steps

There are two data sets needed as inputs to the segmentation portion of the algorithm:

the measured cylinder surface points' locations in space, and the surface normals.

The normals can be calculated by collecting adjacent surface point measurements

and fitting a plane to these "neighborhoods". If the surface points are collected

separately form the normal calculations, the resulting data cloud can be parsed into

neighborhoods using distance from the point of interest, POI, as the segmentation

criteria. A faster, more efficient method of collecting data and finding normals is to

collect the points in the neighborhood and calculate the normal to the neighborhood

before moving on to collect data for the next neighborhood. This reduces the time

required to parse the data cloud, removes iteration and can be controlled to minimize

the number of data points collected. This section discusses the combined collection

and processing method developed to compliment the fitting algorithm.

A modified version of a method developed by Hoppe et al. is used to find the

normal at each point of interest. A plane is fit to the point and its k nearest neighbors

using least squares fitting [40]. The normal to this plane is assumed to be the normal

of the sampled point. In Hoppe et al., the value for k is chosen manually based on

trial and error [40]. There have been several other attempts at determining the best

number of neighbors for normal estimation, because the number of nearest neighbors

used in the normal calculation effects the normal estimate quality [38]. Chaperon

uses the 10 nearest neighbors. Mitra et al. developed a method to determine the best

number of neighbors based on the noise of the point cloud data and the density and

distribution of the samples [26]. The Mitra et al. method is very useful when fitting

to a large data cloud, but since we have control over the data collection process,

the computationally expensive collection and processing of cloud data is unnecessary.

A better method for automatically choosing k was developed to optimize the data

collection process without involving the user.

In addition to the number of neighbors, three other properties influence the normal

calculation accuracy: the neighborhood shape, the characteristic distance describing
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the neighborhood, and the noise in the data points. Two neighborhood shapes were

explored, a checkered pattern and a circular pattern. The number of neighbors, nn,

is either evenly spaced in the checkerboard or evenly distributed around the circle as

shown in Figure 3-5 a and b, respectively. The characteristic length, L, is defined

as the circle radius or the diagonal distance from the center to the corner of the

checkerboard.

04 at

L -0.5 03L =0.5
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(a) Checkerboard Layout (b) Circle Layout
25 points 25 pomts

Figure 3-5: Possible layouts for neighborhood points collection. a) a checkerboard
layout with points evenly distributed along both axes b) a circular layout with points
evenly distributed around the circle perimeter.

Simulations varying n,, L, and the noise in the points were conducted for both

shapes to find the relationship between the parameters and fit accuracy. Gaussian

noise with zero mean and a standard deviation of oz is added to the z component

of each data point. Accuracy was measured as the standard deviation of the angle

between the fitted plane and the z axis, Ocircie and Uchecker. Figure 3-6 shows the

fit accuracy over a range of parameter values for both the circular and checkerboard

layouts.

Figure 3-6 shows that for the same number of points and same characteristic

length, the circular layout gives better accuracy. Fitting a plane to the accuracy data

results in Equ. (3.7) and Equ. (3.8).

2.26o- 2.26az
Ucircle = No.6 L. 96  N. 56 L (3.7)
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Figure 3-6: Standard Deviation in Normal Angle, STD, vs the number of points (N)
and characteristic length (L) of a circular point layout and square checkerboard layout
for noise standard deviation of 0.02. The equations for the planar fits are shown in
Equ. (3.7) and Equ. (3.8).

and
1.69o-z 1.69o-z

0-checker NO 3 8 L- 9 9  No. 3 8 L (3.8)

Simple analysis suggests that the error should vary with L-1, which is approximately

observed in the fits above, thus for the later analysis, the exponent of L is assumed

to be -1.

From a purely plane fitting perspective the largest number of neighbors and largest

characteristic length give the best accuracy, but the largest values are not the best

option when the algorithm method and fitting subject are taken into consideration.

Too large a neighborhood radius, re, will smooth the resulting normal values. In

the case of the algorithm proposed here, it would cause the walls to fit to a limited

number of planes instead of the large variety of directions that the histogram method

needs to find the floor plane. The number of neighbors, nn, is directly related to

the algorithm speed, thus the accuracy of having more points must be balanced with

the cost in speed to collect and process these points. An optimization analysis was

completed to determine the best values for rn and nn.

The optimal values of rn and n, are calculated from the desired fit accuracy,

the distance sensor noise standard deviation, the encoder resolution, and the tank
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Table 3.1: Required User Inputs
Input Variable Units Description

Desired Fit a m Error that is acceptable in the fit
Accuracy parameters

Distance Sensor o- m Manufacturer quoted sensor resolution
Error (Standard Deviation)

Encoder Resolution Oe rad Encoder step resolution in radians
Rough Tank Height hr m A rough estimate of the tank height

Estimate
Rough Tank dr m A rough estimate of the tank diameter

Diameter Estimate

height or radius. These required user inputs are shown in Table 3.1. The desired

fit accuracy is the acceptable error in the measurement. A user input of 1 m means

all the fit values should be accurate to within 1 m. Distance sensor error, o-, is also

known as the sensor repeatability. The encoder resolution is the smallest size the

encoder can read in radians. The user must also input rough estimates of the tank

height, hr, and diameter, dr. These values only need to be rough estimates of the

appropriate magnitude since they are only used during the data collection parameter

selection. During the fitting process, the data extents replace these estimated values.

The advanced user can also choose to bypass the automatic determination of r, and

nn and the number of neighborhoods, n, by entering them directly. Table 3.2 provides

details about the advanced inputs.

Table 3.2: Optional or Derived User Inputs
Input Variable Units Description

Neighborhood rn m Usually calculated as 0.2 times the
Radius smaller of the tank size estimates

Number of nn Number of neighbor points in each
Neighbors neighborhood. Usually found from the a,

rn and e
Number of Normals/ n Number of neighborhoods (number or

Neighborhoods normals). Input as the number of evenly
distributed points per side on a cube

(default 7 = 218 normals)

The total system error, used in determining r, and nn, is a combination of the
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error from the encoder on both axes and the distance sensor error. Using RMS, the

total error standard deviation is found to be:

e = V/2 (ae2) + aS2 (3.9)

where o-e is the standard deviation of the worst case measurement error caused by

the encoder resolution.

Worst Case Error due to Encoder Resolution

Sensor Dist From Wall, s

Assumptions:
r m>>e

-e is small, small angle approx
Oe Ij ;:tM 9O-

g , O;Z<p 90- 0

-For this application
L>>s

Pythagorean Theorem:

2 x m=JL2+s2

lee

Figure 3-7: Encoder resolution effect on distance measurement error. The actual
position of the axis can be anywhere within the step size of the encoder resulting in
an angular error and mis-measurement of the distance, ee

The worst case error cause by the encoder resolution, ee, is found from the ge-

ometry of the sensing platform and tank, which is detailed in Figure 3-7. e, is the

worst possible angular error caused by the resolution of the encoder. This should be a

very small value, so small angle approximations are valid. The distance of the sensor

from the walls, s is determined by the geometry of the sensor platform and should

be inserted into the program during the sensor platform fabrication. s is assumed to
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be much smaller than the longer of h, and r, here referred to as L. ee is determined

from trigonometry, the Pythagorean theorem and the small angle approximations to

be:

ee = (3.10)
s

Dividing ee by three, approximates the standard deviation of the error, o-e. Setting

the standard deviation to 1/3 the desired max error value generates a distribution

that is within the desired range 99% of the time. Combining Equ. (3.10), Equ. (3.9)

and the user inputs, the total error of the system is found to be:

e = ( maxI(rdr)2r)2  + a82 (3.11)
3s

Average % Error in Fits vs Neighborhood Radius/Smallest Tank Dimension with No Noise
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Figure 3-8: Simulated average error in cylinder fits vs the neighborhood radius as
a fraction of either the diameter or height, whichever is smallest. This was simu-
lated without noise to isolate the effects due to smoothing. A safe upper limit for
neighborhood radius size is approximately 20% of the smaller tank dimension

The limits on the size of r,, are imposed by hr, r, and e. r, needs to be relatively

large in comparison to e to achieve accurate normal fits. r, needs to be smaller than

the smaller of h, and r, to prevent smoothing of the wall normals and in the tank

corners. Too large a radius will result in enough smoothing that the errors in normal

fits will be too large to meet the desired accuracy. Figure 3-8 shows the effect of
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varying r, on the fit accuracy. The simulations show a clear increase in error as the

size of the radius increases in comparison to the tank size. A safe value of 0.2 times

the smaller tank dimension is used in the algorithm for r,.

Figure 3-9: Derivation of allowable angular error, 0e from input allowable accuracy,
a. Difference between hm and ha must be equal to or less than a.

The optimal n, can be found from the desired accuracy, a, and the error, e. Three

is the absolute minimum value for n, because that is the number of points needed

to define a plane. More than three neighbors increases the accuracy as the noise

is averaged out, but it takes more time to run. The optimal n, is the minimum

number of neighbors for which the algorithm will achieve the desired accuracy or

three, whichever is larger. a must be converted to the allowable angular error of the

estimated tank floor normal and the actual tank floor normal, 0 e, to determine the

n needed to achieve the desired accuracy, . The geometric relationship is shown in

Figure 3-9, where ha is the actual height of the tank and hm is the measured height of

the tank. The difference between ha and hm must be less than or equal to the desired

accuracy, a. 0, can be calculated using Equ. (3.12).

Oe = cos- 1 (I - (3.12)

a is divided by 2 in Equ. (3.12) to make Oe a standard deviation. Usually this is done

by dividing by 3, but 2 was chosen after testing because it speeds up the algorithm

and still mimics the standard deviation up to 95% instead of 99%. Plugging Oe into
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Equ. (3.7) results in an equation for n.

1.79
2 2.26e

, > 3 (3.13)
nn

3, 7 < 3

In addition to nn and rn, the number of neighborhoods, n is also important to

the accuracy of the fit and speed of the algorithm. More normals will result in

better accuracy, but significantly increase the time to find the fit because for each

neighborhood (each normal) there are n, + 1 points. Two factors significantly impact

the number of normals needed to obtain a good fit: the ratio of cap area to the wall

area and the placement of the sensor.

A large cap area to wall area ratio will need less neighborhoods than a small ratio.

The algorithm depends on there being more normals pointing in the direction of the

floor than the walls. More neighborhoods need to be found using points from the

capped end than on a vertical patch of wall. There is no way to predict the ratio of

normals found on the cap to those found on a vertical patch of wall because there is

no known information about the orientation of the tank. In general, calculating more

neighborhoods will result in more normals along the floor than will repeat from the

walls. Approximately 50 normals are needed when the sensor is placed in a decent

location in the tank.

The goodness of a sensor location can be defined by how much of its view is

obstructed. A good location is one that has the majority of its view unobstructed.

A location in the center a large patch of space, such as the center of the roof, will

still result in a good fit when using fewer normals. Difficult locations are those in the

corners where a large portion of the view is obstructed. More normals are needed to

get enough floor normals for the histogram when the sensor is placed in a corner.

Simulations of the resulting data collection when the sensor is placed in various

locations within a tank are shown in Figure 3-10. Upwards of 200 normals are needed

if the sensor is in the extreme corner of the tank or if the ratio of cap to wall is very

small. The algorithm presented here will default to 218 neighborhoods (7 normals per
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(a) Sensor in far corner (b) Sensor in tank center (c) Sensor in roof center (d) Sensor in wall away from
corner

Figure 3-10: Effect of sensor placement on data collection. As shown in a, c and d,
data points collect around the sensor when a portion of the sensor view is obstructed.
The best data is evenly distributed about the cylinder. The best place for the sensor
is to be placed in the center of the tank as shown in b. The worst place is in the
corner of the tank as shown in a.

side evenly distributed about a cube centered on the sensor). The user can manually

lower n to decrease the run time if the sensor is known to be placed in a decent place

in a tank with a good ratio.

The equations described above were developed to find the best fit despite the lo-

cation and orientation of the sensors. nn and rn can be derived using these equations,

or they can be modified directly to optimize the algorithm based on the application

requirements and features. Just like n, nn can be decreased if the user knows that

the sensor is placed in a decent location. The opposite can also be done; the number

of neighbors and neighborhoods can be increased if the user is unhappy with the

fit. Despite these variables being optimized for robustness at the expense of speed,
the algorithm maintains an edge over other methods because of the non-iterative

segmentation described in the next section.

The last step in the normal collection algorithm is converting the n POIs to

locations in space and converting nn and rn to angle commands for each motor. The

n POIs are evenly distributed across the surface of a unit cube centered about the

sensor. This will not result in a perfectly uniform distribution over a cylinder in

space; however, it does result in the best achievable distribution given what little

information is known about the tank. For each POI a distance is measured from

which the neighbor point locations are calculated. Figure 3-11 shows the projection

from r, onto a plane tangent to the unit sphere surrounding the sensor location and
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b) Turning each n. into a vector

Figure 3-11: Using nn and rn to find commands for sensor platform. a) The projection

of the desired neighborhood circle onto a unit sphere surrounding the sensor. b)The

vectors used to calculate the neighbor locations.

the vectors involved in converting each point location to 6 and <. The process is

as follows: First, rn is converted to a radius r on the unit sphere using triangular

relationships. The resulting radius is:

r= r. 2 +

The angle between each point on the circle is calculated from Equ. (3.15).

27r

A unit vector in the direction of the center of the neighborhood,

dividing the measured distance to the POI by its length:

V=a

V , is found by

(3.16)
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3 random numbers between 0 and 1 are combined into a random vector,

= [rand(0 - 1), rand(0 - 1), rand(0 - 1)] (3.17)

Next, is projected onto a plane parallel to the plane containing r,, but tangent to

the unit sphere by subtracting the components along V7.The result is Vp as shown

in Equ. (3.18).

V = - * Vn (3.18)

Vrp is converted to a unit vector,

(3.19)
Vrp

A second unit vector in the circle is found by taking the cross product of and

=Vx V (3.20)

Now that two perpendicular unit vectors are known, the plane of the circle intersecting

the unit sphere is fully defined. defines the first axis corresponding to 0 degrees

around the circle. The coordinates of each neighborhood point are found using Equ.

(3.21).

= V + r c os A 0i1+ ir sin AO; (.1- ~ (3.21)

i = [0 : nn]

These points are converted from the Cartesian coordinate frame to the spherical

coordinate frame. Theta and phi can then be sent to their respective axes.

For the work described in this thesis, a circular neighborhood collection process

is used with values of rn, nn and n found using the equations described above. A

summary of the steps for the optimized data collection process are in red and purple

in Figure 3-4 and are as follows:

1. POI locations are calculated
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2. Gimbal moves to the POI 0 and #

3. Measure the distance, d, and actual 0 and #

4. Calculate the neighbor locations for this POI

5. Gimbal moves to the neighbor 0 and #

6. Measure the distance, d, and actual 0 and #

7. Repeat steps 5 and 6 until all neighbors' data is collected

8. Calculate the normal for the neighborhood

9. Repeat steps 2-8 for each POI

If the user already has a cloud of data, the n neighborhoods can be found using

the same r,. The process would be as follows:

1. Randomly select n data points from the data cloud

2. Find all points within rn, distance from the POI in the data cloud

3. Calculate the normal for the neighborhood

4. Repeat steps 2 and 3 for each POI

Whether the data collection process described in this section is used or cloud data

is processed as described above, the resulting data to be input to the segmentation

algorithm includes n normals to the surfaces and n (n, + 1) points on the surface.

3.2.2 Segmentation

This section describes the segmentation of the data into groups corresponding to the

floor, roof and walls. Segmentation is shown in blue in Figure 3-4. The first step is to

find the cylinder Z axis in the 0#z coordinate frame by creating a histogram of the

Gaussian sphere. The next step is to calculate the rotation matrix that will align the

Z axis with the z axis. In other words, this step finds the orientation of the sensor
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as it relates to the orientation of the tank and then aligns the two. The last step is

to separate the data into the floor, roof and walls by using knowledge of the shape,

rotated orientation and extents of the data.

The unique ability of this algorithm to fit an arbitrarily rotated capped cylinder

without iteration comes from the unique method of segmentation. Conventional seg-

mentation methods do not take into consideration any knowledge about the item they

are segmenting. Not taking into consideration any of this information makes them

very flexible in what they can fit. The disadvantage is that to complete a fit, they

must iterate through many possible solutions. This is computationally expensive and

time consuming. The algorithm here is different in that it is limited to one shape, but

that it can be done without iteration, thereby greatly reducing computational load

and increasing speed.

Gaussian Image of a Right Cylinder

(a) (b)

Figure 3-12: Gaussian mapping of an uncapped cylinder (a) and a plane (b) onto the
Gaussian sphere.

The Gauss image is formed through the placement of the ends of normals, col-

lected from a surface, onto the origin. These normals then intersect a unit sphere,

referred to as the Gaussian sphere, forming a Gauss map [41]. The result of the entire
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surface being mapped is referred to as the Gaussian image. The Gaussian image of

an uncapped cylinder is a circle on the Gaussian sphere as shown in Figure 3-12a.

The mapping of a plane onto the Gaussian sphere is a repeated single point as shown

in Figure 3-12b.

A capped cylinder is a combination of two planes and a cylinder. This means

one can expect the Gaussian image to be a combination of the two images shown in

Figure 3-12; the cylindrical walls will have a wide spread of points while the floor and

roof planes will result in many repeated points on the Gaussian sphere. It is easy to

identify the normal to the floor plane because it is the normal corresponding to the

most common repeated point on the Gaussian sphere.

3D Histogram to Find Caps

6

20 0.55

010

44

-4 3 0

0.51

(a) (b)

Figure 3-13: (a) Simulated raw data with arrow indicating floor normal. (b) 3D
Histogram of the Gaussian mapping of a capped cylinder. Note the one point (at the
end of the arrow) where the color difference indicates many normals is in line with
the expected floor normal

The coordinates of the points on the Gaussian sphere are collected and sorted

into a 3D histogram to identify the Z axis. The histogram is composed of bins

corresponding to the coordinates of the points on the Gaussian sphere. The histogram

bin containing the most votes will correspond to the normal of the cap. Figure
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3-13 shows simulated raw data of a tank and a histogram of the normals on the

Gaussian sphere. The bright blue point indicates multiple normals pointing in that

direction, which corresponds to the normal to the tank floor as expected. The ring

corresponds to the normals drawn on the circular walls of the tank. The noise-like

points distributed over the unit sphere are drawn from plane fits in the corners of

the tank. The most common point corresponds to the normal of the tank cap. This

normal, nc, lies along the Z axis of the cylinder coordinate frame. nc is composed of

the three coordinates, xi, yj and zi, corresponding to the bin with the most votes, the

ith bin.

ne = [zi, yI i]i (3.22)

-Lb
2

Bin Size, Lb

~L
2

Figure 3-14: Deriving bin size from 0e. Worst case error is from the center of the bin
to its corner. Bins are arranged at a unit distance from the center of the sphere, thus
the arm length is 1.

The histogram bin size is derived from the desired accuracy. The worst resulting

offset needs to be smaller than the allowable angular error from Equ. (3.12). The

worst possible offset for a bin is from the center to the corner of the bin as shown

in Figure 3-14. The histogram bins are going to occupy space around the center
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of Gaussian sphere where all the vectors are unit vectors. The arm of the triangle

shown in Figure 3-14 corresponds to that distance. A small angle approximation is

assumed for Oe. Using trigonometry and the listed assumptions, the bin length Lb

can be calculated to be:

Lb~ 20e
o3 (3.23)

Rotation Matrix Calculation

The sensor z axis is aligned with Z through the use of rotation matrix. The axis of

rotation is found from:

axzsrot = [0, 0, -1] x nc (3.24)

and the angle about which to rotate is found from:

anglerot = [0, 0, -1] * nc (3.25)

A rotation matrix formed from axisrot and anglerot orients the cylinder allowing for

the non-iterative segmentation. Note: nc is compared to the -1 direction because

from the perspective of the sensor the distance to the floor is in a negative direction.

This means the -1 axis must be used to keep the orientation correct.

Region Segmentation

The data needs to be broken down into sections that can be used in the fitting process.

Figure 3-15 shows the three sections corresponding to the floor, roof and walls. To

obtain an accurate fit, these sections need to be clear of any points corresponding

to the other sections. This is accomplished by defining a value above which the

data will correspond to the roof hrc, a value below which the data will correspond

to the floor hfc, and a radius creating a boundary between wall and cap data rc.

The segmentation is done according to the Equ. (3.26). The roof contains all points

whose z components are greater than h, and whose radial distance from the center

of the data is less than rc. The floor contains all points whose z components are less

than hfc and whose radial distance from the center of the data is less than rc. The
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Figure 3-15: Isolation of the floor, roof and wall data sets. The only points excluded
are those from the corners that are ambiguous as to which group they belong

wall contains all points whose z components lie between hfc and hc and whose radial

distance from the center of the data is greater than rc.

roof = (pz > hrc) & ((P - mid(x))2 + (py - mid(y)) 2 < rc

floor = (pz < hfc) & ((p - mid(x))2 + (p, - mid(y))2 < rc (3.26)

wall = (hfe < pz < hrc) & ((p - mid(x))2 + (py - mid(y))2 > re

The clean heights, hc and hfc, and clean radius, rc, are calculated by modifying

the 5th and 95th percentiles by encoder and sensor error values. The clean values

will consist of the length of the tank in the dimension of interest plus a 6 value. The

6 is derived from the amount of tip in the tank allowed by the allowable angular error

from Equ. (3-9) as shown in Figure 3-16. The values of the radial delta, 6r, and the

height delta, 6z, are calculated using Equ. (3.27) and Equ. (3.28).

Ad = 6r + 6z cot 0 (3.27)

Az = 6z + 6r cot 0e
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Figure 3-16: Derivation of 6z and 6r. The tank is tipped by 0e. Ad and Az are the

extents of the data in the corresponding direction.

An additional modification is based on the error of the sensing platform. 10 times

the error derived in Equ. (3.11) is used as the modifying value. The value of 10

noise standard deviations is drawn from Gaussian statistics. Less than one point in

three million will lie beyond ±5 standard deviations, ensuring that for a standard

tank measurement set of one to ten thousand points, wall points will be retained in

the floor data set less than 1% of the time.

The equation for the final clean values used in Equ. (3.26) are shown in Equ.

(3.29). For the roof clean, 6z and 10e are subtracted from the 95th percentile height.

For the floor these values are added the the 5th percentile height. For the radial clean

value, the larger of the 5th to 95th percentile ranges in the x and y directions is used
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as the reference diameter, dd, as shown in Equ. (3.30). 6r and 10e are subtracted

from half dd.

dd
re= - r - 10e

2

hrc = quantile (z, 0.95) - 6z - 10e (3.29)

hf =quantile (z, 0.05) + 6z + 10e

dX = quantile (x, 0.95) - quantile (x, 0.05)

dy = quantile (y, 0.95) - quantile (y, 0.05) (3.30)

dd= max (r, ry)

The segmentation portion of the algorithm is complete when the data is segmented

into the roof, floor and wall sections. Not all points are contained within a segmented

set. The points around the intersection between the wall and the caps are not in-

cluded because the section they should belong to is ambiguous. Despite these points'

exclusion, there will be enough points in each set to accurately fit a plane or circle.

3.2.3 Fitting

Each data set is fit to its corresponding shape using batch least squares. The floor

and roof data sets are fit to planes using the same process described in Equ. (3.2)

through Equ. (3.6). A simplification of the wall data set is used to estimate the

radius of the walls. Be neglecting the z component of the data points identified as

wall data, a simple batch least squares fitting of a circle can estimate the parameters

of the wall. The equation for a circle is

(x - xo) 2 + (y - yo) 2 =r 2 (3.31)
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This form is non-linear. The equation must be rewritten in a linear form to use batch

least squares. The linear rearrangement is shown in Equ. (3.32).

1 -2x 0  -2____ 32
2 2 + y2) + - 2 X + - 2 y = 1 (3.32)

A B C

The AB and C that make up E are indicated below their respective expression. The

new <1 derived from Equ. (3.32) can be written as

(x2(1) + y2 (1)) (X (2) + y2 (2)) ... (x 2 (nn + 1) + y 2 (nn + 1))
X(1) x(2) ... x(n + 1) (3.33)

y(1) y(2) ... y(n + 1)

Using the w from Equ. (3.5), 1 from Equ. (3.3) and the updated <b, the batch least

squares process defined in Equ. (3.6) can be completed. Once A,B and C are known

the following expressions are used to find the properties of the circle fit:

=2A
0

Yo =2A'(.4

V4A+B 2 +C 2

2A

Fitting the planes and circle completely defines the tank extents. The floor and

roof planes are allowed to be tipped to find the best fit to the data. The difference

between the floor and roof planes at the xy location of the sensor, as found in Equ.

(3.34), corresponds to the height of the tank. This is the place where the measurement

will be vertical thereby removing and angle incidence bias in the measurements. Equ.

(3.34) gives the radius of the tank. The location of the sensor is defined by the

position of the center of the circle and the distance to the floor plane. The height,

radius and location of the center of the tank mathematically define the cylinder. All

three section fits and the final cylinder fit are shown in Figure 3-17.
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Floor Fit Roof Fit

Walls Fit Total Fit

Figure 3-17: Cylinder Fitting Steps and Final Completed Fitting. The white stars
are the date points, while the black is the fitted plane/cylinder. In the top row are
the floor and roof fits from left to right. The bottom left is the cylinder fit. The
bottom right is the trimmed and combined fit.
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3.3 Algorithm Advantages and Limitations

The algorithm presented here is a robust, fast segmentation and fitting method. The

combination of the object shape knowledge and the histogram make the algorithm

very robust to noise. Many possible erroneous fits are not even considered as op-

tions because the general shape is known. The histogram also averages out noise,

increasing the robustness of the fit. The use of object shape knowledge also allows

for segmentation without iteration. The lack of iteration is unique to this algorithm

and is what allows for its quick and efficient processing compared to other methods

found in literature.

The one major limitation of the algorithm is that it is limited to data for right

angled capped cylinders in its current configuration. To find a common normal for

the floor the algorithm relies on the data consisting of fiat caps and circular walls.

The segmentation and fittings steps are also inflexible in the need for the planes and

circle. The limitation is caused by all steps relying on object shape knowledge, the

same thing that makes the algorithm capable of being robust and quick.
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Chapter 4

Results

4.1 Evaluation Through Simulation

Initial testing of the algorithm was done using simulation. The distance measurements

are mathematically simulated for given Os and #s. The sensor can be simulated in

any starting orientation or location. Noise can be added to the distance sensor mea-

surement and to the encoders. Simulations were done varying the sensor orientation,

tank size, sensor location, and sensor noise values. Figure 4-1 show several simulated

runs using tank dimensions similar to an LPG tank. The results of simulated testing

show an algorithm that is robust to noise and fits a cylinder without iteration. The

algorithm is able to handle the sensor starting in any orientation and a wide range of

heights and radii.

The algorithm displayed some difficulty when the radius is significantly smaller

than the height, similar to test run 3 in Figure 4-1. There are a significant number

of normals around the sensor location that will fall within the same bin. The radius

is so small that less normals are measured on the cap than are measured next to the

sensor. This leads to a histogram peak for the bin containing the normals on the wall

which is larger than bin containing the normal from the caps. The rotation is not

completed correctly because the wrong normal is chosen. The algorithm is unable to

fit the data to a cylinder because the rotation was not completed correctly. A filter

can be implemented that removes points within a certain distance from the sensor
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Raw Data Fit Real Dimensions Fit Dimensions

Height: 75m Fit Height 75.0071
Radius: 50m Fit Radius: 49.995
Sensor Radius: 0 Fit Sensor Radius: 0.3327
Sensor Height: 74 Fit Sensor Height: 74.0032
DesAcc: 0.05
Rotation: 15 deg

Height: 75m
Radius: 75m Fit Height: 75.0055
Sensor Radius: 74 Fit Radius: 75.0339
Sensor Height: 74 Fit Sensor Radius: 74.3520
DesAcc: 0.05 Fit Sensor Height: 73.0976
Rotation: 30 deg

10 Height: 75
Hius: 25 Fit Height: 74.9983
Rais 25tS r Radius: 2 4 Fit Radius: 25.0012

Fit Sensor Radius: 24.0009
SensorHeight: 37 Fit Sensor Height: 37.0005
DesAcc: 0.05
Rotation 45 deg

Height: 35 Fit Height: 35.0131
0 Radius: 50

SerRadius: 4 Fit Radius: 50.0194
Sno RFit Sensor Radius: 48.7260
Sensor Height: 30 Fit Sensor Height: 30.9139

* DesAcc: 0.05
Rotation: 60

Height: 75
Radius: 50 Fit Height: 75.0152
Sensor Radius: 24 Fit Radius: 50.0291
Sensor Height: 74 Fit Sensor Radius: 24.3413

- Des Acc: 0.05 Fit Sensor Height: 73.7099
Rotation: 90

Figure 4-1: Raw data, fits and fit accuracies of varying simulated tests. The simulated
sensor was rotated by 15, 30, 45, 60 and 70 deg with varying tank heights, diameters
and manhole locations. The manhole locations are indicated by the black circle in
the raw data image.
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which would fix the problem by removing the duplicates around the sensor that are

influencing the normal selection.

A second problem shown in simulation is that the sensor location is often not

within tolerance. The sensor radial location is determined by the walls circle fit.

There is some allowable angular error based on the desired accuracy that allows

the tank to remain slightly tilted. The slight angularity of the tank results in the

data projection forming an ellipse of data as shown in Figure 4-2. The cylinder is

slightly rotated about the line which passes through the points where the expected

and estimated circles intersect. The algorithm fits a circle to the center of the skew,

resulting in an offset of the center location. The sensor location is found within

tolerance when the tank is rotated into a perfectly vertical orientation and no skew

is observed. The slight tip and misplacement of the sensor horizontal location may

also be the cause of the sensor height not meeting the desired accuracy as the height

measurement is dependent on the location of the sensor.

Walls fit
50 Xx Data

40 - Actual
-- Estimated

30

20

10

0

-10

-20

-30

-50
-50 0 50

Figure 4-2: Skewed circle data. The blue line indicates the expected circle, while the
black shows the resulting circle fit from the algorithm. The line passing through the
points where the two circle intersect is the axis the cylinder is rotated.
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There are two modifications to the code that would remove the skew effects from

the sensor location values: fitting a 3D cylinder instead of a circle, or completing a

second rotation based on the floor plane normal. A non iterative cylinder fit, like the

one described by David Eberly, can be completed because the cylinder central axis

is the same as the normal of the floor [42]. Another option would be to complete a

second rotation where the rotation axis and rotation angle are calculated using the

floor fit's normal. Using the plane normal would result in a more accurate orientation

of the tank because there is no loss of resolution that occurs with the histogram

normal selection process. The skew will be removed from the data when the cylinder

is more vertically aligned and the location of the sensor will be within tolerance.

Accuracy of Fit vs Sensor Noise (0.05m Desired Accuracy)

75 15 .

75.1

E 75.05

74.95

74.9

74.85

E 74.8

74.75

74.7

- -

00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sensor Noise (m)

Height * Radius -LowerAcc -Upper Acc

Figure 4-3: Accuracy versus sensor noise. The desired accuracy for the tests that

make up the chart was 0.05m. The accuracy is within tolerance for noise levels up to

the desired accuracy and sometimes above.

The simulated tests show that the algorithm is robust to noise. The algorithm

uses the majority of the floor and roof data to make the respective plane fits, resulting

in height measurements that are robust to measurement noise. The robustness is due

to the averaging effect of fitting large data sets. The circle fit also uses the majority of

the available data points, thus the radius fit is also robust to noise. Figure 4-3 shows

that the noise can be as large as the desired accuracy, and occasionally even larger,

and still result in a fit that is within the desired accuracy bounds. The estimated
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radius gets worse much faster than the estimated height. This may be because of the

skewed circular data as discussed above.

Speed was one of the main driving motivations for the algorithm requirements as

described in Chapter 3. Removing iteration was the main method used for speeding

up the processing. Figure 4-4 shows that the processing speed grows exponentially as

the number of points increase. The segmentation and fitting only takes a few seconds

to process upwards of 10000 points despite the exponential growth. A few seconds is

significantly faster than time it will take to collect the data points, thus segmentation

and fitting will not be the limiting factor in a mapping system.

Fitting Time

4

3.5

3-

' 2.5

2
E

1.5

1

0.5

0 -

0 2000 4000 6000 8000 10000 12000 14000
# of Data Points

Figure 4-4: Algorithm segmentation and fitting time as a function of the number
of points. It shows an exponential increase. Even above 10000 points, the time to
process the data points is only a few seconds

4.2 Prototype Hardware

A prototype sensor platform was fabricated to test the algorithm in the laboratory.

The platform is shown in Figure 4-5. It consists of a nested U structure. The outer

U rotates about the center of its bottom, the 0 axis. It is driven by a Maxon RE

50 motor [43]. The inner U rotates about an axis intersecting the two arms. This

axis corresponds to < and is driven by a Maxon EC-Max 40 motor [44]. Both axes
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Figure 4-5: Prototype Gimbal.Consists of a nested U shaped structure driven by a
Maxon EC-Max 40 and RE 50 motor, controlled by Maxon EPOS2 controllers. The
rotational sensors are SICK DFS60A 65536 count encoders. The distance sensor is a
17m range SICK DT500.

rotational positions are measured with a SICK DFS60A, a 65536 line encoder [45].

Quadrature encoding using this encoder creates steps of 24 prad. Both motors are

controlled by Maxon EPOS2 positioning controllers [46]. The distance measuring

sensor used in the prototype platform is a SICK DT500 [47]. It has a distance

sensing range of 0.2 to 15 m with a resolution of 0.02 m.

4.2.1 Prototype Tank

The prototype tank is a PVC pipe frame covered with stretched fabric. The bottom

of the tank is the black rubber floor of the laboratory. The tank diameter is approx-

imately 2.025m ± 0.025m. The height of the tank is approximately 1.55m ±0.025m,

as measured using a tape measure. The sensor platform is placed with its end hanging

off a cart. The gimbal is placed into a gap in the fabric as shown in Figure 4-6. The

cart also holds the controlling computer.
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Gimbal Fabric &
PVC Tank

External
Operating
Computer

Figure 4-6: Prototype Tank. Made of a PVC frame covered by stetched fabric. The
tank was placed on a rubber floor.

4.2.2 Prototype Operating Code

The algorithm was developed and tested using two programming languages: Matlab

and Labview. The initial development and simulations were completed using Matlab.

The sensing platform is run using Labview. Labview calculates the positions, com-

mands the positioning controllers to the desired values, reads in the data and compiles

it into a data file. After the tank data is collected, Matlab reads in and processes the

data file and outputs the estimated parameters and fit images. Appendix A contains

the Matlab files and Appendix B contains the Labview files.

4.3 Evaluation Through Hardware Testing

The data for one of the test runs is shown in Figure 4-7. There are significant outliers

due to the sensor reading points through the hole in the tank where it enters the

tank. The process for removing the outliers is detailed in Appendix C. There is also

significant measurement error in the roof as the distance from the sensor gets larger,
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a) Raw Data a) Rotated Data with Fit

Figure 4-7: Test Run Data. a) The raw test run data using the tank and sensor

platform described above. b) The same data rotated with the outliers removed and
its fit. The roof data is very angled, most likely due to reflection problems between
the laser and stretched fabric.

resulting in a tipped roof when it should be flat. The error is most likely due to

incidence angle and reflection issues between the laser and the fabric. This effect

does not show up with the floor data, which is made of a different material. The

difference in the data from the two surfaces indicates that the sensor is compatible

with only certain materials. A sensor would need to be chosen that is compatible

with the material of the environment to achieve accurate results.

Table 4.1: Estimated Parameters
Number of Height

Neighborhoods
218 1.7042
152 1.7014
98 1.701
56 1.6983
26 1.9917
8 1.9403

Using Various Numbers
Radius Sensor

Height
1.0401 0.7389
1.0467 0.7164
1.0407 0.7358
1.0503 0.7171
1.0483 1.7716
0.8572 1.1655

of Neighborhoods
Sensor
Radius
0.7941
0.7908
0.7908
0.7869
0.198

0.4755

Tests were run varying numbers of neighborhoods using a constant desired accu-

racy of 0.02 m. The resulting estimated parameters are shown in Table 4.1. The

height of the tank, as measured by a tape measure is approximately 1.55 m. The
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fit's estimated height is outside the desired accuracy of 0.02 m but is consistent for

test runs down to 56 neighborhoods. The radius was measured at 1.013 m with the

tape measure and estimated by the algorithm to be 1.04 m. The measured radius is

also outside the desired accuracy but shows a consistent measurement down to only

26 neighborhoods. The radial location and height of the sensor are also measured

consistently for as few as 56 neighborhoods. The error in the estimated parameters is

due to the measurement error of the laser sensor on the fabric walls and the skew of

the circular data as discussed above. The fits are consistent despite the values being

incorrect. This shows that the algorithm functions properly despite noise and other

issues of the sensor and environment.

Table 4.2: Estimated Parameters Using Various Desired Accuracies
Desired Height Radius Sensor Sensor

Accuracy Height Radius
0.01 1.704 1.038 0.609 0.738
0.02 1.701 1.041 0.736 0.791
0.1 1.9897 0.878 1.226 0.288

Tests were also run varying the desired accuracy of the fit. The resulting parame-

ters are shown in Table 4.2. There is a large discrepancy in the parameter values when

the desired accuracy was 10% of the height of the tank. The estimates are likely bad

at large acceptable errors because the final rotation of the tank can be significantly

rotated resulting a significant skewing of the data. At smaller desired accuracies the

skew does not cause significant problems because the tank is close to vertical.

The hardware tests show that it is possible to get good tank estimates despite

significant noise. The tests also show that accuracies at or smaller than the sensor

error should be used to achieve good estimates and that runs with 56 or more neigh-

borhoods result in good tank parameter estimates for a sensor located approximately

halfway up the tank.wall.

95



96



Chapter 5

Conclusion

The purpose of this work was to design and prototype a localization and mapping

platform for an autonomous mobile LPG tank inspection robot. The design of the

localization hardware and development of the environment mapping software are the

first steps in the process of replacing human inspectors with an inspection robot.

Robotic inspection has the potential to improve the speed of testing, save millions of

dollars and reduce the environmental impact of inspection.

The selection of a compatible set of technologies and their layouts were completed

for the localization hardware. LIDAR was determined to be the best technology for

the inspection application because of its distance sensing range, resolution, commer-

cial availability, low energy release and ability to withstand the tough environmental

demands. The best sensor architecture was then determined to be a gimbaled plat-

form with two actuated and measured axes and a single point distance sensor placed

in the manhole. It was the best option because of its lower cost, acceptable accuracy,

lower fabrication complexity, average communication complexity and its flexibility

of function. The sensor platform can scan or track which allows it to map the en-

vironment and track the inspection robot. A first run prototype of the gimbal was

created and run in a laboratory setting. The prototype acted as expected, proving

the concept is valid.

The second large contribution of the work described in this thesis was the develop-

ment and testing of customized data collection, segmentation and fitting algorithms.
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The collection algorithm is an optimized method for collecting data of an unknown

environment from a gimbaled platform based on the expected extents of the data,

the resolution of the sensors, and the desired accuracy of the cylinder fit. The seg-

mentation and fitting algorithm combines the Gauss image, 3D histogram techniques

and object shape knowledge to non-iteratively fit a right angled cylinder with pla-

nar capped ends without iteration. The algorithm is robust to noise and faster than

current segmentation and fitting methods due to its unique lack of iteration. The

algorithms were tested using simulation and laboratory tests involving the prototype

hardware platform described above. In both cases the algorithms were able to fit a

capped cylinders to the data despite significant error.

5.1 Future Work

At the time of this writing, the prototype hardware system and the first version soft-

ware are functioning. The end goal of the project is to have a completely independent

robust integrated software and hardware module ready to place into a robotic inspec-

tion system. There are some modifications to both the hardware and software that

would make the integration into a complete system easier and more robust.

5.1.1 Hardware Future Work

A full design process should be completed on the gimbal hardware. The prototype

presented in this thesis was fabricated in a laboratory setting with sensors that would

work in the lab environment. The gimbal is fairly large and a redesign could sig-

nificantly reduce the size and bulkiness of the system. The technology to make the

system more compact is available, but it is expensive or difficult to manage in a lab-

oratory setting. The DT500 laser rangefinder has the correct range for a laboratory,

but would need to be replaced in the actual device with a longer range sensor, such

as the Acuity AR3000. The final modification that should be made to the hardware

is a better cable management system. Currently the cables are wrapped around the

theta axis rod. The amount of rotation in the theta axis does not exceed a full rota-



tion using the current version of the software, therefore the wrapped method works

acceptably. A better solution would use a hollow bearing with the cables through the

center such that they do not wrap around any axis.

5.1.2 Software Future Work

A few small changes to the collection, segmentation and fitting algorithms could

be completed to make the fit more robust and accurate. The overall structure and

methods of the algorithms are complete and running. The current version of the

software is able to segment and fit the majority of cases, but a few changes to the

code would diminish the number of cases where the software fails.

The first software change is to add a filter that removes all data points within

a certain distance around the gimbal. There are instances when the most common

normal is found to be around the sensor instead of on the floor. These instances

occur when a large portion of the sensor view is obstructed and the floor area is

significantly smaller than the wall area. Only a few normals are calculated on the

floor and many normals are calculated around the sensor. The bias of the sensor

location could be removed by removing all normals calculated within a small distance

around the sensor.

The second software change is to modify the method of removing outliers before

segmentation. The current outlier removal method is to use modifications to the 5th

and 95th percentiles of the data. When there are outliers the clipping ranges are large

and do not remove valid data. The problem occurs when there are no outliers and

the data is heavily biased to one side of the tank, such as when the sensor platform is

obstructed and many points are collected around the sensor. Valid data is removed in

the biased, no outlier case. A better method of handling outliers needs to be added

to the code.

The third software change is to add a method to remove the skew of the cylinder

data shown in Figure 4-2. As mentioned in Chapter 4, the data skew causes the

location of the sensor and the estimated tank parameters to be incorrect. A second

rotation using the sectioned floor data normal will result in a more vertically aligned
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tank. Another method that could resolve the problem is fitting a rotated 3D cylinder

to the wall data instead of a circle to the xy data. The 3D cylinder fit could be

completed without iteration because the cap data is removed and the axis of the

cylinder is known; it is the normal of the floor plane located at the center of the floor

plane data. Both of the methods mentioned here should be tested for robustness and

the best option should be implemented in the final algorithm.

The fourth and final software change is the addition of a reality check on the floor

and roof locations. Sometimes the roof may have more normals than the floor. In

this case the tank is rotated upside down. The tank is still rotated into a right angled

position and segmentation occurs as expected. The only problem is that the map will

be upside down. A reality check should be completed on the data to make sure the

tank is rotated correctly. This can be done by confirming that the measured value of

the floor is negative and the roof is positive, but a more robust method would be to

make sure the robot is located on the bottom of the fit. If the fit is upside down, a

simple rotation by 180 degrees can be completed on all the data to rotate the tank

into the correct orientation.

5.1.3 Inspection System Future Work

The next step in the development of the inspection application is the creation of an

algorithm and the associated hardware to locate and track the robot as it inspects

the tank floor. The work described in this thesis covers the beginning development

of a robot localization system. Once the environment is mapped, the hardware can

be used to locate and track the robot in the same environment. The next step is to

locate and track the robot. At the time of this writing, the tracking algorithm and

associated hardware is being developed in the Mechatronics Research Laboratory at

MIT.
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Appendix A

Matlab Files

This appendix contains the Matlab code that is described in Chapter 3. The code

can be configured to run using simulation or to process data from a file. The first

five functions in the appendix are used for either situation. The Normal Collection

Simulaton, Distance Sensor Simulaiton and Tip Tilt functions are used only when

simulating the data. The description, inputs and outputs of each function are detailed

in the comments at the top of each file.
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A.1 Main Tank Mapping File

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

%Ntot = pointsperside^3-(pointsperside-2)^3

%Corresponds to only the outside of the cube

%% Constants

% Neighborhood Radius (r-n)

dim = min(rough-height,rough-diam);

neighborhood-radius = 0.2*din;

% Accuracy

acc = desacc/dim;

102

%% TANK MAPPING

% Main program for the LPG/LNG Tank Mapping

% 1)Runs a function that simulates the collection of data from a

% laser sensor mounted on a pan/tilt platform or processes

% data from a file.

% OR

% 1)Reads in data file containing columns of phi,theta,d data and

% calculates the normals

% 2)Runs fitting function to fit tank to data.

% 3)Runs plotting function to plot data and fits

clear all

close all

clc

%% User Inputs

desacc = 0.02; % Desired accuracy in m

noisesensor = 0.02; % Standard Dev of Sensor Error, sigma-sensor

res-enc = 2*pi/(65536*4); % Resolution of encoder steps in deg

rough-height = 1;

rough-diam = 1*2;

pointsperside = 5; %Number of normals collecting on each side ...

of the cube



33 accuracy = acos(l-acc/3); %Acc converted to normal angle

34 %accuracy (3 stdevs) with 75%

35 %of to make sure get it

36

37 % Gimbal Noise Standard Deviation, noise-gimbal

38 space=.2;

39 error = ...

sqrt(2*((max(rough-height,rough-diam)^2)/(3*space)*res-enc)^2

40 noise-sensor^2);

41

42 % Number of points in neighborhood (num = Nn)

43 num = (2*2.26*error/(neighborhood-radius*accuracy))^1.79;

44 if num > 3

45 numpoints = ceil(num);

46 else

47 numpoints = 3;

48 end

49

50 %% 1) Data Collection Simulation

51 % Can either simulate data collection and normal processing or

52 % can read in a text file containing the theta, phi and d in

53 % columns seperated by tabs

54

ss %% Uncomment the following to mathematically simulates data ...

collection

56 % [normalsx, normals-y, normalsz,x,y,z]

57 % normalcollection(pointsperside, numpoints,

neighborhood-radius, noise-sensor, res-enc);

58

59 %% Uncomment the following to read in file, process it and ...

calculate normals

60 % % If have outliers need to uncomment clipping from Cylinder-Fit ...

file as well

61 tpd = importdata('1205llRun3','\t',O);

62
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theta = tpd(:,l);

phi = tpd(:,2);

d = tpd(:,3);

%Calculate the number of points corresponding to each neighborhood

p = length(d)/(pointsperside^3-(pointsperside-2)^3);

k=

n=

for

end
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63

64

65

66

67

68

69

1;

length (d) /p;

j = 1:n

bad = 0;

for i = 1:p

%Collecting the neighborhood points

thetaint(i) = theta(12*(j-l)+i);

phiint(i) = phi(12*(j-l)+i);

dint(i) = d(12*(j-l)+i);

%If sensor reads above 50, sensor didn't read correctly

if dint(i) > 50 1 dint(i)==0;

bad = 1;

end

end

if bad==0 %If there are no bad points (meaning the sensor ...

read properly)

[xint,yint,zint] = sph2cart(thetaint,phiint-pi/2,dint);

[a,b,c] = planefitLS(xint,yint,zint); %Calculate normal

lipn = sqrt(a^2+b^2+c^2); %Ensure it is a unit normal

al(k) = a/l pn;

bl(k) = b/l pn;

cl(k) = c/lpn;

else %If there were bad points in the normal

al(k) = 0;

bl(k) = 0;

cl(k) = 0;

end

k = k+1;



al =

bl =

cl =

al'

bl'

cl'
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99

100

101

102

103

104

105

106

107

108 [row2 col2] = fin

above 50m

109 tpd(row2,:) = [];

[row3 col3] =

tpd(row3,:) =

find

[];

d(tpd>50); %Remove the points that are reading ...

(tpd==0); %Remove the points that read 0

theta = tpd(:,1);

phi = tpd(:,2);

d = tpd(:,3);

normals-x = norms(:,1);

normals-y = norms(:,2);

normals-z = norms(:,3);

[x,y,z] = sph2cart(theta,phi-pi/2,d);

%% Fitting

tstartfit = tic;

[TankHeight, TankRadius,xcent,ycent, floor-height, rotmat,data].

= CylinderFitOneHistLS (normals-x,normals-y,normals-z,

x,y,z,accuracy,error);

timefit = toc(tstartfit)

105

norms = [al,bl,cl];

[row col] = find(norms==O);

norms(row,:) = [];



133 %Print out the fit parameters

134 TankHeight

135 TankRadius

136 xcent

137 ycent

138 floor-height

139 radial = sqrt(xcent^2+ycent^2)

140

141 %% Plotting

142 CylinderPlots (x, y, z, data, TankHeight, TankRadius, xcent, ycent)
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A.2 Cylinder Fitting Function

1 function ...

[TankHeight,TankRadius,xcent,ycent, floor-height,rotmat,data]...

2 = CylinderFitOneHistLS(normals_x,normals-y,normals-z...

3 ,x,y,z,accuracy,error)

4 %% CYLINDER FITTING

5 % This function takes in theta,phi,d point data and normals, corrects

6 % for error in the tip/tilt (assuming the tank should always have

7 % its center axis vertical) and fits a bounded cylinder

8 % (including roof, if data is present and floor) using least

9 % squares fitting.

10 %

ii % Inputs: theta and phi from the pan/scan sensors

12 % distance, d, from the distance measuring device

13 % x,y,z coords of plane normals for points of interest

14 % desired accuracy of the fit

15 % sensor error estimate

16 %

17 % Outputs: estimated tank height

18 % estimated tank radius

19 % estimated center coordinates (xcent, yxent)

20 % estimated sensor height (same as -floor-height)

21 % rotation matrix

22 % collected data for plotting

23 %

24 % Steps:

25 % 1) Creating 3D histogram from the normals data

26 % 2) Use most common normal to calculate rotation matrix

27 % 3) Rotate data using rotation matrix

28 % 3a) Remove outliers if necessary

29 % 4) Separate the data into floor,roof and walls

30 % 5) Fit planes and circle to separated data

31 % 6) Calculate tank fit parameters

32 % 7) Collect data into structure for exporting to plotting function
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33

34 %% Finding most common normal using 3D histogram

35

36 %Creating bins

37 bins = sqrt(3)/accuracy;

38 xi = linspace(-1,1,bins);

39 yi = linspace(-1,1,bins);

40 zi = linspace(-1,1,bins);

41

42 %Adding to nearest bin for each point

43 xr = interpl(xi,0.5:numel(xi)-0.5,normals-x','nearest')';

44 yr = interpl(yi,0.5:numel(yi)-0.5,normals-y','nearest')';

45 zr = interpl(zi,0.5:numel(zi)-0.5,normals-z','nearest')';

46

47 W = accumarray([xr yr zr]+0.5, 1, [bins bins bins]);

48

49 %Finding the max bin

50 [num idx] = max(W(:));

51 [a b c] = ind2sub(size(W),idx);

52

53 %Coordinates of most common normal

54 A = xi(a);

55 B = yi(b);

56 C = Zi(C);

57

58 %% FINDING ROTATION MATRIX

59 zaxis = [0 0 -1]; %z-axis unit normal vector

60

61 1-pn = sqrt(A^2+B^2+C^2); %length of floor plane normal vector

62 planenorm = [(A/l-pn) (B/lipn) (C/1-pn)]; %floor plane unit ...

normal vector

63 rotaxis = cross(zaxis,planenorm);

64 rotangle = acos(dot(zaxis,planenorm));

65 Rot = [rotaxis rotangle];

66 rotmat = vrrotvec2mat(Rot);

67
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68

69

70

71

72

73

74

75

76

77

78

79

80

81 %% Uncomment if need to remove outliers

82

83 rotated = [rotx, roty, rotz];

84

85 x100 = quantile(rotx,0.95)+(quantile(rot-x,0.95)

quantile(rot-x,0.05))*

x0 = quantile(rot-x,0.05)-

quantile(rot-x,0.05))*

y100 = quantile(rot-y,0.95

quantile (roty, 0.05)) *

yO = quantile(rot-y,0.05)-

quantile(rot-y,0.05))*

zl00 = quantile(rot-z,0.95

quantile(rot-z,0.05))*

.10/.90+3*error;

(quantile(rot-x,0.95)-...

.10/.90-3*error;

)+(quantile(rot-y,0.95)-...

.10/.90+3*error;

(quantile(rot-y,0 .9 5 )-...

.10/.90-3*error;

)+(quantile(rot-z,0.95)-...

.10/.90+3*error;

zO = quantile(rot-z,0.05)-(quantile(rot-z,0.95)-.

quantile(rot-z,0.05))*.10/.90-3*error;

97

xrad = (xlOO-xO)/2;

yrad = (ylOO-yO)/2 ;

rad = max(xrad,yrad);

xc = xrad+xO;

yc = yrad+yO;

109

%% ROTATE DATA

%Preallocating vectors to speed program

rotxyz = zeros(length(x),3);

% Rotating

for k=l:length(x)

rotxyz(k,:) = [x(k) y(k) z(k)]*rotmat;

end

rot-x = rotxyz(:,1);

rot-y = rotxyz(:,2);

rot-z = rotxyz(:,3);

98

99

100

101

102
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104

105 [rowxyl=find(sqrt((rot-x-xc).^2+(rot-y-yc).^2) > rad);

106 [rowz] = find(rot-z > z100 rotz < zO);

107

108 rows = [rowxy;rowz];

109

110 rows = unique(rows);

111

112 rotated(rows,:) =

113

114 rot-x = rotated(:,l);

115 rot-y = rotated(:,2);

116 rot-z = rotated(:,3);

117

118 %% SEPARATE DATA INTO FLOOR/ROOF/WALL

119 % Finding middle of data

120 midx = mean([quantile(rot-x,0.95) quantile(rot-x,0.05)]);

121 midy = mean([quantile(rot-y,0.95) quantile(rot-y,0.05)]);

122 midz = mean([quantile(rot-z,0.95) quantile(rot-z,0.05)]);

123

124 %Find range of data

125 rangex = quantile(rot-x,0.95)-quantile(rot-x,0.05);

126 rangey = quantile(rot-y,0.95)-quantile(rot-y,0.05);

127 ranged = min([rangex rangey]);

128 rangez = quantile(rot-z,0.95)-quantile(rot-z,0.05);

129

130 % corrections for estimates based on worse case error from bin

131 temp = ([l cot(accuracy);cot(accuracy) 1])\[ranged; rangez];

132 delr = temp(l);

133 delz = temp(2);

134

135 % correction based on sensor error (wall data that might

136 % accidentally be inside the cleaned up radius because of error

137 account4error = 10*error;

138

139 % Safe estimates to be used to separate data
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140 cleanradius = ranged/2-delr-account4error;

141 cleanroof = quantile(rotz,0.95)-delz-account4error;

142 cleanfloor = quantile(rotz, O.05)+delz+account4error;

143

144 0 = 1;

145 p = 1;

146 S = 1;

147

148 for q=1:length(rotz)

149 %If inside clean radius

150 if ((rot-x(q)-midx)^2+(rot-y(q)-midy)^2 < cleanradius^2)

151 %If below middle of z height

152 if (rotz (q) < midz)

153 %Then is floor

154 intf loor-z (o) = rot z (q);

155 intfloor-y(o) = rot-y(q);

156 intfloor-x(o) = rot x(q);

157 0 = o+1;

158 %Else if above middle of z height

159 elseif (rotz(q) > midz)

160 %Then is roof

161 introofz(p) = rotz(q);

162 introof-y (p) = rot-y (q);

163 introofX (p) = rotX (q);

164 p = p+l;

165 %%end

166 end

167 %If below clean roof and above clean floor

168 elseif ( (rotz(q)< cleanroof) && (rotz(q)>cleanfloor)

169 %Then is walls

170 intwall-z(s) = rot_ z(q);

171 intwall-y(s) = rot-y(q);

172 intwall-x(s) = rot-x(q);

173 s = s+l;

174 end

175 end
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176

177 %Rotating the data to make columns instead of rows

178 floorx = intfloorx. I;

179 floor-y = intfloor-y. ;

180 floor-z = intfloor-z. ;

181

182 roof x = introof-x.';

183 roof y = introof-y.';

184 roof-z = introof-z. ;

185

186 wallx = intwallx.

187 wall-y = intwall-y. ;

188 wallz = intwall-z.

189

190 %% CIRCLE FIT TO WALLS X,Y DATA

191 if (isempty(wall-x))

192 fprintf('No wall data')

193 else

194 [xcent,ycent,R] = circlefitLS(wallx,wall-y);

195 end

196

197 %% FITTING PLANES TO FLOOR AND ROOF DATA

198 if (isempty(wallx))

199 fprintf('No floor data')

200 elseif (isempty(roof-x))

201 fprintf('No roof data')

202 else

203 [fA,fB,fC] = planefitLS(floor-x,floor-y,floor-z);

204 [rA,rB,rC] = planefitLS(roof-x,roof-y,roof-z);

205

206 %Finding fit floor and roof

207 num = 50;

208 u = 1;

209 for beta = 0:2*pi/num:2*pi;

210 for D = 0:R

211 intfit-x(u) = xcent+cos(beta)*D;
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212 intfit-y (u) = ycent+sin(beta)*D;

213 u = u+1;

214 end

215 end

216 fit-floor-z = -(fA/fC)*intfit-x.'-(fB/fC)*intfity. '+l/fC;

217 fit-roof z = -(rA/rC)*intfit-x.'-(rB/rC)*intfit-y.'+l/rC;

218

219 floor-height = -(fA/fC)*xcent-(fB/fC)*ycent+l/fC

220 roof-height = -(rA/rC)*xcent-(rB/rC)*ycent+l/rC;

221 end

222

223 %% FINAL TANK SIZE ESTIMATES

224

225 TankRadius = R;

226

227 %Height is the distance between the floor and roof

228 TankHeight = roof -height-floor-height;

229

230 %% Collecting data to be sent to plotting function

231 data.rot-x = rot-x;

232 data.rot-y = rot-y;

233 data.rot-z = rot-z;

234 data.floor-x = floor-x;

235 data.floor-y = floor-y;

236 data.floor-z = floor-z;

237 data.roof-x = roof-x;

238 data.roof-y = roof-y;

239 data.roof-z = roof-z;

240 data.wall-x = wall-x;

241 data.wall-y = wall-y;

242 data.wall-z = wall-z;

243 data.intfit-x = intfit-x;

244 data.intfit-y = intfit-y;

245 data.fit-floor-z = fit-floor-z;

246 data.fit-roof-z = fit-roof-z;

247 data.bins-x = xi;
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248 data.bins-y = yi;

249 data.binsz = zi;

250 data.bins-W = W;
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A.3 Plotting Function

1 function ...

CylinderPlots(x,y,z,data,Tank-Height,TankRadius,xcent,ycent)

2 %% Plotting Function

3 % This is the main plotting function. It takes the data output by the

4 % fitting algorithm and makes plots to show the data,fits,etc.

5 %

6 % Inputs: x,y,z coordinates of the raw data

7 % data structure output from fitting function

8 % Estimated tank height and radius (TankHeight and ...

TankRadius)

9 % Estimated tank center (xcent,ycent)

10 %

11 % Outputs: Raw data plot

12 % 3D Histogram

13 % Rotated and trimmed data plots

14 % Fit plots

15 %

16 % Steps:

17 % 1) Pull data out of structure sent from fitting function

18 % 2) Create array of data to be used to plot the wall fit

19 % 3) Create plot of raw data

20 % 4) Create plot of rotated data

21 % 5) Create plots of each fit (floor, roof, walls) and the total fit

22

23 %% Pulling Pieces out of data

24 rot-x = data.rot-x;

25 rot-y = data.rot-y;

26 rot-z = data.rot-z;

27 floor-x = data.floor-x;

28 floor-y = data.floor-y;

29 floor-z = data.floor-z;

30 roof-x = data.roof-x;

31 roof-y = data.roof-y;

115



32 roof-z = data.roof-z;

33 wallix = data.wall-x;

34 wall-y = data.wall-y

35 wall-z = data.wall-z;

36 fitx = data.intfit-x;

37 fit-y = data.intfit-y;

38 fit-floor-z = data.fit-floor-z;

39 fit-roof-z = data.fit-roof-z;

40 bins-x = data.bins-x;

41 bins-y = data.bins-y;

42 bins-z = data.bins-z;

43 binsW = data.binsW;

44

45 %% CALCULATE FITTED WALLS DATA

46 t = 1;

47 zmin = min(rot-z);

48 zmax = max(rot-z);

49 num = 100;

50

51 for zl=zmin:.25:zmax;

52 for alpha = 0:2*pi/num:2*pi;

53 fit-wall-x(t) = xcent+cos(alpha)*TankRadius;

54 fit-wall-y(t) = ycent+sin(alpha)*TankRadius;

55 fit-wall-z(t) = zl;

56 t = t+l;

57 end

58 end

59

60 %% CALCULATE FITTED WALLS DATA Centered at zero

61 % tc = 1;

62 % zmin = min(rot-z);

63 % zmax = max(rot-z);

64 % num = 100;

65 %

66 % for zlc=zmin:.25:zmax;

67 % for alpha = 0:2*pi/num:2*pi;
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2-

2-

2-

2-

fit-wall-xc (tc) = cos (alpha) *Tank-Radius;

fit-wall-yc(tc) = sin(alpha)*Tank-Radius;

fit-wall-zc(tc) = zl;

tc = tc+l;

end

end

%% Plot raw data

figure(1);

plot3(0,0,0,'ko'); %Manhole

xlabel('x-axis');

ylabel('y-axis');

hold on;

plot3(x,y,z,'.','markersize',6); %Raw Data

title('Raw Data')

axis square;

axis equal;

hold off;

%% Plot histogram

figure(2);

[xl,yl,zl] = meshgrid(bins-y,bins-x,bins-z);

test = [xl(:) yl(:) zl(:) binsW(:)];

[row] = find(test(:,4)==O);

test(row,:) = [];

scatter3(test(:,2),test(:,1),test(:,3),30,test(:,4),'filled');

xlabel('x')

ylabel('y')

zlabel('z')

axis square

axis equal

%% Plot rotated data
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104 figure(3);

105 plot3(0,0,0,'ko'); %Manhole

106 xlabel('x-axis');

107 ylabel('y-axis');

108 hold on;

109 plot3(rot-x,rot-y,rot-z, '.', 'markersize',2); %Rotated Data

110 title('Rotated Data')

il1 axis square;

112 axis equal;

113 hold off;

114

us %% Plot the individual fits and final fit in 4x4 grid

116 figure(4);

117

118 % Plot the floor fit

119 set(gcf,'position',[20,60,1280,800]);

120 subplot(2,2,1)

121 plot3(fit-x, fit-y,fit-floor-z,'k')

122 axis square;

123 axis equal;

124 title('Floor Fit')

125 hold on;

126 plot3(floorx, floor-y, floor-z,'r*'); %Rotated Floor Data

127

128 % Plot the roof fit

129 subplot(2,2,2);

130 plot3(fit-x, fit-y, fit-roof-z,'k')

131 axis square;

132 axis equal;

133 title('Roof fit')

134 hold on;

135 plot3(roof-x,roof-y,roof-z, 'r*'); %Rotated Roof Data

136

137 %Plot the walls fit

138 subplot(2,2,3);

139 plot3(fit-wall-x,fit-wall-y,fit-wall-z,'k'); %Wall Fit
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140 % hold on

141 % plot3(fit-wall-xc,fit-wall-yc,fit-wallizc, 'b'); %Wall Fit

142 axis square;

143 axis equal;

144 title('Walls fit')

145 hold on;

146 plot3(wallx,wall-y,wallz,'rx'); %Rotated Walls Data

147

148 %Plot all fit

149 % grey = [0.8,0.8,0.8];

150 subplot(2,2,4);

151 plot3(rot-x,rot-y,rot-z, 'bx'); %Rotated Data

152 axis square;

153 axis equal;

154 hold on;

155 plot3(fit-x, fit-y, fit-floor-z, 'k'); %'color',grey); %Floor Fit

156 plot3(fit-x,fit-y, fit-roofz,'k'); %'color',grey); %Roof Fit

157 plot3(fit-wall-x, fit-wall-y, fit-wall-z,'k'); %'color',grey);

%Wall Fit

158 title('Total fit')
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A.4 Plane Fitting Function

120

1 function [A,B,C] = planefitLS(x,y,z)

2 %% Least Squares Plane Fitting

3 % Calculates the best fit plane using least squares matrix methods

4 %

5 % Inputs: x,y,z data for plane to be fit

6 %

7 % Outputs: Plane normal coordinates A,B,C

8

9 for i = 1:length(x)

10 phi(l,i) = x(i);

11 phi(2,i) = y(i);

12 phi(3,i) = z(i);

13 end

14 w = ones(l,length(z));

is P = inv(phi*phi.');

16 B = phi*w.';

17 planecoeff = P*B;

18

19 A = planecoeff(l,l);

20 B = planecoeff(2,1);

21 C = planecoeff(3,1);



A.5 Circle Fitting Function

1 function [XO,YO,R] = circlefitLS(x,y)

2 %% Least Squares Circle Fitting

3 % Calculates the best fit circle using least squares matrix methods

4 %

5 % Inputs: x and y data for circle to be fit

6 %

7 % Outputs: Origin location XO and YO and circle Radius

8

9 for i = 1:length(x)

10 phic(l,i) = x(i)^2+y(i)^2;

11 phic(2,i) = x(i);

12 phic(3,i) = y(i);

13 end

14 wc = ones(1,length(x));

15 Pc = inv(phic*phic.');

16 Bc = phic*wc.';

17 coeffc = Pc*Bc;

18

19 Ac = coeffc(l,l);

20 Bc = coeffc(2,1);

21 Cc = coeffc(3,1);

22

23 R = sqrt(4*Ac+Bc^2+Cc^2)/(2*Ac);

24 X0 = -Bc/(2*Ac);

25 YO = -Cc/(2*Ac);
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A.6 Normal Collection Simulation Function

i function [normals-x, normals-y, ...

normals-z,xreturn,yreturn,zreturn]...

2 = normalcollection(pointsperside, numpoints,

neighborhood-radius, sensor-noise, res-enc)

3 %% DATA COLLECTION

4 % This function does the math for the data collection and then

5 % calls the distance simulator to return data to the fitting

6 % algorithm

7 %

8 % Inputs: Number of points per side of a unit cube for points of

9 % interests

10 % Number of points of interest

11 % Radius of neighborhood

12 % Standard deviaion of the sensor noise

13 % Resolution of the encoder in degrees

14 %

15 % Outputs: x,y,z components of surface normals at points of interest

16 % x,y,z components of each point where distance data was

17 % collected

18 %

19 % Steps:

20 % 1) Calculates the directions for the points for which normals

21 % will be calculated.

22 % 2) Collects the data for these points of interest

23 % 3) Calculates the directions for each point in the neighborhood

24 % 4) Collects the data for the neighborhood points

25 % 5) Fits planes and finds normal for each neighborhood

26

27 %% Constants

28 R = neighborhoodradius;

29 xreturn=[];

30 yreturn=[];

31 zreturn=[];
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32

33

34

35

36

37

%Applying

Xl = A;

Y1 = B;

Zl = C;

the grid to all sides of the cube

X2 = B;

Y2 = C;

Z2 = A;

X3 = C;

Y3 = A;

Z3 = B;

%Centering the cube

X = [A;B;C]-0.5;

Y = [B;C;A]-0.5;

Z = [C;A;B]-0.5;

points = [X,Y,Z];

123

%% Calculating Normal Collection Angles from Unit Grid

% This gives a more even distribution than evenly spreading

% around a unit sphere, but the end result is still not

% evenly distributed

%Making the grid of points

n = pointsperside;

l=linspace(0,1,n+2);

a=l(2:n+l); b=a;

[Al, Bl] = meshgrid(a, b);

A = reshape(Al, [], 1);

B = reshape(Bl, [], 1);

C = [min(A)*ones(length(A),1); max(A)*ones(length(A),l)];

A = [A; A];

B = [B; B];

38

39

40

41

42

43

44

45

46

47
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68

69 %Getting rid of duplicate points (edges of the cube)

70 P = unique(points,'rows');

71

72 %Final evenly spaced points about the curbe

73 Xfinal = P(:,1);

74 Yfinal = P(:,2);

75 Zfinal = P(:,3);

76 %%

77 %Converting the XYZ to Theta Phi Z so can send commands to motor axes

78 [theta-normals phi-normals dist] = cart2sph(Xfinal, Yfinal, Zfinal);

79 phi-normals=phi-normals+pi/2; %I defined my phi, theta, z

80 %different than Matlab does for cart2sph so this converts

81 %to my orientation

82

83 %% Simualting the data collection

84

85 %Preallocating

86 normals-x = zeros(length(phi-normals),l);

87 normals-y = zeros(length(phi-normals),l);

88 normalsz = zeros(length(phi-normals),1);

89

90 xint = zeros(length(phi-normals)*numpoints,l);

91 yint = zeros(length(phi-normals)*numpoints,l);

92 zint = zeros(length(phi-normals)*numpoints,l);

93

94 % Collects distance for point of interest (POI) in the direction

95 % calculated above, then calculates the direction to face for

96 % each point in the neighborhood around the POI, then collects

97 % distance for each neighborhood point

98 i 1;

99

1oo for normal= 1:length(phi-normals)

101

102 % Isolating POI

103 phi-n = phi-normals(normal);
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104 theta-n = theta-normals (normal);

105

106 % Collecting distance for POI

107 [theta-n, phi-n, d) = simdist(theta-n, phi-n, sensor-noise,

res-enc);

108

109 % Calculating the neighborhood point locations

110 [xint(i) yint(i) zint(i)]= sph2cart(theta-n, phi-n-pi/2,1);

ill Vn = [xint(i) yint(i) zint(i)];

112

113 Vrp = 0;

114 while Vrp == 0

115 %generate random vector

116 Vr = [rand, rand, rand];

117 %Find component of random vector in circle plane

118 Vrp = Vr-dot(Vn,Vr)*Vn;

119 end

120 %Making first orthogonal vector a unit vector

121 Vl = Vrp/sqrt(Vrp(1)^2+Vrp(2)^2+Vrp(3)^2);

122

123 %Second orthonormal vector

124 V2 = cross(V1,Vn);

125 %Making 2nd orthogonal vector a unit vector

126 V2 = V2/sqrt(V2(1)^2+V2(2)-2+V2(3)^2);

127

128 r=R/sqrt(R^2+d^2);

129 A-t = 2*pi/numpoints;

130

131 for t=0:A-t:2*pi

132 i=i+1;

133 Vc = Vn+cos(t)*r*Vl+sin(t)*r*V2;

134 xint(i) = Vc(l);

135 yint(i) = Vc(2);

136 zint(i) = Vc(3);

137 end

138
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139 %Collecting distance for each neighborhood point

140 for n= 1:length(xint)

141 [theta-int(n) phi-intl(n) dist(n)] = cart2sph(xint(n),

yint(n), zint(n));

142 phi-int (n)=phi-intl (n)+pi/2;

143 [theta(n), phi(n), d(n)] = simdist(theta-int(n),

phi-int (n), sensor-noise, res-enc);

144 [x(n) y(n) z(n)]= sph2cart(theta(n), phi(n)-pi/2, d(n));

145 end

146

147 %Fitting plane to the neighboorhood

148 [A,B,C) = planefitLS(x,y,z);

149

150 %length of plane normal vector

151 lpn = sqrt(A^2+B^2+C^2);

152

153 %plane unit normal vector

154 normals-x(normal) = (A/l-pn);

155 normals-y(normal) = (B/lipn);

156 normals-z(normal) = (C/1-pn);

157

158 %Isolating the data to be returned to the fitting algorithm

159 %Both the normals calculated above and all the data

160 %collected will be returned to the fitting algorithm

161 xreturn = [xreturn; x'];

162 yreturn = [yreturn; y'];

163 zreturn = [zreturn; z'];

164

165 % Clearing Variables

166 i = 1;

167 xint = 0;

168 yint = 0;

169 zint = 0;

170 theta-int = 0;

171 phi-int = 0;

172 theta = 0;
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173 phi = 0;

174 x = 0;

175 y = 0;

176 Z = 0;

177 end
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A.7 Distance Sensor Simulation Function

1 function [theta, phi, d] = simdist(theta, phi, sense-noise, res-enc)

2 %% Distance Sensor Simulation Function

3 % This function simulates the data results one would get from

4 % using a laser distance measuring device on a pan/scan mount

5 %

6 % Inputs: theta and phi you want to send the laser to measure out

7 % standard deviation of the sensor noise

8 % resolution of the encoder

9 %

10 % Outputs: theta and phi "measured" from pan/scan mount

11 % distance, d, "measured" from the laser

12 %

13 % Steps:

14 % 1) Input tank and sensor information

15 % 2) Add in noise due to encoder resolution

16 % 2) Run the tip tilt function to simulate a tipped sensor

17 % 3) Calculate the simulated distance via intersection of line

18 % and cylinder

19 % 4) Add noise to the data

20 %% Constants

21

22 % Error in sensor tip/tilt start location

23 phix = 0*pi/180;

24 phiy = 45*pi/180;

25

26 x-man = 0; % Manhole x location (center bottom of tank is 0,0,0)

27 y-man = 74; % Manhole y location

28 z-man = 70; % Manhole z location

29 height = 75; %Tank height 35

30 radius = 75; %Tank Radius 92/2

31

32 %% Add gimbal noise

33 phi-noisy = phi+res-enc*1/3*randn;
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34 theta-noisy = theta+res-enc*l/3*randn;

35

36 %% Run tip tilt program to simulate the sensor being slightly off ...

from perpendicular/parallel to tank

37 [phi-eff, theta-eff] = tiptilt(phi-noisy, theta-noisy, phix, phiy);

38

39 %% Getting "measured" distance values, d

40

41 % If the sensor is facing straight down the data is just the

42 % height of the sensor. This is necessary because there is a

43 % discontinuity with the trigonometry when phi-eff=0

44 if (phi-eff == 0)

45 d = z-man;

46

47 % Using equation for a 3D line (initial position + d*direction

48 % vector = position of laser point in space

49 % Direction vector is equations for converting spherical to

50 % cartesian without radius (want unit vector)

51 % Using equation for cylinder x^2+y^2=r^2

52 % Find intersection of 3D line with cylinder by substitution

53 % and solving for d, which is the distance to the measured

54 % point in space.

55 else

56 % intermediate variables to make equations easier to type

57 a = ((sin(phi-eff))^2)*((cos(theta-eff))^2)+((sin(phi-eff))^2) ...

58 * ((sin(theta-eff))^2);

59 b = ...

(2*x-man*sin(phi-eff)*cos(theta-eff))+(2*y-man*sin(phi-eff)

60 *sin(theta-eff));

61 c = xman^2+y-man^2-radius^2;

62

63 % using quadratic formula to solve for d

64 dl = (-b+sqrt (b^2-4*a*c) ) /(2*a) ;

65 d2 = (-b-sqrt (b^2-4*a*c) ) /(2*a) ;

66

67 %identify positive root
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68 if (d2 > 0)

69 d-int = d2;

70 elseif (dl > 0)

71 dint = dl;

72 else

73 % If there is no positive root return an error

74 sprintf('error')

75 end

76

77 % Find z height of measurement given calculated d

78 z-int = dint*-cos(phieff)+zman;

79

80 % Check that it is within the logical height limits of the tank

81 % If within logical height limits, calculated d is correct

82 if ((0 < z-int) && (z-int < height))

83 d = d-int; % Return calculated d

84 % If z is taller than tank, then laser is hitting roof.

85 elseif (z-int > height)

86 % Recalculate d given that it is hitting the roof

87 d = (-height+z-man)/cos (phi-eff);

88 % If z is shorter than tank, then laser is hitting floor.

89 elseif ((z-int < 0))

90 % Recalculate d given that it is hitting floor.

91 d = z-man/cos(phi-eff);

92 end

93 end

94

95 %% Adding Noise to Data

96 %randn is random data from 0 to 1, by adding and subtracting I

97 %get noise from -1 to 1 around data

98 d = d+sense-noise*randn(length(d),l);
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A.8 Tip Tilt Function

1 function [phi-eff, theta-eff] = tiptilt(phi, theta, phix, phiy)

2 %% Tip Tilt Function

3 % Calculates the phi and theta that will be measured if the

4 % sensor is not facing straight downward (ie changes phi,

5 % theta to match sensor reference frame instead of cylinder

6 % reference frame)

7 %

8 % Inputs: Phi and Theta as reference off the cylinder coordinate

9 % frame

10 % The rotation of the sensor from the cylinder coordinate

11 % frame about the x and y axes, phix and phiy

12 %

13 % Outputs: The new phi and theta in the sensor coordinate frame

14 % (tipped sensor)

15 %

16 % Steps:

17 % 1) Convert phi and theta to x,y,z (easier to rotate in xyz

18 % coord frame)

19 % 2) Rotate about the x-axis by phix amount

20 % 3) Rotate about the y-axis by phiy amount

21 % 4) Convert back to phi, theta

22

23 %% Convert phi,theta to x,y,z unit directions

24 [x0, yO, zO] = sph2cart(theta, phi-pi/2, 1);

25

26 %% Rotate around x-axis, phix

27 xl = xO;

28 yl = yO*cos(phix)-zO*sin(phix);

29 zl = zO*cos(phix)+yO*sin(phix);

30

31 %% Rotate around y-axis, phiy

32 x2 = xl*cos(phiy)+zl*sin(phiy);

33 y2 = yl;
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34 z2 = zl*cos(phiy)-xl*sin(phiy);

35

36 %% Convert from shifted x,y,z to rotated phi,theta

37 r = sqrt(x2^2+y2^2+z2^2);

38

39 phieff = acos(-z2/r);

40

41 %Accounting for discontinuity of trig functions

42 if ((phi-eff==O) 11 (phi-eff==pi))

43 theta-eff = 0;

44 % Just made it zero because I am only using this program

45 % to simulate data collection. The discontinuity of phi

46 % being 0 or pi makes me lose information. Setting to zero

47 % gives a series of data points that are acceptable to a

48 % model but do not necessarily reflect what the actual

49 % data would be. This one discrepancy does not cause a

so % problem in the model.

51 else

52 theta-eff = atan2(y2,x2);

53 end

54 end
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Appendix B

Labview Code

This appendix contains images of the Labview code used to run the prototype

hardware. The hardware is activated and commanded and the data is collected and

written to a file using the Labview functions shown here.
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B.1 Main Function

This is the main function used to run the system. Figure B-i shows the front panel

where the inputs to the system can be modified by the user and any errors are output.

At the end of the program a file is written containing the 0, #, and d data. Figure

B-2 shows the inner workings of the main program. The main VI uses several subVIs

that will be detailed next.

Figure B-1: Main Program Front Panel
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Figure B-2: Main Pygram Block Diagram



B.2 Point of Interest Calculation subVI

This VI takes in the number of points on the cube edge and calculates the corre-

sponding 0 and # commands to send to the motor controllers. These POIs are the

locations of the normals in space that will be used in the segmentation portion of the

algorithm.

Points Per Side ---- thetajnormals
cAc - phi normals

Figure B-3: POI Calculation SubVI Connector

-D Array of Re

xi finn

YrNa %Conv-t hesexzto ThetaPii Z so can send commsendoto

final [ t aoono i phinonnaistit] = cat2sphOfint Ylinat Zfinalk

Pts ri-amlpo ] tosnvaoomat

%sto thsconwertsto rrW onriadtsn

Figure B-4: POI Calculation SubVI Block Diagram
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B.3 Neighborhood Property Calculations subVI

This VI takes in the user inputs and calculates the properties of the neighborhood

needed to achieve the desired accuracy.

Desired Accuracy [%]
Dist Sensor Noise [m]

Rough Height [m]
Rough Diam [m]

Number of Neighbors
Radius of Neighborhood

Figure B-5: Neighborhood Property Calculations SubVI Connector

Neighbors

Radius of Neighborhood

Figure B-6: Neighborhood Property Calculations Block Diagram
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B.4 Neighbor Location Calculations subVI

This VI uses the properties calculated in the Neighborhood Property Calculations

subVI and the POI 0#d information to calculate the position of each of the neighbors

and the necessary motor commands to collect data from these neighbors.

Number of Neighbors
Neighborhood Radius

Theta
Phi

POI Distance

theta.neighbors
phi neighbors

Figure B-7: Neighbor Location Calculations SubVI Connector

Theta!M

phiOE

Number of Neighbors

Neighborhood Radius g

POI Distance

Figu

m mMATLAS

% Calculating the neighborhood point locations
hipoi [xpoi ypoi zpoij= sph2cart(theta poi phipoi-pi/

2,1);
numpoints xo po pi pi;pipip

%generate random vector
Vr = [rand, rand, randb
%Find component of random vector in circle plane
Vrp = 0
while Vrp==0

Vrp = Vr-dot(VnVr)Vn
end
%Making first orthogonal vector a unit vector
V1= Vrp/sqrt(Vrp1)2+Vrp(2)2+Vrp(3) 2);

%Second orthonormal vector
V2 = cross(VlVn);
%Making 2nd orthogonal vector a unit vector
V2 = VZ/sqrtV2WA2+V2)A2+V23)A2),

r=R/sq/t(RA2+dA2);
delta.t = 2*pi/numpoints;
Vp = Vn*cos(angle);

i =1;
for t=0:delta~t:(*pi-delta.)
Vc = Vp+cos(t)*r*V+sin(t)*r*V2;
xint(i) = Vc(1)

yint(i)= Vc(2);
zint(i)= Vc(3)

[theta.int(i) phi int1(i) dist(i)] = cart2sph(xinti) yint(i), zint(i));
phiint(i)=phiint1(i)+pi2

i=i+1; hetn in
end

hi tnt

re B-8:

U

mi1thetaneighbors

phi-neighbors

Neighbor Location Calculations Block Diagram
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B.5 Radian to Quadrature Count and Quadrature

Count to Radian subVIs

These VIs convert radians to quadrature counts and quadrature counts to radians.

They are needed because the calculations use radians whereas the motor controllers

take in and output quadrature counts.

RAD
rad TO qc

Figure B-9: Radian to Quadrature Count SubVI Connector

QC
qc -TO radians

RAD

Figure B-10: Quadrature Count to Radian SubVI Connector

Figure B-11: Radian to Quadrature Count SubVI Block Diagram

2iir
x

qc 13

BLradjan5

Figure B-12: Quadrature Count to Radian SubVI Block Diagram
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B.6 Motor Movement subVIs

There is one motor movement subVI for each axis. These VIs take in the target axis

and the target position. The axis is commanded to move to the target position. When

the axis reaches the target position or after a set amount of time passes the subVI is

exited and the error in the position is output. Each axis needs its own subVI in order

to actuate both axes at the same time. Only the theta axis connector and code is

shown in Figures B-13 and B-14 because the code is exactly the same for each axis.

axis in axis out
.re MOVETarget Position THETA m error out

error in (no error)

Figure B-13: Motor Movement SubVI Connector

|Target Position 

Figuresin4Moto --------- axisk

lapsed Time2

Figurel B-14:m MooMovmnoubIBokeiga
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B.7 Read Distance subVI

The read distance subVI reads in the measurement from the laser rangefinder and

converts the signal to a distance in meters.

VISA resource name READ VA resource name out
error in (no error) ------ Dist in meters

error out

Figure B-15: Read Distance SubVI Connector

VISA resource name out
VISA resource name I/ Jnr /0

error in (no error) . - - Bytes at Port error out r -n Dist n meters

Figure B-16: Read Distance SubVI Block Diagram
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Appendix C

Outlier Removal Method

The outliers need to be removed before segmentation can occur. Up until segmen-

tation, the algorithm can handle having outliers, but the segmentation and fitting

steps are more sensitive. To improve accuracy, extreme outliers are removed from the

data. Figure 4-7a shows the original data with the outliers. Figure 4-7b shows the

data after the tank is rotated and the outliers are removed.

pdf z| zio1

zr

Z5Zo

1.

0

Figure C-1: Clipping process in the z direction. z5 is the 5th percentile of the data.
z95 is the 95th percentile of the data. zo and zioo are the modified extents containing
all valid data but excluding outliers. I is the actual height of the data.
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A process of clipping based on quantiles is used to separate the outliers from the

valid data. The z axis clipping is shown in Figure C-1. Up to 10% of the valid data

will be lost using only the points between the 5th and 95th percentiles. This much

loss could bias the circle fit. A method to collect all valid points by adding distance to

the 5th and 95th percentiles is outlined below: The range z, is defined as the range

between the 5th and 95th percentiles, which is equivalent to 90% the actual length.

Zr - Z5 -Z 5  = 0.901 (C.1)

The maximum distance within which the valid data will occur is defined as z100 . As

shown in Eq C.2, zioo is found by adding another 10% of the length and 3 times the

error to z,.

Zi00 = z95 + 0.101 + 3e (C.2)

Rearranging Eq C.1 and replacing I in Eq C.2 results in Eq C.3.

0.10
Zi00 = Z9 5 + 0 Zr + 3e (C.3)

0.90

zo can be found by subtracting the additional distances from z5 resulting in Eq C.4

0.10
zo = Z5 - 0  Z - 3e (C.4)

0.90r

Any data that is outside the bounds of zo to zioo is considered an outlier and removed

from the data set before segmentation.

A similar process is used for removing outliers in the radial direction as shown in

Figure C-2. The equations for the x and y axes' extents are derived using the same

logic and are shown in Eq C.5.

-O - (x95 - X5 ) - 3e

io90 + (x95 - X5) + 3e (C.5)
Yo =y - ' (yg5 - y5) - 3e

yioo =5 yg0 +90 (Y95 - y5) + 3e
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Figure C-2: Clipping process in the radial direction.

The difference with the radial calculation is that the instead of clipping a box using the

x and y extents, the larger of distance between the extents is considered the bounding

radius rel as shown in Eq C.6. All points that are outside rel are considered outliers.

max ((xioo - xo) , (y1oo - yo)) (C.6)
2
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