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We find a series of non-Abelian topological phases that are separated from the deconfined phase of ZN

gauge theory by a continuous quantum phase transition. These non-Abelian states, which we refer to as the
“twisted” ZN states, are described by a recently studied U (1) × U (1) � Z2 Chern-Simons (CS) field theory.
The U (1) × U (1) � Z2 CS theory provides a way of gauging the global Z2 electric-magnetic symmetry of the
Abelian ZN phases, yielding the twisted ZN states. We introduce a parton construction to describe the Abelian
ZN phases in terms of integer quantum Hall states, which then allows us to obtain the non-Abelian states from
a theory of Z2 fractionalization. The non-Abelian twisted ZN states do not have topologically protected gapless
edge modes and, for N > 2, break time-reversal symmetry.

DOI: 10.1103/PhysRevB.86.085114 PACS number(s): 05.30.Rt, 11.15.Yc, 71.27.+a

I. INTRODUCTION

Landau symmetry breaking theory1,2 not only classifies
a large class of symmetry breaking phases, it also tell us
which pairings of phases are connected by continuous phase
transitions. Now we know that there are many topologically
ordered states3 that cannot be described by Landau symmetry
breaking theory. The next important issue is to understand
which pairs of topological phases are connected by continuous
phase transitions and what the critical properties of the
transitions are.

One class of topological phases are Abelian fractional quan-
tum Hall (FQH) states. Those states can be systematically de-
scribed by the K matrix and the associated U (1) × U (1) × · · ·
Chern-Simons (CS) theory.4,5 For such a class of topological
states, we know that two Abelian FQH states described by K

and

K ′ =
(

K l

lT p

)
(1)

are connected by continuous phase transitions, provided that
there is a periodic potential with a proper period.6,7 This
class of phase transitions is induced by anyon condensa-
tion described by Ginzburg-Landau Chern-Simons theory.8

Another class of topological phases are described by gauge
theory with a discrete, possibly non-Abelian, gauge group
G. For such classes of non-Abelian topological states,9,10 we
also know that a pair of discrete gauge theories described
by gauge groups G and G′ can be connected by continuous
phase transitions if G′ ⊆ G or G ⊆ G′. This class of phase
transitions are induced by boson condensation described by the
standard Anderson-Higgs mechanism of “gauge symmetry”
breaking.11,12

But there exist more general classes of topological phases
described by pattern of zeros,13–16 Zn vertex algera,17–19 and/or
string-net condensates.20 The above picture of topological
phase transitions is clearly incomplete. One attempt to find
new classes of continuous topological phase transitions is
introduced in Refs. 21 and 22, which describe a class of
continuous phase transitions between Abelian FQH and non-

Abelian FQH17,23 states, induced by anyon condensation. A
special case of such class of continuous topological phase
transition is induced by fermion condensation, which was first
discussed in Refs. 24–26.

In Ref. 27, we studied U (1) × U (1) � Z2 CS theory with
integral coupling constants (k,l) [see Eq. (24)]. When l =
3, it was found that the topological properties of this theory
agree with those of the Z4 parafermion FQH states28 at filling
fraction ν = k/(2k − 3), leading us to suggest that this was
the long wavelength field theoretic description of these non-
Abelian FQH states. This formulation of the effective field
theory allowed us to show that there is a continuous phase
transition, in the 3D Ising universality class, between the Z4

parafermion states and the Abelian (k,k,k − 3) states in bilayer
quantum Hall systems.21

Subsequently, it was found that for more general values of
the coupling constants, k,l �= 0, the U (1) × U (1) � Z2 CS
theory describes a series of non-Abelian FQH states—the
orbifold FQH states.22 The Z4 parafermion FQH states are
then a special case of these more general orbifold FQH states,
which are separated from the (k,k,k − l) states by a continuous
3D Ising phase transition.

However, it is also known that U (1) × U (1) CS theory need
not describe only quantum Hall states. For a particular set of
coupling constants, it can also describe time-reversal invariant
topological phases. The Lagrangian

L = 1

4π

∑
IJ

KIJ aI ∂aJ , (2)

with K = ( 0 N

N 0 ), describes the long-wavelength properties
of the deconfined phase of ZN gauge theory. Such a phase
has N2 topologically distinct Abelian quasiparticles. The
quasiparticles can be labeled by their electric and magnetic
charge, (e,m), for e,m = 0, . . . ,N − 1, and have spin em/N .

The above observation suggests that the U (1) × U (1) �

Z2 CS theory, with k = 0, may also describe non-Abelian
topological phases, although ones that may exist in frustrated
spin models and that do not require the presence of a strong
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external magnetic field. This raises many questions regarding
whether such phases can be obtained from microscopic models
with local interactions, how to develop a more complete theory
for these possible states, how to understand the conditions
under which they may occur, and how to understand their full
topological order.

In this paper, we study the topological properties of these
non-Abelian states and, by developing a slave-particle descrip-
tion of them, provide further evidence that they are physical in
that they can be realized in a microscopic model with local
interactions. This leads to a series of non-Abelian states,
without protected gapless edge modes, that are separated
from the Abelian ZN states by a continuous 3D Ising phase
transition. For N > 2, these non-Abelian states can only be
accessed when time-reversal symmetry is broken.

The specific system that we use to establish our results is one
with two flavors of strongly interacting bosons. However, the
main purpose of the present work is to show that the topological
phases and phase transitions that we discuss here exist, in
principle, and to understand their topological properties; they
may also appear in other models with different microscopic
degrees of freedom.

We begin in Sec. II by developing a parton construction
for the Abelian ZN states, which allows us to describe
these conventional phases in terms of integer quantum Hall
states. The use of this formulation is that it allows us to
access the U (1) × U (1) � Z2 phases through a theory of
Z2 fractionalization. In Sec. III, we then use this parton
construction, in conjunction with a recently developed slave
Ising formulation, to describe the twisted ZN phases and argue
that their low-energy theory should be the U (1) × U (1) � Z2

CS theory with suitably chosen coupling constants. In Sec. IV,
we review the results of the U (1) × U (1) � Z2 CS theory. In
Sec. V, we give a prescription, using conformal field theory,
to derive the full topological order of these non-Abelian
states; wherever comparison is possible, we find agreement
with highly non-trivial results from the U (1) × U (1) � Z2 CS
theory.

II. PARTON CONSTRUCTION FOR ZN

TOPOLOGICAL ORDER

In this section, we show how to construct a state with ZN

topological order by projecting from ν = 1 IQH states.29 We
begin with two flavors of bosons, b↑ and b↓, and decompose
them in terms of 3N partons as follows:

b↑ =
N∏

i=1

ψi

3N∏
j=2N+1

ψj , b↓ =
2N∏

i=N+1

ψi

3N∏
j=2N+1

ψj , (3)

where we have suppressed the space indices. Note that the
partons ψ2N+1, . . . ,ψ3N are shared between b↑ and b↓. We
can rewrite the original theory of these two flavors of bosons
in terms of a theory of these partons coupled to a gauge field.
The gauge field projects the expanded parton Hilbert space
onto the physical Hilbert space, which is generated by the
physical operators b↑ and b↓.

Next, we assume a mean-field ansatz where ψ1, . . . ,ψ2N

form a ν = 1 IQH state, while ψ2N+1, . . . ,ψ3N form a ν = −1
IQH state. The maximal gauge group that respects this mean-

field ansatz is SU (N ) × SU (N ) × SU (N ) × U (1), which we
will write as SU (N )3 × U (1).

In order to motivate the above construction, note that
bilayer (NN0) FQH states can be obtained through the parton
construction by decomposing the electron operator in each
layer as

�e↑ = ψ1 · · · ψN, �e↓ = ψN+1 · · · ψ2N, (4)

and assuming a mean-field ansatz where the ψi each form
ν = 1 IQH states. It can be shown that the low-energy field
theory for such a state is U (1) × U (1) CS theory with K

matrix, K = ( N 0
0 N ). In order to describe more general bilayer

FQH states such as (N + m,N + m,m), we simply multiply
each electron operator by an additional set of operators:

�e↑ = ψ1 · · ·ψN × ψ2N+1 · · · ψ2N+m,
(5)

�e↓ = ψN+1 · · · ψ2N × ψ2N+1 · · · ψ2N+m,

and we assume again that all of the partons ψi form a ν = 1
IQH state. At the level of the wave functions, this has the effect
of multiplying the (NN0) wave function by a Jastrow factor
to give the (N + m,N + m,m) wave function:

�(N+m,N+m,m) = �(NN0)�(mmm). (6)

Since the ZN gauge theory is described by a K matrix,

K =
(

0 N

N 0

)
=

(
N N

N N

)
−

(
N 0

0 N

)
, (7)

a natural guess is the decomposition in Eq. (3), where
ψ2N+1, . . . ,ψ3N are assumed to form ν = −1 IQH states.

The low-energy theory for such a state will involve the
partons interacting with a gauge field from the gauge group
SU (N )3 × U (1). It is not at all clear that such a complicated
field theory, with many non-Abelian gauge groups, has simply
the ZN topological order.

In Appendix B, we compute the ground-state degeneracy of
the SU (N )3 × U (1) theory on a torus. We find that it is given
by

torus degeneracy = N2, (8)

which agrees with that of the ZN topological order.
Unfortunately, besides the torus ground-state degeneracy,

it is extremely difficult to compute any other topological
properties of a theory with such a complicated non-Abelian
gauge group. In order to proceed, we choose a mean-field
ansatz for the partons that breaks the gauge group down to
the center of SU (N )3 × U (1), which is U (1)3N−2. One way
to do this, for example, is to assume various condensates
such that in the low-energy field theory, the partons all have
different masses, while still forming the IQH states described
above. Since the gauge group is now Abelian, it is possible
to compute all topological properties of the resulting states.
In the following section, we show that such a gauge theory
coupled to the partons describes the topological properties of
the ZN phase and directly yields the U (1) × U (1) mutual CS
theory as its low-energy effective field theory.
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A. Mutual U(1) × U(1) CS theory from parton construction

The effective field theory is described by the Lagrangian:

L = iψ†∂0ψ + ψ†M
−1

2
(∂ − iAQ)2ψ

+ Tr
(
jμaI

μpI
) + · · · , (9)

where ψT = (ψ1, . . . ,ψ3N ), Mab = maδab, and ma is the mass
of the ath parton, Ai describes a magnetic field seen by the
partons, j

μ

ab = ψa∂
μψb describes the current of the partons,

aμ is the gauge field, and the 3N − 2 generators of the gauge
group U (1)N−1 × U (1)N−1 × U (1)N−1 × U (1) are given by
the matrices pI :

pI
ij = δij (δi,I − δi,I+1), I = 1, . . . ,N − 1,

pI
ij = δij (δi,I+1 − δi,I+2), I = N, . . . ,2N − 2,

(10)
pI

ij = δij (δi,I+2 − δi,I+3), I = 2N − 1, . . . ,3N − 3,

pI
ij = δij (δi,1 + δi,N+1 − δi,2N+1), I = 3N − 2.

Since the partons are in ν = 1 IQH states, their action
is each given by a U (1)1 CS theory; because of the gauge
constraint, they will be coupled to the gauge field as well:

L = Lparton + Lconstraint,

Lparton = 1

4π

2N∑
i=1

bi∂bi − 1

4π

3N∑
i=2N+1

bi∂bi, (11)

Lconstraint =
3N∑
i=1

j i
μpI

iia
I
μ,

where bi is a U (1) gauge field describing the current density
of the ith parton:

j i
μ = 1

2π
εμνλ∂νb

i
λ. (12)

From the definition of the pI , we see that integrating out
the a gauge fields enforces the constraints:

j 1 = · · · = jN, jN+1 = · · · = j 2N,
(13)

j 2N+1 = · · · = j 3N, j 2N+1 = jN+1 + j 1.

Therefore the effective action becomes

L = − N

4π
(b1∂bN+1 + bN+1∂b1), (14)

which is exactly the action for the mutual U (1) × U (1) CS
theory description of ZN topological order. Actually, this
analysis is essentially the same analysis that we intuited by
analyzing wave functions in Eqs. (5)–(7).

When the masses of the partons are all equal, we see that
the theory has the enhanced SU (N ) × SU (N ) × SU (N ) ×
U (1) gauge symmetry. Since the number of states on the torus
does not change when this gauge symmetry is broken to its
Abelian subgroup by assuming different mean-field masses for
the partons, we conjecture that it also describes the topological
properties of the ZN phases. This is a surprising result, for it
provides an example in which gauge symmetry breaking does
not actually change the topological properties of a state. This
is related to the fact that sometimes a non-Abelian CS theory is
equivalent to an Abelian CS theory. For example, non-Abelian

SU (k) level 1 CS theory is equivalent to Abelian U (1) level k

CS theory.30,31

III. SLAVE ISING DESCRIPTION

The parton description presented in the previous section
yields the mutual U (1) × U (1) CS theory at long wavelengths
in a way that is amenable to a certain Z2 “twisting.” To do this,
we follow the slave-Ising construction presented in Ref. 22 in
the context of the orbifold non-Abelian FQH states. We start
with two boson operators defined on a lattice, biσ , and we
consider the positive and negative combinations:

bi± = 1√
2

(bi↑ ± bi↓). (15)

We introduce two new fields at each lattice site i: an Ising field
sz
i = ±1 and a bosonic field di−, and we rewrite bi− as

bi+ ≡ di+, bi− = sz
i di−. (16)

This introduces a local Z2 gauge symmetry, associated with
the transformation

sz
i → −sz

i , di− → −di−. (17)

The electron operators are neutral under this Z2 gauge
symmetry, and therefore the physical Hilbert space at each
site is the gauge-invariant set of states at each site:

(|↑〉 + |↓〉) ⊗ |nd− = 0〉, (|↑〉 − |↓〉) ⊗ |nd− = 1〉, (18)

where |↑〉 (|↓〉) is the state with sz = +1(−1), respectively.
In other words, the physical states at each site are those that
satisfy (

sx
i + 1

)/
2 + ndi− = 1. (19)

If we imagine that the bosons di± form some gapped state,
then we would generally expect two distinct phases:32 the
deconfined/Z2 unbroken phase, where〈

sz
i

〉 = 0, (20)

and the confined/Higgs phase, where upon fixing a gauge, we
have 〈

sz
i

〉 �= 0. (21)

We seek a mean-field theory where the deconfined phase
has the properties described by the U (1) × U (1) � Z2 CS
theory, and the confined/Higgs phase corresponds to the ZN

topological phases. To do this, observe that in the Higgs phase,
we have

bi± = di±, (22)

since we may set sz
i = 1 in this phase. Now for this to describe

the ZN phases, we use the parton construction of Sec. II:

di± = 1√
2

(di1 ± di2), di1 = ψ1i · · · ψNiψ2N+1,i · · · ψ3N,i,

(23)
di2 = ψN+1,i · · · ψ2N,iψ2N+1,i · · · ψ3N,i,

and we assume that ψ1, . . . ,ψ2N form a ν = 1 IQH state while
ψ2N+1, . . . ,ψ3N form a ν = −1 IQH state.

Clearly, the low-energy field theory of the confined phase
is the mutual U (1) × U (1) CS theory, describing the Abelian
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ZN topological order. In the deconfined phase, we see that the
parton sector is still described by a U (1) × U (1) CS theory, but
that there is also an additional Z2 gauge symmetry associated
with exchanging the two U (1) gauge fields. This is precisely
the content of the U (1) × U (1) � Z2 CS theory,27 which we
therefore expect to describe the topological properties of this
Z2 deconfined phase.

Since the transition between these two phases is induced
by the condensation of the Ising spin sz

i , which is coupled to
a Z2 gauge field, we see that as the gap to the sz excitations
is reduced, the low-energy field theory is simply a real scalar
field coupled to a Z2 gauge field. Such a theory was analyzed
in Ref. 11, where it was found that the transition is continuous
and in the 3D Ising universality class. Therefore the Abelian
ZN and its Z2 fractionalized neighbor, the “twisted” ZN states,
are separated by a continuous quantum phase transition.

A useful property of this slave Ising formulation is
that standard methods of constructing projected trial wave
functions will, when applied to the Z2 deconfined phase, yield
possible trial wave functions for these non-Abelian twisted ZN

states.22,33

IV. U(1) × U(1) � Z2 CS THEORY AND TOPOLOGICAL
QUANTUM NUMBERS OF TWISTED ZN STATES

The U (1) × U (1) � Z2 CS theory was studied in detail in
Ref. 27. In this section, we review the results for the choice of
coupling constants that is relevant here.

The U (1) × U (1) � Z2 CS theory is described by the
Lagrangian

L = k

4π
(a∂a + ã∂ã) + k − l

4π
(a∂ã + ã∂a), (24)

where a and ã are two U (1) gauge fields. Formally, this is
the same Lagrangian as that of the U (1) × U (1) CS theories,
although here we also have an additional Z2 gauge symmetry
associated with interchanging the two U (1) gauge fields at
each space-time point. This allows, e.g., for the possibility
of Z2 vortices—configurations in which the two U (1) gauge
fields transform into each other around the vortex—and twisted
sectors on manifolds of nontrivial topology.

In order to describe the twisted ZN topological phases, we
choose k = 0 and l = N . In Ref. 27, we found that such a
theory has N (N + 7)/2 topologically distinct quasiparticles.
The ground-state degeneracy on genus g surfaces is

Sg(N ) = (Ng/2)[Ng + 1 + (22g − 1)(Ng−1 + 1)]. (25)

From Sg(N ), we can obtain the quantum dimensions of all the
quasiparticles. The total quantum dimension is

D2 = 4N2. (26)

There are three classes of quasiparticles: 2N quasiparticles
with quantum dimension d = 1, 2N quasiparticles with
quantum dimension d = √

N , and N (N − 1)/2 quasiparticles
with quantum dimension d = 2.

The fundamental non-Abelian excitations in the U (1) ×
U (1) � Z2 CS theory are Z2 vortices. In Ref. 27, we studied
the number of degenerate ground states in the presence of n

pairs of Z2 vortices at fixed locations on a sphere. The result

for the number of such states is

αn =
{

(Nn−1 + 2n−1)/2 for N even,

(Nn−1 + 1)/2 for N odd.
(27)

This shows that the quantum dimension of the Z2 vortices is
d = √

N . We can also compute the number of states that are
odd under the Z2 gauge transformation. The number of these
Z2 noninvariant states turns out to be an important quantity,
because it yields important information about the fusion rules
of the quasiparticles. The number of Z2 noninvariant states
yields the number of ways for n pairs of Z2 vortices to
fuse to an Abelian quasiparticle that carries Z2 gauge charge.
The ground-state degeneracy of Z2 noninvariant states in the
presence of n pairs of Z2 vortices at fixed locations on a sphere
was computed to be

βn =
{

(Nn−1 − 2n−1)/2 for N even,

(Nn−1 − 1)/2 for N odd.
(28)

Thus if γ labels a Z2 vortex, these calculations reveal the
following fusion rules for γ and its conjugate γ̄ :

(γ × γ̄ )n = αnI + βnj + · · · , (29)

where j is a topologically nontrivial excitation that carries the
Z2 gauge charge. The {· · · } represent additional quasiparticles
that may appear in the fusion.

Note that the above is true also for U (1) × U (1) � Z2 CS
theory with coupling constants (k,l) = (N,0), which applies
to bilayer FQH states. This indicates a close relation between
the FQH phases with (k,l) = (N,0) and the nonquantum Hall
ones with (k,l) = (0,N )

The above gives us much information about the topological
order of the twisted ZN states, but we have not been able to
compute the full topological order of these states directly form
the U (1) × U (1) � Z2 CS theory. However, since we know
that the twisted ZN states contain a Z2 charged boson—labeled
sz
i in the previous section and j here—whose condensation

yields the Abelian ZN states, we can deduce even more
topological properties of the quasiparticles.

In our case, the two phases are separated by the conden-
sation of a topologically nontrivial bosonic quasiparticle, j ,
that fuses with itself to a local topologically trivial excitation.
Based on general considerations,12 we expect the following
regarding the topological quantum numbers of such phases.
Upon condensation of j , quasiparticles that differed from each
other by fusion with j become topologically equivalent. Quasi-
particles that were nonlocal with respect to j before conden-
sation become confined after condensation and do not appear
in the low-energy spectrum. Finally, quasiparticles that fused
with their conjugate to the identity and j will, after conden-
sation, split into two topologically distinct quasiparticles. The
spins of the quasiparticles remain unchanged through this pro-
cess, which allows us to obtain information about the spins of
some of the quasiparticles in the twisted ZN states from knowl-
edge of the spins of the quasiparticles in the Abelian ZN states.

In the case of the twisted ZN states, we have the following.
The 2N Abelian quasiparticles, which contain the quasiparticle
j , become N Abelian quasiparticles after condensation. The
Z2 vortices are clearly nonlocal with respect to the Z2

charges, so they become confined. Finally, the N (N − 1)/2
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TABLE I. Some topological quantum numbers for quasiparti-
cle excitations based on considerations of Sec. IV. Al , for l =
0, . . . ,2N − 1, labels the 2N Abelian quasiparticles. Bl , for l =
0, . . . ,2N − 1, labels the Z2 vortices. Cmn, for m,n = 0, . . . ,N − 1
and m < n, labels the N (N − 1)/2 quasiparticles with quantum
dimension 2. Note that the quasiparticles (e,m) in the Abelian ZN

states have spin em/N . Also note that the spin is meaningful only
modulo 1.

Spin Quantum dimension

Al l2/N 1
Bl . . .

√
N

Cmn mn/N 2

quasiparticles with quantum dimension 2 each split into two
distinct quasiparticles. This yields the N2 quasiparticles of
the Abelian ZN states. The natural interpretation is that the
N (N − 1)/2 quasiparticles correspond to the Z2 invariant
combinations of quasiparticles in the Abelian states: (e,m) +
(m,e) for e �= m, while the 2N Abelian quasiparticles of the
twisted ZN states consist of the N diagonal quasiparticles (l,l),
and their N counterparts that differ by fusion with j . Therefore
we can infer the spins of these two classes of quasiparticles.
The results are listed in Table I.

We still have not been able to compute the spins of the
Z2 vortices or the complete fusion rules of the quasiparticles.
In the following section, we will present a prescription that
enables us to calculate all of the topological properties of
these twisted ZN states.

V. CONFORMAL FIELD THEORY CONSTRUCTION
AT c − c̄ = 0

The use of CFT techniques to compute topological quantum
numbers for FQH states has been very powerful.17–19 Physi-
cally, this is possible because the edge theory is described by
CFT, and there is a correspondence between the spectrum of
states in CFT and the topological properties of quasiparticles
in the bulk of FQH states.34 The prescription in those
cases is to identify an appropriate set of CFTs, choose an
appropriate electron operator, and then the quasiparticles are
those operators that can be constructed that are mutually local
with respect to the electron operator. Two quasiparticles that
are related by electron operators are topologically equivalent.
The topological spin of the quasiparticles then is believed to
follow from the scaling dimension of the quasiparticle operator
in the CFT, while the fusion rules of the quasiparticles are
equivalent to the fusion rules, with respect to the electron
chiral algebra, of the quasiparticle operators in the CFT.

In the case of the twisted ZN states, we do not expect to have
topologically protected edge modes. However, under certain
symmetry, gapless edge modes described by CFT can exist.35

So the CFT prescription can still be used to yield possible
full sets of topological quantum numbers. Physically, we can
think of this as the CFT that describes gapless edge excitations
for these states, although it is unstable to opening up a gap.
In this section, we will give a prescription to compute the
topological properties from CFT. While we cannot prove that
the topological quantum numbers are precisely those of the

U (1) × U (1) � Z2 CS theory, they are consistent with all of the
highly nontrivial results of the previous section. Additionally,
based on the relation of these twisted ZN states to their
FQH counterparts, the orbifold FQH states,22 we have even
more reason to believe that the prescription given here is the
correct one. We expect it possible to prove that the topological
quantum numbers found using this prescription are in fact the
unique consistent set that is also consistent with results that
can be deduced from the U (1) × U (1) � Z2 CS theory.

The construction is analogous to the orbifold FQH states,22

except we take the anti-holomorphic part of the Z2 orbifold as
the non-Abelian part of the CFT instead of the holomorphic
part; the “charge” part is the c = 1 chiral (holomorphic) scalar
field. Thus the total central charge of the CFT is ctot = c + c̄ =
2, while the difference in central charges is crel = c − c̄ = 0;
this indicates that such a phase would have zero thermal Hall
conductance, as expected from the fact that it does not have
protected edge modes (see Sec. VII C).

We could also take the holomorphic part of the Z2 orbifold
as the non-Abelian part, and the “charge” part to be antiholo-
morphic. This would yield the time-reversed counterpart of
this phase.

The operator content of the Z2 orbifold CFT is reviewed in
Appendix A. For the twisted ZN states, we take the “electron”
operator to be

Ve(z,z̄) = φ̄1
N (z̄)ei

√
ν−1ϕ(z), (30)

where ν = 2/N . The quasiparticle operators Vq are those
operators that are mutually local with respect to the electron
operator:

Vq(z,z̄) = O(z̄)eiQ
√

ν−1ϕ(z). (31)

The OPE of Vq with Ve is

Vq(w,w̄)Ve(z,z̄) ∼ (w − z)Q/ν(w̄ − z̄)
hO2 −hO−h

φ̄1
N O2 + · · · .

(32)

Thus for Vq to be local with respect to Ve, we require

Q/ν − (
hO2 − hO − hφ̄1

N

) = integer. (33)

Two quasiparticle operators are topologically equivalent if they
can be related by the electron operator. Proceeding in this
fashion, we find topological orders that agree with the results
of the previous section. This construction allows us to obtain
all of the topological information of the twisted ZN phases.
In the next section, we list examples of results that we obtain
from this construction.

We note that this is an interesting non-trivial example of
the CS/CFT correspondence30 because the boundary CFT in
this case contains both holomorphic and antiholomorphic parts
that are glued together in a special way.

VI. EXAMPLES

In this section, we list results obtained from the CFT
consideration for different twisted ZN states. For N = 3, the
results are summarized in Table II. We see that there are 15
types of quasiparticles. Those particles carry fractional angular
momentum, which we call spin.36 Note that the spin (or angular
momentum) does not have to be multiples of h̄/2 in 2 + 1D.
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TABLE II. Quasiparticle operators for CFT construction of
twisted Z3 phase.

CFT Label Quantum dimension Spin

0 I 1 0
1 ei2/3

√
3/2ϕ 1 0 + 1/3 = 1/3

2 φ2
Nei1/3

√
3/2ϕ 1 −3/4 + 1/12 ∼ 1/3

3 j 1 −1 + 0 ∼ 0
4 jei2/3

√
3/2ϕ 1 −1 + 1/3 ∼ 1/3

5 φ1
Nei1/3

√
3/2ϕ 1 −3/4 + 1/12 ∼ 1/3

6 σ1e
i1/2

√
3/2ϕ

√
3 −1/16 + 3/16 = 1/8

7 σ2e
i1/6

√
3/2ϕ

√
3 −1/16 + 1/48 = −1/24

8 σ2e
i5/6

√
3/2ϕ

√
3 −1/16 + 25/48 = 11/24

9 τ1e
i1/2

√
3/2ϕ

√
3 −9/16 + 3/16 ∼ 5/8

10 τ2e
i1/6

√
3/2ϕ

√
3 −9/16 + 1/48 ∼ 11/24

11 τ2e
i5/6

√
3/2ϕ

√
3 −9/16 + 25/48 = −1/24

12 φ1e
i1/3

√
3/2ϕ 2 −1/12 + 1/12 = 0

13 φ2e
i0

√
3/2ϕ 2 −1/3 + 0 ∼ 2/3

14 φ2e
i2/3

√
3/2ϕ 2 1/3 − 1/3 = 0

The spin of a quasiparticle can be measured by putting the
system on a sphere or on other curved spaces.

For N = 2, we have nine quasiparticles, as summarized
in Table III. It appears that this coincides with the Ising ×
Ising topological order. Condensation of the boson ψ ⊗ ψ̄ = j

yields the Z2 topological order.

VII. DISCUSSION

A. Transition to twisted ZN topological phases

Let γ denote an anyon with statistical angle θ = 2π/N

in a topological phase, and let m control the mass of, or
energy gap to creating, γ . As we tune m, γ may condense
and drive a phase transition to a new phase. This transition
can be described by the 〈φ〉 = 0 → 〈φ〉 �= 0 transition in a
Chern-Simons Ginzburg-Landau theory:

L = |(∂0 + ia0)φ|2 − v2|(∂i + iai)φ|2 − f |φ|2 − g|φ|4

− π

θ

1

4π
aμ∂νaλε

μνλ. (34)

TABLE III. Quasiparticle operators for CFT construction of
twisted Z2 phase. Note that this is equivalent to Ising × Ising.

CFT Quantum Ising ×
Label dimension spin Ising fields

0 I 1 0 + 0 = 0 I ⊗ I
1 φ1

N 1 −1/2 + 0 = 1/2 ψ ⊗ I
2 j 1 −1 + 0 ∼ 0 ψ ⊗ ψ̄

3 φ2
N 1 −1/2 + 0 ∼ 1/2 I ⊗ ψ̄

4 σ1e
i1/2

√
2ϕ

√
2 −1/16 + 1/8 = 1/16 σ ⊗ I

5 σ2

√
2 −1/16 + 0 = −1/16 σ ⊗ ψ̄

6 τ2

√
2 −9/16 + 0 = −9/16 I ⊗ σ̄

7 τ1e
i1/2

√
2ϕ

√
2 −9/16 + 1/8 ∼ 9/16 ψ ⊗ σ̄

8 φ1e
i1/2

√
2ϕ 2 −1/8 + 1/8 = 0 σ ⊗ σ̄

In the above Lagrangian, the anyon number is conserved in
this case, the anyon condensation induces a transition between
Abelian states described by different K matrices.

In the case where γ is only conserved modulo N , there will
be an additional term in the Lagrangian:

δL = t(φM̂)N + H.c. (35)

In this case, the anyon condensation may induce a transition
between Abelian and non-Abelian states.

In our study of bilayer quantum Hall phase transitions in
Ref. 21, it was suggested that this transition, in the presence of
the δL term, may be dual to a 3D Ising transition. In those cases,
one starts from an Abelian bilayer FQH phase and obtains
the non-Abelian orbifold FQH states by tuning the interlayer
tunneling and/or interlayer repulsion. We may obtain a similar
situation in the context of ZN gauge theory if we reduce the
energy gap to the (1,1) quasiparticles (the bound state of a
single electric and a single magnetic quasiparticle). The (1,1)
quasiparticles are conserved only modulo N , because there is
no additional conserved U (1) charge as in the FQH phases.
This implies the possibility of an analog of the bilayer (NN0)
FQH phase transitions studied earlier but for a system in the
absence of a magnetic field and with no protected edge modes.
The (1,1) quasiparticle plays the role of the f -exciton, both of
which have statistical angle θ = 2π/N . Tuning the interlayer
repulsion is equivalent to tuning the attraction between the
minimal electric and magnetic quasiparticles.

Note that while the ZN phase can be obtained in a time-
reversal invariant system, condensing the (1,1) quasiparticle
breaks time reversal for N > 2. Therefore consider starting
with the Hamiltonian that gives deconfined ZN and adding a
term that can tune the attraction between the minimal electric
and magnetic quasiparticles. This will reduce the energy gap to
their bound state, and may be used to tune through a 3D Ising
phase transition. The phase that appears after the transition, in
analogy to the bilayer FQH cases, may be the twisted ZN gauge
theory, described by U (1) × U (1) � Z2 Chern-Simons theory.

B. Time-reversal invariance

We see that for N > 2, the topological quantum num-
bers break time reversal symmetry; there is no way that a
topological phase with these quantum numbers can preserve
time-reversal symmetry. In fact, we saw that we had a choice of
whether to pick the holomorphic part of the Z2 orbifold and the
antiholomorphic part of the U (1) sector, or vice versa. This fact
at first appears worrisome, because these phases are separated
from the ZN Abelian phases through a 3D Ising transition,
and the ZN phases are time-reversal invariant phases. In the
following, we outline reasons to believe that indeed these
twisted ZN phases are not time-reversal invariant for N > 2.

First, observe that for N > 2, the number of quasiparticles
in these phases is not a perfect square. Typically, almost
all time-reversal invariant topological phases are “doubled”
theories in the sense that mathematically they are described by
G ⊗ Ḡ modular tensor categories, where G is itself a modular
tensor category and Ḡ is its time-reversed partner. More in
depth considerations also suggest that for N > 2, there is
no consistent topological phase that is time-reversal invariant
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and that has N (N + 7)/2 quasiparticles with the quantum
dimensions described in Sec. IV.37

In addition to general considerations of what mathemati-
cally consistent time-reversal invariant topological phases can
exist, also note that the only way that we currently know how to
describe the U (1) × U (1) � Z2 CS theory from a microscopic
starting point is through a slave-Ising/parton construction,
where partons are put into ν = ±1 IQH states. Such a UV -
completion necessarily breaks time-reversal symmetry, so it is
consistent to find phases that cannot exist in the presence of
time-reversal symmetry. In the case of the ZN Abelian phase,
there are other microscopic realizations of such topological
order that do preserve time-reversal symmetry.

Finally, note that the picture that we developed for the
transition from the ZN phase to the twisted ZN phase involved
the condensation of a particular anyon that has spin 1/N . Thus
for N > 2, putting this anyon into some collective state will
necessarily break time-reversal symmetry, unless the anyon
with spin −1/N is treated on exactly the same footing.

C. Protected edge modes

The ZN Abelian phase does not have protected gapless edge
modes in the absence of any symmetries, and here we have seen
that it is separated from the twisted ZN non-Abelian phases by
a Z2 transition. Viewed from the twisted phase, the transition
can be thought of as the condensation of a boson j that squares
to a topologically trivial excitation. On general grounds, we
expect that the boundary between two topological phases will
not have protected gapless edge modes if the two phases are
related by a ZN boson condensation transition.37 Since the
ZN phase does not have protected gapless edge modes at a
boundary with the vacuum, this means that the twisted ZN

phase will also not have protected gapless edge modes at a
boundary with the vacuum.

We expect that the above discussion can be made more
concrete by studying the edge through the U (1) × U (1) � Z2

CS theory and the slave-Ising theory and showing that all
possible gapless edge modes can be gapped out by allowed
perturbations.

VIII. SUMMARY, CONCLUSION, AND OUTLOOK

We have seen that the deconfined phase of ZN gauge
theories has a neighboring non-Abelian phase, the twisted
ZN states. These two phases are separated by a continuous
quantum phase transition and the non-Abelian states can be
accessed, for N > 2, only by breaking time-reversal symmetry.

In this paper, we have studied the full topological order of
these non-Abelian states. Much of the topological order can be
deduced directly from the U (1) × U (1) � Z2 CS theory and
the fact that it is separated from the conventional ZN states by
the condensation of a Z2-charged boson. We found a way to
compute the rest of the topological properties that we could
not calculate directly, although those results rely on additional
assumptions.

In addition to deriving the topological order of these
states, we presented a parton construction that allows us to
describe the ZN topological order in terms of fermions in band
insulators with Chern number ±1. This description of the ZN

states then allowed us to describe the non-Abelian twisted
ZN through a slave Ising theory of Z2 fractionalization. The
parton construction provides trial projected wave functions
and provides further evidence to establish that these phases are
physical in that they can be realized in bosonic systems with
local interactions. While we have not provided an explicit
microscopic Hamiltonian that can realize these phases, all
known fractionalized phases can be described through such
slave-particle constructions, and there is a large classification
of such fractionalized phases in terms of microscopic models
with local interactions.33 We believe that the existence of a
stable slave-particle construction for a fractionalized phase is
therefore strong evidence in favor of the fact that the proposed
phase can be stabilized by a microscopic Hamiltonian with
local interactions.

There are two main conceptual issues lacking in our
understanding of these states. First, we should be able to prove
more rigorously that the full topological quantum numbers
presented here coincide with those of the U (1) × U (1) � Z2

CS theory and the associated slave Ising description. Second,
and more importantly, we would like to understand better how
to access these non-Abelian states by starting from the Abelian
ZN states. We know little besides the fact that the energy gap of
the (1,1) quasiparticles should probably be tuned through zero.

In the case of the ZN topological order, we found a
way through field theoretic and slave-particle constructions
to essentially gauge the electric-magnetic symmetry of the
topological quantum numbers. However, conceptually we do
not know how to extend these ideas to other discrete gauge
theories. It would be interesting to develop more general
theoretical, physical descriptions that allow us to “twist” the
symmetries of the topological quantum numbers of a phase.
In CFT, such a procedure is referred to as orbifolding. In
the context of bulk 2 + 1-dimensional states of matter, we do
not have any physical understanding of how this can be done
more generally. One starting point would obviously be to try to
develop Chern-Simons descriptions of discrete gauge theories,
in the way that the mutual U (1) × U (1) CS theory describes
ZN gauge theory.

Recently, another series of topological phase transitions was
found involving the non-Abelian SU (2)N × SU (2)N states,
where the transition involves the condensation of a boson
with Z2 fusion rules.38 By explicitly constructing a lattice
model, it was found that the condensation of the boson yields
a continuous phase transition in the 3D Ising universality
class. For N = 2, the results of Ref. 38 coincide with our
results. However, the generalization to N > 2 is different; in
our case, the N > 2 twisted ZN states break time-reversal
symmetry though they have no topologically protected edge
modes, and the states on the other side of the transition
are described by ZN gauge theory. On the other hand, the
SU (2)N × SU (2)N states can always exist in time-reversal
invariant systems, and the states on the other side of the
phase transition are not describable by ZN gauge theory
for N > 2.

Note added in proof. Recently, it has been shown that the
construction in Sec. II and the many-body wave function of
Eq. (6) describe a boson integer quantum Hall state when
N = 1 and there is a U (1) number conservation symmetry for
the bosons.39
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APPENDIX A: OPERATOR CONTENT OF U(1)/Z2

ORBIFOLD CFT

Since the U (1)/Z2 orbifold at c = 1 plays an important
role in understanding the topological properties of the twisted
ZN states, here, we will give a brief account of some of its
properties. The information here is taken from Ref. 40, where
a more complete discussion can be found.

The U (1)/Z2 orbifold CFT, at central charge c = 1, is the
theory of a scalar boson ϕ, compactified at a radius R, so that
ϕ ∼ ϕ + 2πR, and with an additional Z2 gauge symmetry:
ϕ ∼ −ϕ. When 1

2R2 is rational, i.e., 1
2R2 = p/p′, with p and

p′ coprime, then it is useful to consider an algebra generated by
the fields j = i∂ϕ, and e±i

√
2Nϕ , for N = pp′. This algebra is

referred to as an extended chiral algebra. The infinite number of
Virasoro primary fields in the U (1) CFT can now be organized
into a finite number of representations of this extended algebra
AN . There are 2N of these representations, and the primary
fields are written as Vk = eikϕ/

√
2N , with k = 0,1, . . . ,2N − 1.

The Z2 action takes Vk → V2N−k .
In the Z2 orbifold, one now considers representations of

the smaller algebra AN/Z2. This includes the Z2 invariant
combinations of the original primary fields, which are of
the form φk = cos(kϕ/

√
2N ); there are N + 1 of these. In

addition, there are six new primary fields. The gauging of the
Z2 allows for twist operators that are not local with respect
to the fields in the algebra AN/Z2, but rather local up to an
element of Z2. It turns out that there are two of these twisted
sectors, and each sector contains one field that lies in the trivial
representation of the Z2, and one field that lies in the nontrivial
representation of Z2. These twist fields are labeled σ1, τ1, σ2,
and τ2. In addition to these, an in-depth analysis40 shows that
the fixed points of the Z2 action in the original U (1) theory
split into a Z2 invariant and a noninvariant field. We have
already counted the invariant ones in our N + 1 invariant fields,
which leaves two new fields. One fixed point is the identity
sector, corresponding to V0, which splits into two sectors: 1 and
j = i∂ϕ. The other fixed point corresponds to VN . This splits
into two primary fields, which are labeled as φi

N for i = 1,2
and which have scaling dimension N/4. In total, there are
N + 7 primary fields in the Z2 rational orbifold at “level” 2N .
These fields and their properties are summarized in Table IV.

This spectrum for the Z2 orbifold is obtained by first
computing the partition function of the full Z2 orbifold CFT
defined on a torus, including both holomorphic and antiholo-
morphic parts. Then, the partition function is decomposed
into holomorphic blocks, which are conjectured to be the
generalized characters of the AN/Z2 chiral algebra. This leads
to the spectrum listed in Table IV. The fusion rules and scaling
dimensions for these primary fields are obtained by studying
the modular transformation properties of the characters.

The fusion rules are as follows. For N even,

j × j = 1, φi
N × φi

N = 1, φ1
N × φ2

N = j. (A1)

TABLE IV. Primary fields in the U (1)2N/Z2 orbifold CFT. The
label k runs from 1 to N − 1.

Label Scaling dimension Quantum dimension

I 0 1
j 1 1
φ1

N N/4 1
φ2

N N/4 1

σ1 1/16
√

N

σ2 1/16
√

N

τ1 9/16
√

N

τ2 9/16
√

N

φk k2/4N 2

As mentioned in Ref. 40, the vertex operators φk have a fusion
algebra consistent with their interpretation as cos k√

2N
ϕ,

φk × φk′ = φk+k′ + φk−k′ (k′ �= k,N − k),

φk × φk = 1 + j + φ2k, (A2)

φN−k × φk = φ2k + φ1
N + φ2

N, j × φk = φk,

σi × σi = 1 + φi
N +

∑
k even

φk, σ1 × σ2 =
∑
k odd

φk,

(A3)
j × σi = τi .

For N odd, the fusion algebra of 1, j , and φi
N is Z4:

j × j = 1, φ1
N × φ2

N = 1, φi
N × φi

N = j. (A4)

The fusion rules for the twist fields become

σi × σi = φi
N +

∑
k odd

φk, σ1 × σ2 = 1 +
∑
k even

φk. (A5)

The fusion rules for the operators φk are unchanged.
For N = 1, it was observed that the Z2 orbifold is equivalent

to the U (1)8 Gaussian theory. For N = 2, it was observed that
the Z2 orbifold is equivalent to two copies of the Ising CFT.
For N = 3, it was observed that the Z2 orbifold is equivalent
to the Z4 parafermion CFT of Zamolodchikov and Fateev.41

In Tables V and VI, we list the fields from the Z2 orbifold for

TABLE V. Primary fields in the Z2 orbifold for N = 3, their scal-
ing dimensions, and the Z4 parafermion fields that they correspond
to.

Z2 orbifold field Scaling dimension h Z4 parafermion field

1 0 �0
0

j 1 �0
4

φ1
N 3/4 �0

2

φ2
N 3/4 �0

6

φ1 1/12 �2
2

φ2 1/3 �2
0

σ1 1/16 �1
1

σ2 1/16 �1
−1

τ1 9/16 �1
3

τ2 9/16 �1
5
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TABLE VI. Primary fields in the Z2 orbifold for N = 2, their
scaling dimensions, and the fields from Ising2 to which they
correspond.

Z2 orbifold field Scaling dimension h Ising2 fields

1 0 I ⊗ I
j 1 ψ ⊗ ψ

φ1
N 1/2 I ⊗ ψ

φ2
N 1/2 ψ ⊗ I

φ1 1/8 σ ⊗ σ

σ1 1/16 σ × I
σ2 1/16 I ⊗ σ

τ1 9/16 σ ⊗ ψ

τ2 9/16 ψ ⊗ σ

N = 2 and 3, their scaling dimensions, and the fields in the
Ising2 or Z4 parafermion CFTs that they correspond to.

APPENDIX B: GROUND-STATE DEGENERACY ON A
TORUS FOR SU(N)3 × U(1) GAUGE THEORY

A procedure for calculating the ground state degeneracy on
a torus for states obtained through the projective construction
was described in Ref. 42. This procedure works for gauge
groups that are connected, while gauge groups of the form
G � H , where G is connected and H is a discrete group,
require further analysis.

The classical configuration space of CS theory consists
of flat connections, for which the magnetic field vanishes:
εij ∂iaj = 0. This configuration space is completely character-
ized by holonomies of the gauge field along the noncontractible
loops of the torus:

W (α) = Pei
∮
α

a·dl . (B1)

More generally, for a manifold M , the gauge-inequivalent set
of W (α) form a group [Hom: π1(M) → G]/G, which is the
group of homomorphisms of the fundamental group of M to
the gauge group G, modulo G. For a torus, π1(T 2) is Abelian,
which means that W (α) and W (β), where α and β are the two
distinct noncontractible loops of the torus, commute with each
other and we can always perform a global gauge transformation
so that W (α) and W (β) lie in the maximal Abelian subgroup,
Gabl , of G (this subgroup is called the maximal torus). The
maximal torus is generated by the Cartan subalgebra of the
Lie algebra of G; in the case at hand, this Cartan subalgebra
is composed of 3N − 2 matrices, 3(N − 1) of which lie in the
Cartan subalgebra of SU (N ) × SU (N ) × SU (N ), in addition
to diag(1,0, . . . ,1,0, . . . ,−1,0, . . . ). Since we only need to
consider components of the gauge field aI that lie in the Cartan
subalgebra, the CS Lagrangian becomes

L = 1

4π
KIJ aI ∂aJ , (B2)

where KIJ = Tr(pIpJ ) and pI , I = 1, . . . ,k + 1, are the
generators that lie in the Cartan subalgebra.

There are large gauge transformations U = e2πxip
I /L,

where x1 and x2 are the two coordinates on the torus and

L is the length of each side. These act on the partons as

ψ → Uψ, (B3)

where ψT = (ψ1, . . . ,ψ3N ), and they take aI
i → aI

i + 2π/L.
These transformations will be the minimal large gauge
transformations if we normalize the generators as follows:

pI
ij = δij (δi,I − δi,I+1), I = 1, . . . ,N − 1,

pI
ij = δij (δi,I+1 − δi,I+2), I = N, . . . ,2N − 2,

(B4)
pI

ij = δij (δi,I+2 − δi,I+3), I = 2N − 1, . . . ,3N − 3,

p3N−2
ij = δij (δi,1 + δi,N+1 − δi,2N+1).

The effective K matrix is of the form

K =

⎛
⎜⎜⎜⎝

A 0 0 v

0 A 0 v

0 0 −A v

vT vT vT 1

⎞
⎟⎟⎟⎠ , (B5)

where A is the Cartan matrix of SU (N ) (an N − 1 × N − 1
matrix) and v is an (N − 1) × 1 column vector with 1 on
the first entry and 0s everywhere else: vT = (1,0, . . . ,0). For
example, for N = 2 the above K matrix is⎛

⎜⎜⎜⎝
2 0 0 1

0 2 0 1

0 0 −2 1

1 1 1 1

⎞
⎟⎟⎟⎠ . (B6)

For N = 4, it is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0 0 1

−1 2 −1 0 0 0 0 0 0 0

0 −1 2 0 0 0 0 0 0 0

0 0 0 2 −1 0 0 0 0 1

0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 −1 2 0 0 0 0

0 0 0 0 0 0 −2 1 0 1

0 0 0 0 0 0 1 −2 1 0

0 0 0 0 0 0 0 1 −2 0

1 0 0 1 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B7)

In addition to the large gauge transformations, there
are discrete gauge transformations W ∈ SU (N ) × SU (N ) ×
SU (N ) × U (1), which keep the Abelian subgroup unchanged
but interchanging the aI ’s amongst themselves. These satisfy

W †GablW = Gabl, (B8)

or, alternatively,

W †pIW = TIJ pJ , (B9)

for some (3N − 2) × (3N − 2) matrix T . These discrete
transformations correspond to the independent ways of inter-
changing the partons and they correspond to the Weyl group
of the gauge group. The Weyl group for SU (N ) is SN . These
can be generated by pairwise interchanges of the partons.
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Picking the gauge aI
0 = 0 and parametrizing the gauge field

as

aI
1 = 2π

L
XI

1 aI
2 = 2π

L
XI

2 , (B10)

we have

L = 2πKIJ XI
1Ẋ

J
2 . (B11)

The Hamiltonian vanishes. The conjugate momentum to XJ
2

is

pJ
2 = 2πKIJ XI

1 . (B12)

Since XJ
2 ∼ XJ

2 + 1 as a result of the large gauge transforma-
tions, we can write the wave functions as

ψ( �X2) =
∑

�n
c�ne2π �n· �X2 , (B13)

where �X2 = (X1
2, . . . X

2N−3
2 ) and �n is a (2N − 3)-dimensional

vector of integers. In momentum space, the wave function

is

φ( �p2) =
∑

�n
c�nδ(2N−3)( �p2 − 2π �n)

∼
∑

�n
c�nδ(2N−3)(K �X1 − �n), (B14)

where δ(2N−3)(�x) is a (2N − 3)-dimensional delta function.
Since XJ

1 ∼ XJ
1 + 1, it follows that c�n = c�n′ , where (�n′)I =

nI + KIJ , for any J . Furthermore, each discrete gauge
transformation Wi that keeps the Abelian subgroup Gabl

invariant corresponds to a matrix Ti [see Eq. (B9)], which acts
on the diagonal generators. These lead to the equivalences
c�n = cTi �n.

Carrying out the result on the computer, we find that Det K

is always equal to N2, and, remarkably, we find that the Weyl
group, i.e., the group of discrete transformations that keeps the
Abelian subgroup unchanged, acts trivially in the sense that
it does not lead to any identifications among the states. This
suggests that the K matrix is a complete description of the
theory on a torus!
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