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Patient-Adaptive Ectopic Beat Classification using Active Learning

J Wiens, JV Guttag

Massachusetts Institute of Technology, Cambridge MA, USA

Abstract

A major challenge in applying machine learning tech-

niques to the problem of heartbeat classification is dealing

effectively with inter-patient differences in electrocardio-

grams (ECGs). Inter-patient differences create a need for

patient-specific classifiers, since there is no a priori reason

to assume that a classifier trained on data from one patient

will yield useful results when applied to a different patient.

Unfortunately, patient-specific classifiers come at a high

cost, since they require a labeled training set. Using ac-

tive learning, we show that one can drastically reduce the

amount of patient-specific labeled training data required

to build a highly accurate patient-specific binary heartbeat

classifier for identifying ventricular ectopic beats. Tested

on all 48 half-hour ECG recordings from the MIT-BIH

Arrhythmia Database, our approach achieves an average

sensitivity of 96.2% and specificity of 99.9%. The average

number of beats needed to train each patient-specific clas-

sifier was less than 37 beats, approximately 30 seconds of

data.

1. Introduction

In 24 hours, a Holter monitor can record over 100,000

heartbeats from one patient. This has prompted researchers

to use machine learning to generate algorithms that auto-

matically analyze such data, e.g., [1] and [2].

A major challenge in applying such automated tech-

niques is dealing effectively with inter-patient differences.

The morphology and interpretation of ECG signals can

vary depending on the patient. Since machine learning

techniques aim to estimate the underlying system that pro-

duced the data, if the system changes between training and

testing, this can cause unpredictable results [3]. More con-

cretely, inter-patient differences mean there is no a priori

reason to assume that a classifier trained on data from one

patient or even a large set of patients will yield useful re-

sults when applied to a different patient.

Therefore research in heartbeat classification has fo-

cused on patient-specific or patient-adaptive techniques

that train on labeled data from the test patient.

[1] and [2] each showed that labeling the first 5 min-

utes or the first 500 beats of the test record and including

it in the training set boosted overall classification perfor-

mance for distinguishing ventricular ectopic beats (VEBs)

from non-VEBs. We hypothesize that passively selecting

the training set all from the initial portion (or a randomly

chosen portion) of a record increases the risk of over-fitting

to the patient’s physiological state at that particular time.

Moreover, records containing over 500 beats probably con-

tain many redundancies, and asking a cardiologist to label

all 500 beats is labor intensive.

In order to use expert knowledge more efficiently, we

propose using active learning to train patient-specific

heartbeat classifiers. By carefully choosing examples from

the entire record, we iteratively build a training set that re-

quires fewer cardiologist labels and then use this training

set to build a patient-specific classifier.

When applied to the ECG data from the MIT-BIH Ar-

rhythmia Database [4], our active learning algorithm clas-

sifies VEBs with a mean sensitivity of 96.2% and speci-

ficity of 99.9%. On average the algorithm used only 30

seconds of data. By comparison, [2] presents a patient-

adapting classifier that uses 11 hours of previously col-

lected training data and 500 labeled beats from the test pa-

tient to achieve a mean sensitivity of 80.6% and specificity

of 99.9%. When tested on the same data set, our method

used an average of 35 labeled data points from each record,

and achieved a mean sensitivity of 98.9% and specificity of

99.9%. Additionally, we test our algorithm on ECG data

from another cohort of patients admitted with NSTEACS,

using two different cardiologists to show the clinical utility

of our method.

The remainder of this paper proceeds as follows: Sec-

tion 2 provides a brief overview of our active learning al-

gorithm (details are provided in [5]). Section 3 presents

the experimental results of testing our algorithm on ECG

data from two different data sets. Finally, Section 4 sum-

marizes the findings and contributions of this paper and

makes suggestions for future work in this area.

2. Methods

Our approach to active learning for heartbeat classifica-

tion is briefly described in the following two subsections.
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2.1. Query selection

Given a new test record of unlabeled heartbeats, or

rather feature vectors representing each beat, the algorithm

begins by clustering the data, and then queries the point

closest to the centroid in each cluster. Once labeled these

examples compose our initial training set, and we train a

linear support vector machine (SVM). At each following

iteration, we use the current SVM to determine the next

query, similar to [6].

After the initial pass, we re-cluster the data that lie on

or within the margin of the current SVM. Next, for each

cluster, the point closest to the SVM’s decision bound-

ary is queried and added to the current training set. The

SVM is updated based on this new training set and the

data are again re-clustered. The algorithm stops either

when we obtain a classifier that has no unlabeled data on or

within its margin, or earlier depending on the stopping cri-

terion. This iterative approach greatly reduces the number

of queries needed, but increases the risk of converging to a

solution that is not globally optimal. To reduce the chance

of this occurring, we use two different forms of clustering,

as discussed in the next section.

2.2. Clustering

We use hierarchical clustering to identify the most rep-

resentative samples from each class, similar to [7], [8] and

[9].

In hierarchical agglomerative clustering each data point

is initially assigned its own cluster. Next, clusters with the

smallest inter-cluster distance are combined to form new

clusters. This is repeated until the desired number of clus-

ters is reached. The distance between two clusters is de-

fined by a linkage criterion based on a function of the Eu-

clidean pairwise distances of the observations in each clus-

ter. As described in [5], we investigated different linkage

criteria, and chose two complementary criteria to reduce

the risk of getting stuck in a locally optimal solution.

At each iteration of the algorithm, the data are clustered

using both linkage criteria independently. The number of

clusters here is not fixed, but is allowed to change depend-

ing on the input and the number of iterations. Initially,

the maximum number of clusters, k, for each linkage cri-

terion is set to two. The maximum number of clusters is

incremented at each iteration. Depending on the input, this

results in k to 2k different clusters at each iteration.

3. Experimental results

To test the utility of our approach to active learning for

heartbeat classification, we applied our algorithm to ECG

data from two different sources, the MIT-BIH Arrhythmia

Database at Physionet.org [4] and data from another co-

hort of patients admitted with NSTEACS. We tested our

algorithm on a total of 52 different half-hour records. To

get the data in a format that the algorithm could use, each

record was first pre-processed and segmented as described

in [5]. Once segmented each beat was transformed into a

feature vector consisting of the 67 heartbeat features listed

in Table 1.

Table 1. Heartbeat features used in experiments.

Index Features

[1, ...,60] • Wavelet coefficients from the last 5 levels

of a 6 level wavelet decomposition using

a Daubechies 2 wavelet

[61, ...,63] • Energy in different portions of the beat

[64, ...,66] • RR-intervals

[67] • Morphological distance between the

current beat and the median beat of a record,

calculated using the dynamic time warping

approach described in [10].

We implemented our algorithm in MATLAB, and used

SV Mlight [11] to train the linear SVM at each iteration. We

held the cost parameter of the linear SVM constant at C =
100 throughout all experiments. For all experiments we

used a stopping criterion based on the second derivative of

the margin, described in [5].

3.1. Experiments on the MIT-BIH arrhyth-

mia database

The MIT-BIH Arrhythmia Database consists of 48 an-

notated half-hour ECG records. For each record we used

active learning to train a record-specific linear classifier to

distinguish VEBs from non-VEBs.

We compared the performance of each classifier trained

using active learning to the performance of a record-

specific linear SVM classifier trained on all of the data.

The performance of the SVMs trained using all of the data

gives us a sense of the difficulty of each record. When

evaluating the performance of the classifiers, we test on all

of the data in order to maintain a consistent evaluation set.

Each classifier assigns a positive label to what it believes

are VEBs, and a negative label to everything else. The

accuracy and sensitivity of each classifier is calculated as

follows:

Accuracy =
t p+ tn

t p+ f n+ tn+ f p
(1)

Sensitivity =
t p

t p+ f n
(2)

The results are shown in Table 2. Querying an average

of approximately 37 beats yields an average accuracy and

110



Table 2. Our SVM active learning algorithm achieves close to the same

performance as a classifier trained on all of the data, but uses over 98%

less data.
Active vs. Complete Learning Results

# # Complete Active Active

Rec. Beats VEB Sens. % Sens. % # Queries

100 2270 1 100.0 100.0 12

101 1861 0 - - 10

102 2185 4 100.0 100.0 23

103 2082 0 - - 9

104 2226 2 100.0 0.0 10

105 2563 41 100.0 100.0 25

106 2026 520 100.0 100.0 43

107 2135 59 100.0 100.0 17

108 1761 17 100.0 100.0 41

109 2530 38 100.0 100.0 45

111 2123 1 100.0 100.0 16

112 2537 0 - - 8

113 1793 0 - - 10

114 1878 43 100.0 100.0 42

115 1951 0 - - 9

116 2410 109 100.0 100.0 33

117 1533 0 - - 10

118 2276 16 100.0 100.0 27

119 1986 444 100.0 100.0 25

121 1861 1 100.0 100.0 12

122 2473 0 - - 9

123 1516 3 100.0 100.0 16

124 1617 47 100.0 87.2 23

200 2599 826 100.0 100.0 134

201 1962 198 100.0 100.0 39

202 2134 19 100.0 100.0 36

203 2976 444 94.1 91.7 124

205 2654 71 100.0 98.6 19

207 2329 210 99.0 98.1 124

208 2950 992 99.7 99.4 86

209 3003 1 100.0 100.0 10

210 2645 195 99.5 96.9 105

212 2746 0 - - 10

213 3248 220 95.5 89.5 62

214 2259 256 100.0 100.0 50

215 3361 164 100.0 100.0 42

217 2207 162 100.0 100.0 58

219 2153 64 100.0 98.4 37

220 2045 0 - - 10

221 2426 396 100.0 99.5 17

222 2480 0 - - 8

223 2603 473 99.8 100.0 99

228 2052 362 100.0 100.0 62

230 2254 1 100.0 100.0 12

231 1569 2 100.0 100.0 17

232 1779 0 - - 8

233 3076 830 100.0 100.0 79

234 2752 3 100.0 100.0 20

sensitivity of 99.9% and 96.2%. Using all of the data to

train a linear SVM classifier for each record, results in an

average accuracy and sensitivity of 99.9% and 99.7% re-

spectively. In exchange for a small drop in sensitivity, we

are able to reduce the amount of labeled training data by

over 98%.

In addition, for each record we looked at the perfor-

mance of a classifier trained using our algorithm, versus

the performance of a classifier trained on a fraction of each

record. More precisely, each classifier is trained on the first

x% of each record. This passive selection of the training

set has been proposed by other researchers, as discussed

previously.

Figure 1 shows the amount of labeled data used when

the training set is actively selected, and the correspond-

ing mean sensitivity of the record-specific classifiers. Note

that while our algorithm uses on average less than 1.6% of
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Frac. Queried       Mean Sensitivity

        0.3                 0.78 ± 0.34

        0.6                 0.92 ± 0.23

        0.9                 0.96 ± 0.17

Figure 1. To achieve the same mean sensitivity as when the training

set is actively selected, one would have to train on the first 90% of each

record.

each record to train, passive learning requires 90% of each

record to obtain the same mean sensitivity.

3.2. Experiments with cardiologists

The MIT-BIH Arrhythmia Database is the most widely

used database of its kind. Because of this, many re-

searchers are at risk for over-fitting to this database. This

prompted us to test our algorithm on ECG data from a dif-

ferent source. For these experiments, we used data from

another cohort of patients admitted with NSTEACS.

As a preliminary experiment, we looked at a small sub-

set of this data. We considered 4 randomly chosen records,

from a subset of patients who experienced at least one

episode of ventricular tachycardia in the 7 day period fol-

lowing randomization. For each record, we consider the

first half-hour. This totaled 8230 heartbeats.

We applied our active learning algorithm to each record

once for each of two cardiologists. The cardiologists were

presented with ECG plots of heartbeats, in context, like

the one shown in Figure 2. Independently, the cardiolo-

gists were asked to label queries according to the follow-

ing key: 1 = clearly non-PVC, 2 = ambiguous non-PVC, 3

= ambiguous PVC, 4 = clearly PVC. On average, the car-

diologists were asked to label between 15-20 beats from

each record.

This task differs slightly from the previous task of clas-

sifying beats as VEBs vs. non-VEBs. In this section we

consider the task of detecting PVCs from non-PVCs be-

cause unlike for the MIT-BIH Arrhythmia Database, for

this data there are no previously provided labels that can

be treated as ground truth. To avoid having a cardiologist

label 8230 heartbeats, we use existing PVC classification

software from EP Ltd [12]. We applied this software to the

same four records and assumed that as long as the two clas-

sifiers trained using our algorithm, agreed with each other

and EP Ltd, then the beat was correctly classified. Out of

a possible 8230 disagreements there were only 6.

For this experiment no changes were made to our al-

gorithm; we simply asked the cardiologists to label beats
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Figure 2. The classifiers trained using active learning both labeled the

beat delineated by the red lines as a PVC, whereas a hand-coded classifier

labeled it as a non-PVC.

according to the new task. This result shows the poten-

tial flexibility of active learning algorithms to adapt to new

tasks.

4. Summary

In this paper, we showed how active learning can be

successfully applied to the binary classification task of

identifying ectopic beats. For each of the 48 half-hour

records from the MIT-BIH Arrhythmia Database, we ap-

plied our algorithm to build a record-specific classifier for

the binary classification task of separating VEBs from non-

VEBs. Our experiments include even the most difficult

records from the database (paced patients and patients with

fusion beats), which are often excluded in the literature.

Compared to classifiers using a complete training set, we

achieved a negligible drop in mean specificity and a 3.5%

drop in mean sensitivity in exchange for a reduction in the

amount of training data of over 98%. We also compared

the classification performance of our algorithm to a classi-

fier trained on the first portion of each record. This passive

selection of the training set is common in the literature.

However, to achieve the same mean accuracy achieved by

our method, one would have to train on the first 90% of

each record.

Finally, we tested our algorithm using two cardiologists

and data from a different cohort of patients admitted with

NSTEACS. The method required only a small number of

cardiologist-supplied labels and classified beats as PVCs

vs. non-PVCs with a performance comparable to that of

a hand-coded classifier designed specifically for classify-

ing PVCs vs. non-PVCs. Active learning techniques are

more flexible than hand-coded techniques since they can

easily adapt to new tasks. These preliminary results are

encouraging, but more work is needed to compare the per-

formance of hand-coded techniques to active learning tech-

niques on a larger scale.

In conclusion, when possible, active learning techniques

should be used in lieu of passive techniques, when train-

ing record-specific classifiers. In the context of classify-

ing heartbeats, active learning can dramatically reduce the

amount of effort required from a physician to produce ac-

curately labeled heartbeats for previously unseen patients.
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