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Although theproteins comprisingmany signaling systems areknown,
less is known about their numbers per cell. Existing measurements
often vary by more than 10-fold. Here, we devised improved
quantification methods to measure protein abundances in the Sac-
charomyces cerevisiaepheromoneresponsepathway, anarchetypical
signaling system. These methods limited variation between inde-
pendent measurements of protein abundance to a factor of two.
We used these measurements together with quantitative models to
identify and investigate behaviors of the pheromone response sys-
tem sensitive to precise abundances. The difference between the
maximum and basal signaling output (dynamic range) of the phero-
mone response MAPK cascade was strongly sensitive to the abun-
dance of Ste5, the MAPK scaffold protein, and absolute system
output depended on the amount of Fus3, theMAPK. Additional anal-
ysis and experiment suggest that scaffold abundance sets a tradeoff
between maximum system output and system dynamic range, a pre-
diction supported by recent experiments.

quantitative immunoblotting | single-cell fluorescence quantification |
genetic algorithmic model optimization

The Saccharomyces cerevisiae pheromone response system has
been useful for understanding eukaryotic cell signaling (1–3).

In haploid cells, the pheromone response system detects mating
pheromone in the extracellular environment secreted by yeast
of the opposite mating type. The system triggers a number of
responses, including induction of gene expression, arrest in cell
cycle progression, changes in morphology, and eventually, mat-
ing. The molecules and interactions by which the system operates
are relatively well-understood (Fig. 1).
Changes in the number of molecules per cell (hereafter called

abundances) of signaling proteins can alter quantitative signaling
behaviors. For example, in the pheromone response system,
overexpression of Fus3 increases pheromone-induced sensitivity
to cell cycle arrest (4), and overexpression of Gpa1 decreases
pheromone-induced transcription (5). Similarly, changes in the
abundances of MAPK cascade scaffold proteins (Ste5 in the
yeast pheromone response system) (Fig. 1) can alter system be-
havior. In models, when scaffold is limiting, increasing scaffold
abundance first increases system output and then, eventually
sequesters the associated protein kinases onto separate scaffolds,
diminishing the number of fully assembled complexes and system
output (6). This peak and decline behavior has been experi-
mentally shown for Ste5 in this yeast system (7) and the Kinase
Suppressor of Ras (KSR) scaffold protein in Ras signaling in
Xenopus oocytes (8).
Previous investigators reported focused and genome-wide in-

ventories of pheromone system protein abundances (9–13).
These measurements differed by up to 12-fold (Fig. 2) (14, 15).
We thought some discrepancies might be because of differences
and systematic biases in quantification methods (Discussion). We
developed improved measurement methods and used these
methods to quantify system proteins. We used the measurements
together with quantitative models of the system, and we

examined consequences of these numbers and their remaining
uncertainties for system behaviors.

Results
Accurate Measurement of Yeast Pheromone System Protein Abun-
dances. To measure pheromone system protein abundances (Fig.
3 and Fig. S1), we developed and deployed improvements
that eliminated several sources of measurement error in stan-
dard quantitative immunoblotting protocols (9, 16, 17). Four
improvements merit special mention. First, we prepared protein
extracts using a chemical lysis procedure that gave increased and
more consistent protein recovery than other methods (Fig. S2)
(9, 18). Second, we used a calibration standard for each mea-
sured protein. This change was critical, because proteins differed
greatly in electrophoretic transfer from gel and retention on the
membrane (SI Materials and Methods and Fig. S2). Third, we
quantified antigen-bound primary antibody with a secondary
antibody linked to an infrared fluorophore (not an enzyme),
thereby making signal intensity linear within a large dynamic
range (19). Fourth, we ran (on each quantification gel) a dilution
series of cell extract and a dilution series of the calibration
standard for the quantified protein (Fig. 3), thereby reducing
error in quantification by interpolation. To gain insight into the
remaining variation, we used the improved methods to conduct
four to nine independent measurements of independent cultures.
For different proteins, measured average abundances ranged

from under 40 to over 20,000 per cell (Fig. 2A and Table S1).
Measurements showed significant gel to gel and sample to
sample variation, with SDs between 6% and 33%, corresponding
to 1.2- to 2-fold variation [(mean + SD)/(mean − SD)] across all
measured proteins. Multiple independent measurements for
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each protein reduced the SE of the estimated mean values to
∼8% of mean abundances (Table S1).
The least abundant essential system protein, the MAPK

scaffold Ste5, was present at ∼480 molecules/cell. Ste5 was, thus,
2- to 43-fold less abundant than the different kinases that it binds
(Ste11, Ste7, Fus3, and Kss1) (Fig. 2A). The pheromone re-
sponse system shares kinase components with two other signaling
systems: the filamentous growth (FG) and high osmolarity glyc-
erol response (HOG) systems (20). In all three systems, MAPK
(Fus3, Kss1, or Hog1) abundance was greater than MAPKKK
(Ste11) abundance, which in turn, was greater than MAPKK
abundance (Ste7 or Pbs2) (Table S1).

We determined the effect of system induction by exposing cells
to high pheromone (1 μM) for 15 min and then measuring
abundance. Five proteins (Gpa1, Fus3, Ste12, Msg5, and Far1)
showed stimulation-dependent increases above the measure-
ment error by factors ranging from 1.3- to 2.1-fold (Table S1).
The observed increases were expected: pheromone stimulation
diminishes Far1 degradation (21) and increases transcription of
the GPA1, FUS3, STE12, MSG5, and FAR1 genes (22).
To cross-calibrate these numbers and measure their cell to cell

variation, we quantified YFP-tagged proteins in single cells. We
showed previously (23) that quantification based on fluorescent
proteins can be accurate given knowledge of the light-collecting
biases in experimental equipment, the rate of dilution caused by
cell growth, the ratio of steady state expression of tagged protein
to native protein, the rate of maturation of the fluorophore, and
the rate of degradation of the fused protein (lack of correction
for fluorophore maturation and degradation results in under-
quantification). Fluorescence measurements showed that cells
averaged (±SEM) 434 ± 34 molecules of Ste5, consistent with
the immunoblotting measurement of 484 ± 61. To compare cell
to cell variation for other system proteins, we quantified fluo-
rescence for four additional protein fusions: Fus3-YFP, Ste7-
YFP, Dig1-YFP, and CFP-Ste12. Coefficients of variation (CVs)
for total fluorescence were 28–40% for the five proteins (Fig. 4B
and Table S2). Notably, higher abundance proteins did not ex-
hibit higher cell to cell variation as previously reported for yeast
proteins in general (24, 25). We did not calculate single cell
abundance for these proteins, because we had not measured
their degradation rates, with the exception of Ste5 (23). How-
ever, fluorescence of cells expressing Fus3-YFP was only ap-
proximately twofold higher than fluorescence of cells expressing
YFP-Ste5 (Fig. 4), suggesting that degradation of the Fus3-YFP
fusion may be high (Results and Discussion).
Fig. 2 illustrates some differences between our current meas-

urements and previous reports (Table S1). The most significant
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Fig. 1. The yeast pheromone response system represented as three sub-
systems. The receptor/G protein (green), MAPK cascade (blue), and gene ex-
pression (red) subsystems. System input in MATa cells is α-factor, secreted by
MATα yeast cells. α-Factor binds the G protein-coupled receptor Ste2, causing
release of the Gβ-Gγ dimer Ste4-Ste18 from the inhibitory Gα subunit Gpa1. Gβ-
Gγ then recruits the scaffold protein Ste5 to the cell membrane and bridges an
interaction between the scaffold Ste5 and the kinase Ste20. Ste5 binds three
sequentially activated kinases of a MAPK cascade. Ste20 then phosphorylates
three sites on the MAPKKK Ste11. Phosphorylated Ste11 then phosphorylates
two sites on a MAPKK Ste7, which in turn, phosphorylates two sites on each of
two MAPKs, Fus3 and Kss1. Both active MAPKs then phosphorylate transcrip-
tional regulators (Ste12, Dig1, and Dig2) and thereby, induce pheromone re-
sponsive gene expression. Active Fus3 also phosphorylates additional substrates
that promote morphological changes and arrest the cell cycle. A number of
phosphatases (Msg5, Ptp2, and Ptp3) inactivate the MAPKs.
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Fig. 2. Reported measures of protein abundances vary greatly across
studies. Graphical representation of numbers of MAPK cascade proteins as
measured by immunoblotting in (A) this study (Table S1) and (B) the work by
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Fig. 3. Improved protein quantification through careful immunoblotting.
(A) Fluorescence scanner image of a representative Ste11 immunoblot. We
diluted the Ste11-His6 protein standard into a protein extract from a ste11Δ
strain and loaded the protein standards on a gel alongside protein extract
from a WT strain (corresponding to the indicated number of cells). We
probed the membrane with primary antibodies against Ste11 and secondary
antibodies linked to a fluorophore. (B) Plot of total fluorescence intensities
of the Ste11 bands above. We fit lines to standard (Left) and experimental
(Right) data and used the slopes of the lines to calculate 3,152 molecules/cell
of Ste11 in this experiment.
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differences are a lower Ste5 abundance compared with an earlier
whole-genome immunoblotting study (9), a higher Fus3 abundance
compared with two studies that relied on fluorescence measure-
ments (11, 12), and a higher value for Ste11 comparedwith all three
studies. In the case of Fus3, we suspect that the underestimation of
Fus3 abundance might be caused by omission of correction for
fluorophore maturation and Fus3 degradation rate.

Computational Investigation of MAPK Cascade Dynamic Range. We
sought to identify and investigate properties of the system that
might be sensitive to precise protein abundances (and the re-
maining variability in the measurements). To search for behaviors
that might be sensitive to low scaffold abundance and particular
abundances of other system components, we developed a quanti-
tative model of the MAPK cascade, YeastMAPKCascade (YMC).
We generated YMC from the Yeast Pheromone Model re-

pository (YPM; http://YeastPheromoneModel.org) (26), a wiki-
based repository detailing the molecular components and reac-
tions of the pheromone response system. YPM also contains a
synonymous embedded model of the pheromone system encoded
in the BioNetGen language (27). We manually simplified the full
pheromone response system model encoded in the YPM to
eliminate molecules and reaction rules that were not directly
involved in the MAPK cascade (Fig. 5, SI Materials and Methods,
and Fig. S3). We designated the system output of YMC to be the
amount of activated (doubly phosphorylated) Fus3 (Fus3-PP).
To couple model activation to simulated extracellular phero-
mone levels, we included two first-order reactions with rate
constants that varied as a function of pheromone concentration:
one rate constant for G-protein activation (by dissociation) and
a second rate constant for G-protein deactivation (by reassoci-
ation). The pheromone response system has basal activity in the
absence of pheromone (3, 7), which ensures expression of key
system proteins, including Ste2 (the receptor) and Fus3, in
unstimulated cells (22). To reproduce basal activity, which had
not been attempted in a number of previous modeling studies of
this system (6, 28–31), we set a nonzero minimum for the G-
protein dissociation rate in the absence of pheromone.
The resulting model, YMC, included 41 parameters: 32 reaction

rate constants, 7 protein abundances, themean cell volume, and the
rate of increase in mean volume (Table S3). We used YMC to

simulate the response of the system to three different levels of
pheromone: no pheromone (to establish prestimulation steady
state system activity), low pheromone (0.1 nM), and saturating
pheromone (either 50 or 100 nM) (SI Materials and Methods).
Because YMC did not contain MAPK-dependent feedbacks, we
compared simulation results with experimental data obtained in
the presence of an inhibitor of the Fus3 MAPK (SI Materials
and Methods).
The YPM contains and documents known and estimated val-

ues for 12 of 41 parameters, including the six abundances mea-
sured and reported here. We estimated the other parameters by
using a genetic algorithm (32) to identify parameter sets that
produced a dynamic behavior that matched experimental mea-
surements of Ste5 membrane translocation and Fus3 phosphory-
lation (discussed below). Genetic algorithms can often find
parameter sets that give good agreement between computed and
measured behaviors when others fail, and thus, they are commonly
used to optimize parameters in biochemical models (33). Just as
important, genetic algorithms can be used to generate multiple,
different parameter sets that each result in agreement between
computed and measured behaviors (34).
We, thus, used a genetic algorithm (GA) to produce multiple

sets of parameter values (SI Materials and Methods) and named
the model defined by the optimal set of parameter values
YMCv1 (YeastMAPKcascade_v1) (Fig. S4A). We then exam-
ined the effect of changed abundances on system output. To do
this examination, we varied levels of Ste5, Ste11, Ste7, and Fus3
from 10 to 106 molecules/cell (a number that could not be re-
alized experimentally) and computed system behavior. As Ste5
abundance increased, the steady state-induced output (Fus3-PP)
first increased greatly, peaked, and then, eventually declined
(Fig. 6A). This peak in system output at intermediate Ste5
abundance was expected from the modeling work of Levchenko
et al. (6) and the experimental observations by Chapman and
Asthagiri (7). We next studied the expected impact of varying
Ste11, Ste7, and Fus3 abundances within the same range. As
Ste11 increased, the computed steady state YMCv1 output
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increased and then, leveled off (Fig. 7A), because a sufficient
amount of Ste5-bound Ste11 formed to enable maximal phos-
phorylation of Ste7. In contrast, with increasing Ste7 or Fus3,
system output increased, peaked, and then, decreased (Fig. 7 B
and C). This dependence of system output on Ste7 and Fus3
abundances was qualitatively similar to the dependence on Ste5
abundance, because Ste7 and Fus3 form a complex; additionally,
the YMC model stipulates that this complex cannot bind Ste5,
consistent with experimental observations (35).
We inspected the above results for the effect of abundance on

basal, uninduced system output. Basal output was strongly affected
by changes in the abundance of Ste5 but only weakly affected by
changes in levels of other system components (Figs. 6A and 7). We
next examined system dynamic range as measured by induction
ratio (the ratio of induced to basal output) in response to differ-
ences in protein abundances. Induction ratio was also highly sen-
sitive to changes in Ste5 abundance (Fig. 6A). Strikingly, the
induction ratio was lowest near the Ste5 abundance predicted to
produce the highest system output. Stated differently, the abun-
dance of Ste5 established a tradeoff between total system output
and dynamic range, and changes in the abundance of Ste5 changed
the tradeoff. Ste5 abundance also showed a tradeoff using a dif-
ferent measure of dynamic range commonly used in electrical en-
gineering: absolute difference between the basal and induced
output or swing (36) (Fig. S5A). By contrast, neither induction ratio

nor swing showed a tradeoff between total system output and dy-
namic range on varying the abundances of Ste11, Ste7, and Fus3
(Fig. 7 and Fig. S5A). However, as predicted at very high Ste5
abundances at which the protein is no longer limiting (7), changes
in Ste7 abundance affected signaling (SI Materials and Methods),
consistent with the notion that Ste7 (920 molecules/cell) becomes
limiting under these circumstances.
We then quantified effects of Ste5 abundance in living cells. We

constructed otherwise isogenic derivatives of the reference strain
that replaced the WT STE5 locus with between one and seven in-
tegrated copies ofYFP-Ste5 and that carried a PPRM1-CFP reporter
(2). The YFP-Ste5 derivative enabled absolute single cell quanti-
fication of the changes in Ste5 abundance caused by the genetic
manipulation. Qualitative results were as expected and previously
reported (7); with increasing Ste5 abundance, both basal and in-
duced activity increased. As ourmodel predicted, overexpression of
Ste5 using seven genomic copies of the Ste5 gene increased basal
system activity (7.5-fold ± 4.3-fold) more than it increased induced
system activity (1.3-fold ± 0.1-fold). Because of the effect on basal
output, increasing Ste5 abundance by a factor of seven reduced the
measured induction ratio by a factor of 5.9 ± 3.8 (Fig. S6). This
great increase in basal output in response to small absolute
increases inWT Ste5 number (from 1× Ste5 to 2× Ste5) (Fig. S6) is
consistent with Ste5 being limiting.
Additional sensitivity analysis of all model parameters, in-

cluding abundances, revealed that the only other parameter that
produced a strong tradeoff between pathway output and dynamic
range was cell volume (SI Materials and Methods and Table S3).
The tradeoff observed for cell volume was not surprising given
that changes in cell volume affected all protein concentrations in
the model, including the concentration of the lowest abundance
protein Ste5.
We investigated the extent to which these behaviors depended

on particular parameter sets. To do this investigation, we used
four different well-separated and well-fitting parameter sets, also
generated by the GA from the measured abundances and time
course data, to generate four distinct alternate models (YMCv2–
5) (SI Materials and Methods). For each parameter set, Ste5
abundance set a tradeoff between system output and dynamic
range, whereas the abundances of Ste11, Ste7, and Fus3 did not
(Fig. S5 B–E).
Finally, we tested the dependence of the model’s behavior on

these measured abundances. To do this test, we used the GA to
optimize three additional versions of YMC based on reports from
Ghaemmaghami et al. (9), Slaughter et al. (12), and Maeder et al.
(11) (Fig. 2). We named these models after the first authors
of the different studies: YMC_Ghaemmaghami (YMC_Gmgm),
YMC_Slaughter (YMC_Sltr), and YMC_Maeder (YMC_Mdr)
(Fig. S4 and Table S3). We also created a model, YMC_optimized
(YMC_opt), in which theGAestimated best fit protein abundances
in addition to all of the other model parameters. Notably, all
four models showed lower absolute system output than YMCv1,
which we attributed to the undercounting (or for YMC_opt, un-
derestimation) of the protein kinase Fus3 (Table S3). However, all
four altered abundance models displayed some tradeoff between
total system output and dynamic range that depended on Ste5
abundance but not changes in the abundance of Ste11, Ste7, or
Fus3 (Fig. 6 B–D and Fig. S7).

Discussion
Accurate Measurements of Protein Abundances. We developed an
improved immunoblotting protocol and took advantage of previous
work that enabled accurate single cell quantification of fluorescent
fusion proteins (23). We used these methods to quantify abun-
dances of key components of the pheromone response system. The
immunoblotting and single cell measurements have complemen-
tary strengths. Quantitative immunoblotting does not depend on
genetic modifications to cells and does not require knowledge of
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Fig. 6. Regardless of measured system protein abundances, Ste5 scaffold
abundance sets a system-level tradeoff between maximum signaling and
dynamic range. We simulated the steady state system output and dynamic
range using the (A) YMCv1, (B) YMC_Gmgm, (C) YMC_Sltr, and (D) YMC_Mdr
models. Upper shows steady state system output (Fus3-PP per cell) in the
absence of pheromone (dashed line) and in response to saturating amounts
of pheromone (solid line) for a range of Ste5 abundances. Lower shows in-
duction ratio calculated by dividing the steady state system output with
saturating pheromone by the output with no pheromone. Dotted lines in all
plots indicate measured Ste5 abundance.
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protein degradation rates. Quantification of signal from genetically
encoded fluorescent fusion proteins does not require antibodies for
each protein and yields information about differences in protein
abundance among individual cells and for individual cells over time.
The methods also have different limitations. Making specific anti-
bodies for immunoblotting measurements takes significant effort
(37). Fluorescent protein-based methods require determining that
thefluorescent protein tag does not alter the population abundance
correction for fluorophore maturation and correcting for protein
degradation rate, which is typically calculated from comparison
with abundance determined by immunoblotting (23). Such data
and corrections were not available for previous studies (11, 12, 16).
Some of these measured abundances, particularly for the Ste11

and Fus3 protein kinases, are larger than those abundances re-
ported (9–13), and their consequences include higher absolute
system output. These discrepancies might, in principle, arise from
differences in growth conditions and strain background. However,
we suspect that significant differences arise from biases in the
measurementmethods (SIMaterials andMethods has a comparison
of immunoblotting methods). Our work establishes plausible cau-
ses for different protein counts. For example, because the first
proteome-wide immunoblotting study (9) used a single protein
standard with a tandem affinity purification (TAP) tag to calibrate
measurements of thousands of different TAP-tagged yeast pro-
teins, protein-specific differences in membrane transfer and re-
tention (Fig. S2) could have resulted in widespread undercounting.
Our immunoblotting measurements revealed a much larger range
of abundances than those measurements that we took by fluores-
cencemethods. In particular, although wemeasured∼43-foldmore
Fus3 than Ste5 by immunoblotting (Fig. 2A and Table S1), Fus3-
YFP cells were only two times as bright as YFP-Ste5 cells (Fig. 4),
and previously published fluorescent correlation spectroscopy
studies also suggested amoremodest two- to fivefold excess of Fus3
over Ste5 (11, 12). We expect undercounting in fluorescence
quantification when the fusion protein degradation rate is rapid
relative to the fluorophore maturation rate or when the fluorescent
moiety itself destabilizes the entire fusion. Consistent with this idea,
Ste11 is degraded after system induction (38); our results suggest
that Fus3 may be degraded as well. Although we took care to try to
imagine, identify, and reduce sources of experimental bias, the
resulting (up to twofold) variation in measurements among in-
dividual experiments (Table S1) defines significant remaining
experimental uncertainty.

Scaffold Abundance Sets System Dynamic Range. Previous modeling
studies of scaffold-based signaling systems predicted that scaffold
abundance helped determine maximal signaling output (6, 39).
However, these studies did not consider the effect of scaffold
concentration on basal system activity and thus, did not explore the
impact of changing scaffold levels on system dynamic range. Only
a few published models of the pheromone response system have
included nonzero system activity in the absence of pheromone, and
these efforts did not investigate its importance (10, 40).
By accounting for basal activity, we found that the abundance of

the scaffold Ste5, but not other MAPK cascade components,
strongly affected the dynamic range of the system in response to
saturating pheromone inputs. Furthermore, we observed a com-
puted tradeoff between system output and dynamic range as
a function of scaffold abundance.We showed that this tradeoff was
insensitive to all different tested sets of parameter values, including
different sets of measured protein abundances, but that different
values for the number of protein kinases affected predicted system
output. We then confirmed the tradeoff by careful measurement in
living cells (Fig. S6). Two experimental studies are qualitatively
consistent with these findings, where cells overexpressing Ste5
produce higher basal system output, higher induced system output,
and lower dynamic range than WT cells (7, 41).

The models suggested that differences in protein abundances
should impact the quantitative performance tradeoffs. For example,
the Ste5 scaffold abundance (480) measured here suggested that
the system compromises between total system output and high-in-
duction ratio, whereas the abundances measured in ref. 9 predict
that the system favors total output at the expense of induction ratio
(Fig. 6 A and B). Direct experiments in living cells were consistent
with our conclusion (Fig. S6). Similarly, the high abundance for the
Fus3 MAPK that we find may allow high absolute system output,
even with relatively low scaffold numbers.
Our results show that scaffold abundance defines a set point

for a particular tradeoff between system output and dynamic
range, and they suggest that different abundances of scaffold
proteins in other systems may set different tradeoffs. Although
the abundance of Ste5 in S. cerevisiae does not change in re-
sponse to pheromone stimulation (this work and refs. 11 and 12),
these results also raise the possibility that scaffold abundance in
other systems might change during signaling events to allow
changes in system performance.
In S. cerevisiae, induced system output must be high enough to

elicit appropriate physiological changes in response to pheromone
treatment (for example, to overcome opposing phosphatases,
trigger cell cycle arrest, and activate Ste12) (42). Conversely, in
uninduced cells, basal output must be high enough to maintain
synthesis of system proteins with expression that depends on the
activity of the transcription factor Ste12 (for example, Ste2 and
Fus3) but low enough to avoid triggering growth arrest (22). The
large dynamic range of the system seems consistent with our recent
findings that a large output range increases the precision with which
a signaling system can respond differently to different amounts of
input (3). During the history of S. cerevisiae (43), the pheromone
system is likely to have been under natural and human-guided se-
lection; the current relatively low scaffold abundance might rep-
resent an evolutionary solution that optimized performance within
these constraints.

Materials and Methods
Yeast Strains and Growth Conditions. All S. cerevisiae strains were derivatives
of W303a (44). We used ACLY379 (2), a MATa bar1 derivative, as the ref-
erence for all measurements. We performed nucleic acid and yeast manip-
ulations with standard procedures (45). To create strains for diluting protein
standards, we deleted genes from ACLY379 using PCR-based gene disrup-
tion as described (46). For strains with YFP- or CFP-tagged proteins, we
replaced the chromosomal copy of the gene with an fluorescent protein-
fusion gene under the control of the native upstream regulatory region. We
grew cells at 30 °C to midlog phase in synthetic defined (SD) medium con-
taining appropriate auxotrophic nutrient mixtures (BSM formulations,
BIO-101; Qbiogene) with yeast nitrogen base (Difco; Becton Dickinson) and
2% glucose. We constructed strains with multiple copies of the YFP-STE5
gene as detailed in SI Materials and Methods.

Quantitative Immunoblotting. We identified and eliminated many sources of
quantitative error in commonly used Western blotting procedures. We
outline the protocol briefly here and detail it in SI Materials andMethods. We
lysed cells and extracted total protein as described (18) (Fig. S2A). We pre-
pared calibration standards for each protein of interest by serially diluting
known amounts of purified, bacterially expressed His6-tagged protein into
protein extracts from yeast cells deleted for the gene of interest. Each gel
had one lane with extract from a deletion strain, six lanes with twofold serial
dilutions of protein standard, and at least three lanes with different quan-
tities of lysate from untreated and α-factor–treated reference cells (Fig. S1).
We performed gel electrophoresis and protein transfer on a membrane,
blotted the gel, and probed the membrane with antibodies (SI Materials and
Methods). We used the primary antibodies listed in Table S1 (37) and sec-
ondary antibodies covalently linked to infrared fluorophores.

Measurement of Fluorescent Protein Fusions and Reporter Gene Output. We
performed optical microscopic cytometry as described elsewhere (3, 23) and
in SI Materials and Methods. For cell handling, image capture, image anal-
ysis, and data processing, we used the open-source software packages Cell-
ID and PAW (23, 47).
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Computational Modeling. We developed the MAPK cascade model from
a model of the entire yeast pheromone response system from the Yeast-
PheromoneModel (YPM) repository (http://YeastPheromoneModel.org) (26).
Briefly, we simplified YPM to include only species and reactions that comprise
the core signal transduction through the MAPK cascade (Fig. S3). Notably, we
omitted Ste11 and Ste7degradation to avoid introducing additional complexity
and unknown parameters. We also omitted Ste5 oligomerization; although
Ste5 oligomerization is important for signal transduction (48), the exact stoi-
chiometry and mechanistic consequences of oligomerization are not known.
Inclusion of Ste5 dimerization would have increased the number of species in
the model from 236 to over 20,000, dramatically slowing down simulation and
hindering parameter estimation.WewroteMATLAB scripts that used a genetic
algorithm (Genetic Algorithm and Direct Search Toolbox, v2.1, R2007a;

MathWorks) to perform parameter optimization and execute BioNetGen (ver-
sion 2.0.46) (27) simulations of the models (SI Materials and Methods). We
varied abundances over the wide range of 10–106 molecules to explore the full
potential of the pathway architecture rather than limiting ourselves to abun-
dances that could easily be achieved experimentally.
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