
MIT Open Access Articles

3D Modeling with Silhouettes

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Alec Rivers, Frédo Durand, and Takeo Igarashi. 2010. 3D modeling with silhouettes. In
ACM SIGGRAPH 2010 papers (SIGGRAPH '10), Hugues Hoppe (Ed.). ACM, New York, NY, USA, ,
Article 109 , 8 pages.

As Published: http://dx.doi.org/10.1145/1833349.1778846

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/73947

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73947
http://creativecommons.org/licenses/by-nc-sa/3.0/

3D Modeling with Silhouettes

Alec Rivers
MIT CSAIL

Frédo Durand
MIT CSAIL

Takeo Igarashi
The University of Tokyo

Figure 1: Intersecting 2D silhouettes: The silhouettes on the left were used to automatically generate the 3D model on the right. Note that
the line drawings are not projections of the 3D model, but rather the input that generates the model.

Abstract

We present a new sketch-based modeling approach in which mod-
els are interactively designed by drawing their 2D silhouettes from
different views. The core idea of our paper is to limit the input
to 2D silhouettes, removing the need to explicitly create or position
3D elements. Arbitrarily complex models can be constructed by as-
sembling them out of parts defined by their silhouettes, which can
be combined using CSG operations. We introduce a new simplified
algorithm to compute CSG solids that leverages special properties
of silhouette cylinders to convert the 3D CSG problem into one that
can be handled entirely with 2D operations, making implementa-
tion simpler and more robust. We evaluate our approach by model-
ing a random sampling of man-made objects taken from the words
in WordNet, and show that all of the tested man-made objects can
be modeled quickly and easily using our approach.

Keywords: 3D modeling, sketch-based modeling, silhouettes,
sketching, visual hull, variational surfaces

1 Introduction

We present a new sketch-based modeling approach that facilitates
the creation of 3D models of man-made objects and targets amateur
and professional users. Our work is motivated by observing the
workflow of traditional CAD, where design usually proceeds in two
phases. A designer first sketches an object in 2D, often from front,
side, and top views, and then uses these sketches as a reference in
constructing a 3D model on a computer. While most of the creative
designing occurs in 2D, the process of translating those 2D sketches
into a 3D model is tedious, and often takes the most time. The 3D
position for every element of the model must be specified, and when
referring to sketches, the designer must be constantly translating a
desired change in a 2D view to the sequence of 3D operations that

will produce that change. We propose a new approach that can
construct a 3D model directly from 2D drawings of an object from
different views, eliminating the transfer step.

The core idea that makes our approach tractable, from both a user
interface and implementation perspective, is to focus on 2D object
silhouettes. The user specifies a part by drawing its silhouettes in
two or more orthographic views, and a 3D shape that matches those
silhouettes is automatically generated and displayed. A user can fo-
cus on iterating the 2D drawings, allowing for fast experimentation
and modeling.

From an algorithmic standpoint, we show that using silhouettes dra-
matically simplifies the computation of one of the most challeng-
ing features in CAD-CAM: Boolean operations, a.k.a. Constructive
Solid Geometry (CSG). Building on ideas from the visual hull and
silhouette intersection, we introduce simple algorithms that operate
entirely in 2D but can generate complex 3D CSG objects. We also
enable the creation of smooth shapes that approximate the least-
variation-of-curvature surfaces that match their input silhouettes.

In our interface, a user specifies the silhouettes of a part from front,
side, or top views. Once two or more sihouettes have been speci-
fied, its 3D shape is automatically constructed. Although each part
is axis-aligned, parts can be rotated in 3D relative to each other,
meaning that the model as a whole need not be axis-aligned. We
target the modeling of man-made objects, as they typically can be
decomposed into axis-aligned subparts. Organic models are not
well suited to this approach.

We illustrate the simplicity and expressiveness of silhouettes as a
modeling device by modeling a small random sampling of all man-
made objects indexed in WordNet [1995]. We show that all of the
man-made objects in our sample can be split into a low number
of subparts that are fully specified by their silhouettes from three
views. We also show a detailed scene modeled entirely with silhou-
ettes. We discuss the differences between our approach and Google
SketchUp. A user study comparing the two is available in [Rivers
et al. 2010]. Finally, we provide an executable of our implemented
modeler, available at our project website.

2 Related Work

Similar to many CAD modeling systems, e.g. [SolidWorks 2009;
Pro/ENGINEER 2009; CATIA 2009], our interface uses three or-
thographic 2D views and a single 3D view. However, the way these
views are used is different. In our approach, these views are not
2D projections of a fundamentally 3D model, but rather canvases

on which the user is free to sketch as he or she wishes, with these
sketches then determining the shape of the 3D model. The opera-
tions the user performs are therefore different: in a traditional CAD
program, the user performs a wide range of modeling and editing
operations that directly affect the 3D properties of the model, such
as placing and connecting vertices, rotating facets, extruding faces,
etc., while in our approach, the only operation the user performs
is drawing 2D shapes. This greatly simplifies the interface and re-
duces the learning curve.

To generate the surfaces corresponding to input silhouettes, we
build upon and extend the concept of the visual hull and silhouette
intersection [Szeliski 1993; Laurentini 1994; Matusik et al. 2000;
Franco and Boyer 2003; Lazebnik et al. 2007]. Whereas the visual
hull has previously been used mainly to reconstruct 3D shapes from
video or image, we introduce its use as a modeling tool. When used
to reconstruct a 3D shape from the silhouettes of an entire object,
the visual hull is limited in the complexity of the models it can pro-
duce, and cannot generate concavities. In our approach, however,
a model is assembled out of an arbitrary number of subparts, each
one of which is separately defined by its silhouettes. The overall
complexity of the model is therefore unlimited (see Figure 1).

Subparts of a model can also be subtracted from each other, as
in Constructive Solid Geometry (CSG) modelers, simplifying the
modeling of concavities. Tilove [1980] describes a divide-and-
conquer approach to computing CSG solids constructed out of sim-
ple primitives; we present a way to compute the boundary represen-
tation of a CSG solid of silhouette cylinders by applying a similar
divide-and-conquer approach in 2D on just the planes on which sur-
face facets may lie.

Our approach shares similarities with systems developed to con-
vert drafted wireframe representations of objects to CAD models
[Sakurai and Gossard 1983; Wang and Grinstein 1993; Chen and
Perng 1988]. These approaches were designed to be applied to ex-
isting blueprints with no explicit correspondences between shapes
in different views, and therefore focused largely on the issue of re-
solving ambiguity, typically with user guidance. Furthermore, they
restricted input drawings to a subset of shape types, limiting the
complexity of the generated model. Our approach, by comparison,
is interactive, generates just one 3D model without ambiguity, can
support any input shapes, and can generate smooth objects.

Related methods have been proposed that interactively infer a 3D
shape from a single drawing [Lipson and Shpitalni 1996; Masry
et al. 2007; Gingold et al. 2009]. They share with our approach
the goal of using 2D drawings to generate a 3D model. The main
difference is that they work from a single view, which results in
ambiguities which must be manually resolved by the user. Using a
single view also limits the complexity of shapes that can be gener-
ated.

Creating 3D models that match desired appearances from different
views has recently been approached as an artistic challenge. Sela
and Elber [2007] describe how a 3D model can be created that re-
sembles two different input models from different views. Mitra
and Pauly [2009] describe shadow art, a novel form of sculpture
in which a 3D shape is constructed that matches a set of input sil-
houettes. While the main application is artistic, they also describe
how mutually contradictory input silhouettes can be deformed to
eliminate contradictions while retaining the originally intended ap-
pearance, which could potentially be useful in our approach to 3D
modeling.

2D sketching has recently been leveraged as a powerful tool for 3D
modeling [Zeleznik et al. 1996; Igarashi et al. 1999; Igarashi and
Hughes 2001; Karpenko et al. 2002; Schmidt et al. 2005; Karpenko
and Hughes 2006; Dorsey et al. 2007; Kara and Shimada 2007;

Nealen et al. 2007; SketchUp 2009] and editing [Nealen et al.
2005]. In these approaches, the interface consists of a single 3D
view which can be rotated by the user. 2D sketching operations are
used to construct and modify the 3D model, which is represented in
one of many possible ways, such as floating 3D curves, collections
of edges and surfaces, or volumetric blobs.

The major differences between our approach and these methods are
that we use fixed 2D views, as opposed to a 3D view, and that we
require just 2D drawing as input. Using fixed 2D views eliminates
the need to establish a 3D context for 2D sketching operation, and
therefore the need for constant rotation and positioning of the scene
by the user. By essentially restricting ourself to one tool, we also
reduce the learning curve. Finally, unlike some of these interfaces,
in our approach the sketched input (silhouettes) is persistent, and
can be revisited and edited in any order.

As with Prasad et al. [2005], we wish to find a smooth shape that
matches a set of input silhouettes. To do this, we build on the algo-
rithms presented in FiberMesh [2007], which introduced a way to
compute a smooth mesh that connects a set of 3D curves. We in-
troduce a special form of FiberMesh-style smoothing that smooths
the mesh while maintaining the original silhouettes. We use this
method to obtain a smooth shape that matches the input silhouettes.

The fact that our system requires solely 2D input and interaction
is the major difference between our approach and the majority of
existing sketch-based and CAD modelers, and greatly reduces the
required interface complexity. Despite the simple nature of the in-
put, we believe that our approach can handle a wide range of mod-
els, and allows for unlimited complexity, while also eliminating the
problem of ambiguity present in some of the previous approaches.

3 User Interface

In our approach, a 3D model is assembled out of parts. Each part is
specified by two or three silhouettes from front, side, or top views.
As the user creates and refines the silhouettes of a part, the corre-
sponding 3D model is automatically generated and displayed. For
example, if the user sketches a triangle in the front and side views,
and a square in the top, a pyramid will appear in the 3D view. The
calculation is fast enough to provide immediate feedback.

A shape with complex or occluded segments is built up by compos-
ing it out of multiple parts. This matches a natural 2D drawing ap-
proach of splitting objects into parts, and also sidesteps what would
otherwise be a major problem of underspecification. Each part has
its silhouettes drawn separately, and our interface makes associa-
tions between parts and silhouettes explicit by only allowing the
user to draw silhouettes for the currently selected part. Often, a part
is fully specified with only two silhouettes; in these cases, the third
silhouette need not be drawn.

A part’s silhouette in one view imposes certain constraints on the
part’s silhouettes in the other views. For example, the height of
a part’s silhouette in the side view should match the height of the
part’s silhouette in the front view. While a part is selected, these
constraints are illustrated as guidelines showing the maximum and
minimum extents of the silhouette in the X and Y directions. How-
ever, these constraints are not enforced during the drawing process,
as they are often temporarily broken as the user is editing the model,
e.g. after moving a model’s silhouette in one view but before mov-
ing it in another. Because the shape generated for each part is the
intersection of the silhouettes’ extrusions, the shape of a part with
mutually inconsistent silhouettes will be limited by the more re-
strictive silhouette. The guidelines serve to make it clear when this
is occurring.

Figure 2: Drawing a subtraction: A coffee mug is assembled by
drawing the silhouettes of the hole separately (the dashed lines),
and subtracting the resulting shape from the mug.

Figure 3: A non-axis-
aligned model generated
by our approach.

Rotation: Once a part has been
drawn into the model, it can be ro-
tated in 3D relative to the rest of
the model. In Figure 3, the ear-
phones and microphone have been
rotated relative to the rest of the
headset. When a part is rotated
relative to the current view of the
editor, its silhouettes are no longer
orthogonal and can therefore not
be edited; in the interface, the 3D
bounding box of the rotated part
is shown instead. Double-clicking
a rotated part causes the editor’s
view to switch to that part’s ortho-
graphic space; the silhouettes are
now orthogonal and can be edited,

while the other parts of the model are no longer orthogonal and are
shown as bounding boxes. In this way, complex models can be con-
structed with non-orthogonal parts, with the only requirement being
that each subpart must by itself be modeled by locally orthogonal
silhouettes. However, we have found that for simple models, non-
orthographic parts are rarely needed; e.g., none of the models in
Table 1 required them. Note that the limitation to three orthogo-
nal silhouettes is not algorithmic, but is intended to ease the user’s
cognitive load.

3.1 Drawing Concavities

By default, if a user draws parts that intersect, they simply overlap
in the 3D model. However, the user can optionally have a part act as
a cut-away volume from a part. Under the hood, this is performing
a Boolean subtraction [Requicha 1977]. This allows the user to
easily draw in concavities, for example the hole in a coffee cup (see
Figure 2). Parts that have been rotated relative to one another can
still be subtracted from one another.

3.2 Smoothing

Shapes constructed purely by intersection and subtraction of ortho-
graphic silhouettes always have sharp edges. However, we allow
the user to toggle for each part whether the desired shape is sharp
or smooth. A smoothed part generates an approximation of the
smoothest possible shape that satisfies the input silhouettes. This
is illustrated in Figure 4.

Smoothing operations are performed strictly after subtractions: a
smoothed object cannot be subtracted from any other, but an object
that is composed out of parts and subtractions can be smoothed.

2D Smoothing Smooth surfaces by default minimize the varia-
tion of curvature in both principal curvature directions. However,

(a) (b) (c)

Figure 4: Smoothing: Input silhouettes (a) are intersected to find a
sharp shape (b) which is then smoothed while preserving the spec-
ified silhouettes (c).

the user can specify that a part should minimize variation of curva-
ture only around one axis. The primary purpose of this is to allow
the construction of solids of revolution, though it supports a slightly
more general class of shapes, such as solids of revolution that have
been stretched in one axis.

4 Algorithms

Models in our approach are composed out of parts defined by their
silhouettes, which the user can combine using Boolean operations.
A model before smoothing can therefore be represented by a CSG
tree applied to silhouette cylinders. A silhouette cylinder is the or-
thographic equivalent of a silhouette cone: it is the infinite extrusion
of a silhouette in the viewing direction. A single part’s shape is sim-
ply the intersection of its silhouette cylinders; this is the same as the
visual hull. Subtraction parts are cut away by intersecting the sub-
traction part’s silhouette cylinders, and subtracting the result from
the original part.

Traditionally, calculating Boolean operations on arbitrary polyhe-
dra involves many special cases, and an error in one part of the mesh
can make it impossible to generate the correct surface elsewhere. It
is notoriously difficult to produce a robust implementation.

In this section, we present a simple algorithm that can calculate
the solid resulting from an arbitrary CSG tree applied to silhou-
ette cylinders. Our algorithm builds on the work of Matusik et al.
[2000], who showed that the visual hull (the intersection of silhou-
ette cylinders) could be computed using 2D operations. We show
that the computation of full CSG trees over silhouettes can simi-
larly be performed using only 2D operations. Because 2D Boolean
operations suffer from far fewer special cases than 3D Boolean op-
erations, and each facet of the resulting CSG solid is computed in-
dependently, this algorithm is easy to implement robustly.

We also introduce a simple algorithm for smoothing a shape con-
structed from silhouettes. This smoothing operation generates a
surface that approximates the surface minimizing the variation of
Laplacian magnitude, as in [Nealen et al. 2007], but that still has
the original input silhouettes.

4.1 Computing CSG Solids

Our algorithm for computing a CSG solid from silhouette cylinders
works by examining each potential plane on which a facet of the
final 3D solid may lie. Each segment of each input silhouette deter-
mines one such plane: it is the plane on which the segment lies and
which has a normal orthogonal to both the segment and the silhou-
ette’s viewing direction. (Note that we discretize all curves in the
silhouettes as polylines.)

We examine each plane independently. For each plane, we wish
to find the intersection of the plane with the surface of the CSG
solid. This intersection determines one surface facet of the final

(a) (b)

Figure 5: Finding the visual hull: (a) Two silhouette cylinders defined by a circle and an L shape are intersected to produce a 3D shape.
The yellow plane is one plane on which a surface facet of the resulting solid may lie; it is generated by a segment of the L-shaped silhouette.
(b) Calculating the surface facet on the yellow plane of various CSG solids formed by a Boolean operation applied to the input silhouette
cylinders. The 2D polygons are the intersection of the plane with the solid (i), with the dashed portions being just the part of the plane that
is on the surface of the solid (s). The solids generated by the different Boolean operations are at far right.

polyhedron. The boundary representation of the final CSG solid
is simply the collection of all surface facets generated on all the
planes.

Because we perform all our calculations on one plane at a time,
we can work in 2D, making calculations simpler and more robust.
When the polygon that corresponds to the intersection of the CSG
solid’s surface with the plane has been found, we project it back
into 3D to obtain a surface facet.

Our algorithm for computing the CSG solid builds on the insight
that we can intersect all of the silhouette cylinders with the plane,
and then perform 2D Boolean operations on the resulting 2D poly-
gons to find the intersection of the derived CSG solid with the plane,
essentially turning a 3D CSG operation on solids into a 2D CSG
operation on polygons. However, some extra tricks are required
to keep track not only of the intersection of the CSG solid with the
plane, but the intersection of the CSG solid’s surface with the plane,
as we only wish to generate polygons along the surface of the solid.

Our algorithm for finding the surface facet corresponding to the
plane proceeds as follows: first, we find the intersection of each sil-
houette cylinder c with the plane. We label these intersection poly-
gons ic. For each silhouette, we also find the intersection of the
surface of the silhouette cylinder with the plane (as opposed to the
interior), which we label sc, and which is a subset of ic. Then, we
apply 2D Boolean operations to the intersection and surface poly-
gons corresponding to a set of silhouette cylinders to compute i
and c for the solid resulting from a Boolean operation applied to
the corresponding silhouette cylinders. In general, we show that
Boolean operations can be computed for any two solids for which i
and s, the interior and surface polygons, are known for every plane,
to yield the i and s of the resulting solid for each plane, allowing
further operations to be applied to the derived solid.

4.1.1 Calculating the Silhouette Cylinder Intersections

Given a plane, for each silhouette cylinder c, we first find ic, the
intersection of the silhouette cylinder and the plane. If a silhouette’s
viewing direction does not lie on the plane, ic is simply the 2D
projection of the silhouette onto the plane. If the viewing direction
does lie on the plane (as with the green silhouette and the yellow
plane in Figure 5), finding the intersection is slightly more involved:
we project the plane into silhouette space to obtain a line, which we
then intersect with the silhouette, and finally take the resulting one
or more line segments into plane space and extrude them infinitely
in the viewing direction to yield ic. In this case ic will consist of
one or more infinitely long rectangular polygons (which we show
truncated in Figure 5 (b) for clarity).

Next, we find sc, the intersection of the surface of the silhouette
cylinder with the plane. This is a simpler operation: first, we ob-
serve that only silhouette cylinders with viewing directions that lie
on the plane have a non-zero-area intersection of their surface with
the plane. For each such silhouette, we project the plane into silhou-
ette space to obtain a line, as before. Then, the silhouette segments
that lie entirely on this line are found, and we take these into plane
space and extrude them infinitely in the viewing direction to yield
sc. In the left two columns of Figure 5 (b), we illustrate i and s
for the red and green silhouette cylinders, with the dashed portions
representing s.

4.1.2 Computing Boolean Operations

Similar to the approach given by Tilove [1980], we now show how
Boolean operations on a single plane can be computed for two
solids A and B for which for which i and s, the interior and surface
polygons, are known, to yield a solid C, defined by its own interior
and surface polygons.

Intersection:

iC = iA ∩ iB (1)
sC = (sA ∪ sB) ∩ iC (2)

This follows intuitively, as the interior of the intersection of two
solids is the intersection of their interiors, while the surface of the
intersection is any part of the surfaces of A or B that lies within C.

Union:

iC = iA ∪ iB (3)
sC = (sA − (iB − sB)) ∪ (sB − (iA − sA)) (4)

Equation 4 follows from the intuition that the surface of the solid
C produced by a union of two shapes A and B is the part of A’s
surface that does not lie strictly within B, combined with the part
of B’s surface that does not lie strictly within A.

Subtraction:

iC = iA − (iB − sB) (5)
sC = (sA − (iB − sB)) ∪ (sB ∩ iA) (6)

Equation 6 follows from the intuition that the surface of a solid C
produced by the subtraction of solid B from solid A is the part of
A’s surface that does not lie entirely within B, combined with the
part of B’s surface that does lie within A.

(a) (b)

Figure 6: Rim calculation: The rims are calculated based on the
unsmoothed shape (a), and then locked in place while smoothing
occurs (b).

XOR: XOR can be implemented as a combination of union and
subtraction operators: A⊕B = (A−B) ∪ (B−A).

Using these equations, we apply the CSG tree to the i and s of the
silhouette cylinders on the plane to yield S, the intersection of the
final CSG solid’s surface with the plane, which we then project back
into 3D to get a surface facet of the final solid. By combining the
facets generated in this way from all planes, we assemble the final
CSG solid’s polyhedron. In Figure 5 (b), we illustrate the calcula-
tion of I and S on a single plane for the above Boolean operations
applied to two silhouette cylinders.

If desired, surface normals can be automatically generated as part
of this step. This is done by recording separately for each solid sep-
arate copies of s corresponding to surface facets with a positive nor-
mal relative to the plane and with a negative normal relative to the
plane. For a single silhouette cylinder, these polygons can be easily
separated by observing the normals of the silhouette segments that
generate sC . For solids that are the result of Boolean operations, we
carry out the above surface operations twice for each plane, once
on {iA, iB , s+A, s

+
B} to generate s+C and once on {iA, iB , s−A, s

−
B}

to generate s−C . When adding facets to the mesh, we can separately
project S+ into 3D to generate a facet with a positive normal and
S− into 3D to generate a facet with a negative normal. Optionally,
we can subtract (S+ ∩ S−) from S+ and S− to avoid generating
infinitely thin strips in the final model.

4.2 Smoothing

In this section we present an algorithm for smoothing a part defined
by silhouettes that preserves the original input silhouettes. We build
on the smoothing algorithm of Nealen et al. [2007].

The first step in smoothing is to remesh the part’s 3D polyhedron
into collection of small facets, suitable for smoothing. This is done
by intersecting each facet with a regular grid of squares projected
flat onto the facet’s surface. We take care to ensure that the gener-
ated mesh remains watertight along seams between facets.

Ensuring that a mesh maintains its silhouettes as it smooths is dif-
ficult. One way a mesh could fail to satisfy its silhouettes is if it
expands beyond its silhouettes during smoothing. We preclude this
possibility by only allowing each vertex to move in the direction
opposite to its normal. This leaves the more tricky problem of a
mesh shrinking to the point that it no longer satisfies a silhouette.

Enforcing Rims A single point on a given silhouette defines a line
in 3D space that passes through that point and extends infinitely
in the viewing direction of that silhouette. We refer to this as the
point’s rim line. A mesh has shrunk too much if there exists a sil-
houette point for which the rim line never touches the mesh. To en-
sure that a mesh continues to match its silhouette as it is smoothed,
we explicitly calculate a point on each rim line and lock it in place
before smoothing. We call these points the rim points, or collec-
tively the rims, an established term for the positions at which a

smooth shape touches its visual hull.

Our algorithm for calculating rim points is straightforward. Con-
ceptually, every point along each silhouette should correspond to a
rim point on the visual hull. In practice, because the mesh is com-
posed of discrete triangles, this is not necessary. We consider only
rim lines that pass through a vertex of the remeshed model. For
each of these rim lines, we calculate its intersection with the un-
smoothed model, resulting in a set of 3D line segments. We then
place a rim point at the center of each of these segments. The mesh
must then be re-tessellated to include these points. Although this
rim-finding system may seem simplistic, we have found it to work
well in practice (see Figure 6).

4.2.1 Minimizing Variation of Laplacian Magnitude

We take the approach to smoothing described in FiberMesh
[Nealen et al. 2007] and apply it as a sequence of simple smooth-
ing iterations. Each iteration updates the positions of the vertices as
follows:

ci = ‖xi −
1

|Ni|
∑
j∈Ni

xj‖ (7)

c′i =
1

|Ni|
∑
j∈Ni

cj (8)

x′i = xi + c′ini (9)

where xi is the position of vertex i, Ni is the set of neighbor ver-
tices connected to vertex i, and ci is the estimated curvature at ver-
tex i (simply the magnitude of the discrete graph Laplacian). Rim
vertices are locked in place. This update step is applied repeatedly
until the greatest change of position for a vertex in the mesh is less
than some threshold. This converges to an approximation of the
surface that minimizes the variation of Laplacian magnitude across
the mesh.

2D smoothing as described in Section 3.2 is achieved by limiting
Ni for each vertex to the subset of connected vertices that lie at the
same depth relative to the smoothing plane.

5 Limitations and Results

In our approach, each part of a model is specified by up to three or-
thographic silhouettes. This puts a limit on the complexity of each
individual part: specifically, an unsmoothed part cannot have facets
that are not perpendicular to at least one primary axis. However,
this limitation is offset by two factors: first, each part can be inde-
pendently rotated once created, allowing off-axis facets in a model
composed of multiple parts; and secondly, parts can be smoothed,
which includes the flexibility to generate all solids of revolution, as
well as a more general class of smooth shapes.

In practice, therefore, our main limitation is with solids where a
majority of facets share no common axes. This property applies
mainly to organic shapes. A small fraction of man-made objects,
such as drill bits, also share this property. However, we note that
these types of shapes are difficult to achieve in existing modelers
as well, including traditional CAD systems, which typically do not
support organic shapes and provide a special-purpose tool to gener-
ate helices.

For man-made objects, we believe that almost every object can be
modeled using our approach. This is because man-made shapes
can generally be decomposed into simple subparts, each of which
has facets that share common axes (even if the axes are not shared
between parts). The failure cases amongst man-made objects are

Figure 7: Complex scene: Every model in this image was designed
and composited using our implemented modeler. Rendering was
performed separately in Maya.

primarily those that have organic-like shapes (e.g., aerodynamic car
hoods, sculptures, clothes), which, again, are difficult even with
traditional modelers.

We performed two informal evaluations to test our approach: one
to test its range (what models it is able to create) and one to test its
scalability (how complex the models can be). We also describe the
differences between our approach and Google SketchUp. A user
study in which novice users were asked to create 3D models with
our approach and with Google SketchUp, which were then ranked
by a second group of users, is also available in a separate technical
report [Rivers et al. 2010].

Range Evaluation: To test whether the majority of man-made
objects can in fact be modeled simply using silhouettes, we mod-
eled a random sample of man-made objects using our approach.
We used WordNet to generate a list of random hyponyms of the
word “artifact”, in the meaning of a physical entity created by man,
which we believed would fairly sample all man-made objects. We
chose to generate this list automatically and randomly to prevent
the possibility of “cherry-picking” models that work well with our
approach. We then used Google search to select an image of the
given object, selecting from the first page of either web or image
search results, which we used as a reference. (The purpose of this
was again to preclude the possibility of choosing a representation
of the word that unfairly favors our modeler; having an image is
not itself necessary for the modeling process.) We then created a
3D model of the object. We proceeded in order down the list, only
skipping words that did not correspond to concrete physical objects
(8 of the first 32 words generated: the rejected words were “fencing
material”, “weld”, “photographic print”, “aisle”, “seidel”, “dedi-
cated file server”, “knobble”, and “dialect atlas”).

We show a table of the results on the final page. Models were cre-
ated by two individuals, neither of whom had significant previous
3D modeling experience. The average time to create a model was
21.7 minutes.

As is shown, all of the first 24 randomly generated objects could be
modeled quickly and well using silhouettes, and in the majority of
cases the number of subparts needed is very low. The most difficult
cases were, as expected, those with organic and indivisible shapes,
such as the Mao jacket and Abaya, though we believe that these

too have passable results. We believe that this shows that the great
majority of man-made objects are amenable to being modeled with
silhouettes.

Scalability Evaluation: We also wished to test whether modeling
with silhouettes put a limit on the maximum complexity achievable
in a model. To test whether this was the case, we chose to model
a single scene with high-fidelity using our approach. We modeled
an office, which we populated with objects from our real office.
We show the result in Figure 7. Every object was created and
composited in our implemented modeler. We found that we could
generate arbitrarily complex models, and that adding details did not
become more difficult as the models became more complex.

Comparison to Google SketchUp: Google SketchUp [2009] is
recent sketch-based modeler that tackles the same challenge as our
approach – namely, to make it easy for novice users to design man-
made objects. However, there are several differences in the way
that we approach this challenge.

One key difference between our approach and SketchUp is the na-
ture of the lowest-level building blocks of a model. In SketchUp,
the most basic elements of a model are edges and surfaces, and 3D
volumes exist only as boundary representations constructed out of
edges and surfaces. By comparison, the lowest-level building block
of a model in our approach is a 3D volume, specified by the inter-
section of 2D silhouettes. We believe that working with volumes
and silhouettes is more intuitive from a conceptual point of view,
and bypasses a variety of difficulties that novice users may have in
working with a boundary representation: for example, in SketchUp,
a user must manually ensure the coplanarity of lines when gener-
ating a surface, be aware of and avoid T-junctions, ensure water-
tightness, and so on. These concepts are particularly challenging
for novice modelers.

Another difference is that SketchUp’s interface presents the user
with a single 3D view, and as a result all 2D sketching operations
performed by the user are ambiguous with regards to depth. This
can lead to mistakes where the user performs a modeling operation
that appears reasonable in the current view, only to rotate and find
that the actual shape was greatly distorted. In our interface, by com-
parison, all shapes are drawn in at least two views, preventing this
type of ambiguity.

Please see [Rivers et al. 2010] for the results of a user study com-
paring our approach with Google SketchUp.

6 Conclusion

In this paper, we proposed the use of 2D silhouettes as a modeling
tool. We showed that by limiting ourselves to 2D input, we are able
to simplify the modeling interface, even relative to sketch-based
modelers. We presented algorithms for robustly calculating CSG
operations on shapes defined by 2D silhouettes, and for smoothing
such shapes in a way that preserves the original silhouettes.

In our range evaluation, we demonstrated that despite limiting our-
selves to 2D input, the great majority of man-made objects could
be modeled quickly and easily with silhouettes. We also modeled a
high-fidelity office scene to show that our approach puts no restric-
tions on the complexity of models that can be generated.

We believe that the simplicity of our approach is illustrated by the
2D silhouettes of the models in Table 1. Aside from smoothing
settings, these drawings completely specify the corresponding 3D
models. Therefore, any user who can draw those 2D silhouettes

can create those 3D models. We encourage the reader to try our
implemented modeler, available on our project page.

7 Acknowledgments

Thanks to Danielle Magrogan for providing many of the models in
the range evaluation, and the reviewers of the MIT pre-deadline.
Ilya Baran provided helpful discussions and suggestions on the
structure of the paper. This work was supported by funding from
the MathWorks Fellowship, the Singapore-MIT Gambit Game Lab,
and Intel.

References

CATIA. 2009. Dassault Systemes.

CHEN, Z., AND PERNG, D.-B. 1988. Automatic reconstruction of
3D solid objects from 2D orthographic views. Pattern Recogn.
21, 439–449.

DORSEY, J., XU, S., SMEDRESMAN, G., RUSHMEIER, H., AND
MCMILLAN, L. 2007. The Mental Canvas:A Tool for Concep-
tual Architectural Design and Analysis. PG.

FRANCO, J.-S., AND BOYER, E. 2003. Exact Polyhedral Visual
Hulls. In Proceedings of the Fourteenth British Machine Vision
Conference, 329–338.

GINGOLD, Y., IGARASHI, T., AND ZORIN, D. 2009. Struc-
tured annotations for 2D-to-3D modeling. ACM Transactions
on Graphics (TOG) 28, 5, –18.

IGARASHI, T., AND HUGHES, J. F. 2001. A suggestive interface
for 3D drawing. Symposium on User Interface Software and
Technology.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A Sketching Interface for 3D Freeform Design. International
Conference on Computer Graphics and Interactive Techniques.

JOSHI, P., AND CARR, N. 2008. Repousse: Automatic Inflation
of 2D Artwork. Eurographics Workshop on Sketch-Based Mod-
eling.

JUDD, T., DURAND, F., AND ADELSON, E. 2007. Apparent ridges
for line drawing. In SIGGRAPH ’07: ACM SIGGRAPH 2007
papers, ACM, New York, NY, USA, 19.

KARA, L. B., AND SHIMADA, K. 2007. Sketch-Based 3D-Shape
Creation for Industrial Styling Design. IEEE Comput. Graph.
Appl. 27, 60–71.

KARPENKO, O. A., AND HUGHES, J. F. 2006. SmoothSketch: 3D
free-form shapes from complex sketches. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA,
589–598.

KARPENKO, O., HUGHES, J. F., AND RASKAR, R. 2002. Free-
form sketching with variational implicit surfaces. Computer
Graphics Forum 21, 585–594.

LAURENTINI, A. 1994. The Visual Hull Concept for Silhouette-
Based Image Understanding. IEEE Trans. Pattern Anal. Mach.
Intell. 16, 150–162.

LAZEBNIK, S., FURUKAWA, Y., AND PONCE, J. 2007. Projective
Visual Hulls. Int. J. Comput. Vision 74, 137–165.

LIPSON, H., AND SHPITALNI, M. 1996. Optimization-based re-
construction of a 3D object from a single freehand line drawing.
Journal of Computer Aided Design 28, 8, 651—-663.

MASRY, M., KANG, D., AND LIPSON, H. 2007. A freehand
sketching interface for progressive construction of 3D objects.
In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, New
York, NY, USA, 30.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S. J.,
AND MCMILLAN, L. 2000. Image-based visual hulls.
In SIGGRAPH ’00: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
369–374.

MILLER, G. A. 1995. WordNet: A Lexical Database for English.
Communications of the ACM 38, 11, 39–41.

MITRA, N. J., AND PAULY, M. 2009. Shadow art. ACM Transac-
tions on Graphics (TOG) 28, 5.

NEALEN, A., SORKINE, O., ALEXA, M., AND COHEN-OR, D.
2005. A sketch-based interface for detail-preserving mesh edit-
ing. ACM Trans. Graph. 24, 1142–1147.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. FiberMesh:designing freeform surfaces with 3D curves.
ACM Transactions on Graphics (TOG) 26, 3.

PRASAD, M., ZISSERMAN, A., AND FITZGIBBON, A. W. 2005.
Fast and Controllable 3D Modelling from Silhouettes. Proceed-
ings of the 26th Annual Conference of the European Association
for Graphics (Eurographics), 9—-12.

PRO/ENGINEER. 2009. Parametri Technology Corporation.

REQUICHA, A. A. G. 1977. Mathematical Models of Rigid Solid
Objects. Production Automation Project.

RIVERS, A., DURAND, F., AND IGARASHI, T. 2010. A User
Study Comparing 3D Modeling with Silhouettes and Google
SketchUp. MIT Technical Report.

SAKURAI, H., AND GOSSARD, D. C. 1983. Solid model input
through orthographic views. SIGGRAPH Comput. Graph. 17,
243–252.

SCHMIDT, R., WYVILL, B., SOUSA, M. C., AND JORGE, J. A.,
2005. ShapeShop: Sketch-Based Solid Modeling with Blob-
Trees.

SELA, G., AND ELBER, G. 2007. Generation of view dependent
models using free form deformation. The Visual Computer 23, 3
(January), 219–229.

SKETCHUP. 2009. Google.

SOLIDWORKS. 2009. Dassualt Systemes.

SZELISKI, R. 1993. Rapid octree construction from image se-
quences. CVGIP: Image Underst. 58, 23–32.

TILOVE, R. B. 1980. Set Membership Classification:A Unified
Approach to Geometric Intersection Problems. IEEE Transac-
tions on Computers 29, 10.

WANG, W., AND GRINSTEIN, G. G. 1993. A Survey of 3D Solid
Reconstruction from 2D Projection Line Drawings. Comput.
Graph. Forum 12, 137–158.

ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 1996.
SKETCH: An Interface for Sketching 3D Scenes. International
Conference on Computer Graphics and Interactive Techniques.

Knobkerrie
Cantilever bridge Ax head Press box

Slide Odd leg caliper Switch Keystone

Writing implement Water fountain Spark plug Abaya

Racetrack Bicycle seat Skywalk Meat counter

Mao jacket Sputnik Chinese puzzle Bed

Piano action Mask Hydrogen bomb Sheet anchor

Table 1: Evaluation: A random sampling of man-made objects modeled using our approach, shown with the silhouettes that generate them.
Dashed silhouettes represent subtracted shapes. The average time to create a model was 21.7 minutes.

