
MIT Open Access Articles

Black-box circular-secure encryption beyond affine functions

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Brakerski, Zvika, Shafi Goldwasser, and Yael Tauman Kalai. “Black-Box Circular-Secure
Encryption Beyond Affine Functions.” Theory of Cryptography. Ed. Yuval Ishai. LNCS Vol. 6597.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 201–218.

As Published: http://dx.doi.org/10.1007/978-3-642-19571-6_13

Publisher: Springer Berlin / Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/73953

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73953
http://creativecommons.org/licenses/by-nc-sa/3.0/

Black-Box Circular-Secure Encryption Beyond Affine Functions

Zvika Brakerski∗ Shafi Goldwasser† Yael Tauman Kalai‡

Abstract

We show how to achieve public-key encryption schemes that can securely encrypt nonlinear
functions of their own secret key. Specifically, we show that for any constant d ∈ N, there exists
a public-key encryption scheme that can securely encrypt any function f of its own secret key,
assuming f can be expressed as a polynomial of total degree d. Such a scheme is said to be
key-dependent message (KDM) secure w.r.t. degree-d polynomials. We also show that for any
constants c, e, there exists a public-key encryption scheme that is KDM secure w.r.t. all Turing
machines with description size c log λ and running time λe, where λ is the security parameter.
The security of such public-key schemes can be based either on the standard decision Diffie-
Hellman (DDH) assumption or on the learning with errors (LWE) assumption (with certain
parameters settings).

In the case of functions that can be expressed as degree-d polynomials, we show that the
resulting schemes are also secure with respect to key cycles of any length. Specifically, for any
polynomial number n of key pairs, our schemes can securely encrypt a degree-d polynomial
whose variables are the collection of coordinates of all n secret keys. Prior to this work, it was
not known how to achieve this for nonlinear functions.

Our key idea is a general transformation that amplifies KDM security. The transformation
takes an encryption scheme that is KDM secure w.r.t. some functions even when the secret keys
are weak (i.e. chosen from an arbitrary distribution with entropy k), and outputs a scheme that
is KDM secure w.r.t. a richer class of functions. The resulting scheme may no longer be secure
with weak keys. Thus, in some sense, this transformation converts security with weak keys into
amplified KDM security.

∗Weizmann Institute of Science, zvika.brakerski@weizmann.ac.il.
†Weizmann Institute of Science and Massachusetts Institute of Technology, shafi@theory.csail.mit.edu.
‡Microsoft Research, yael@microsoft.com.

1 Introduction

Secure encryption is one of the most fundamental tasks in cryptography, and significant work has
gone into defining and attaining it. In many classical notions of secure encryption, it is assumed
that the plaintext messages to be encrypted are independent of the secret decryption keys. However,
over the years, it was observed that in some situations the plaintext messages do depend on the
secret keys. This more demanding setting, termed key-dependent message security (KDM security)
by Black, Rogoway and Shrimpton [BRS02], has received much attention in recent years [CL01,
ABHS05, LC03, HK07, BPS07, BDU08, HU08, BHHO08, HH09, CCS09, ACPS09, BHHI10, BG10].

KDM security w.r.t. a class F of efficiently computable functions is modeled as follows.1 An
adversary is given public keys pk1, . . . , pkn and can access an oracle O that upon receiving a query
(i, f), where f is a function in the class F , and i ∈ [n] is an index, returns an encryption of
f(sk1, . . . , skn) under the public key pki. The scheme is KDM(n) secure w.r.t. F , where n is the
number of public keys, if the adversary cannot distinguish between the oracle O and an oracle that
always returns an encryption of (say) the all-zero string. In particular, in KDM(1) security, the
adversary is given a single public key pk and can ask for encryptions (under pk) of functions of the
corresponding secret key sk.

Starting with the breakthrough work of Boneh, Halevi, Hamburg and Ostrovsky [BHHO08] and
continuing with the work of Applebaum, Cash, Peikert and Sahai [ACPS09], it is known how to
achieve KDM security under a variety of computational assumptions. However, the above works
achieve security only w.r.t. affine functions of the secret key, leaving unanswered the question of
achieving security w.r.t. richer classes of functions.

The motivation to explore beyond affine functions is a straightforward extension of that provided
in [BHHO08]: Assume a secret key is stored on a hard drive which is being encrypted as a part of
a backup process. The encrypted contents thus depend on the secret key in a way that may not
necessarily be affine (conditioned on the file type and the file system used).

Heitner and Holenstein [HH09] gave impossibility results with regards to black-box constructions
of KDM(1)-secure encryption (even in the symmetric case). They showed that KDM(1) security
w.r.t. poly-wise independent functions is not black-box reducible to one-way trapdoor permutations,
and also that KDM(1) security w.r.t. all functions is not black-box reducible to essentially any
cryptographic assumption.

In a work independent and concurrent to ours, Barak, Haitner, Hofheinz and Ishai [BHHI10]
show how to overcome the latter black-box separation of [HH09]. They give a very strong positive
result, showing that for any polynomial p there exists a KDM(1)-secure schemes w.r.t. all functions
computable by circuits of size at most p, based on either the DDH or LWE assumptions. They
also achieve KDM(n) security at the cost of having the ciphertext length depend on the number of
users n. Altogether, our work and theirs are complementary and achieve incomparable results. See
a detailed comparison at the end of Section 1.1 below.

1.1 Our Results

We provide a general transformation that amplifies KDM security. Throughout this work, we
restrict our attention to public-key encryption schemes in which the key-generation algorithm works
by first sampling a secret key and then applying some, possibly randomized, function to produce

1We define KDM security in the public-key setting since this is the focus of this work. A similar definition can be
provided for the symmetric setting.

1

the public key. Many known encryption schemes have this property, e.g. [RSA78, Gam84, Reg05,
BHHO08, ACPS09] and others. We say that an encryption scheme is entropy-k KDM-secure if
it is KDM-secure even when the secret key is sampled from an arbitrary distribution with min-
entropy k, and the computation of the public key is performed with perfect randomness.2 Our
transformation starts with an encryption scheme E = (G,E,D) that is entropy-k KDM(n)-secure
w.r.t. some class of functions F , and converts it into another scheme E∗ = (G∗, E∗, D∗), which is
KDM(n) secure w.r.t. a larger class of functions F ′.

Theorem 1.1 (informal). Let E = (G,E,D) be a public-key encryption scheme that is entropy-k
KDM(n)-secure w.r.t. a function class F . Let S denote the space of the secret keys of E, and let
K be any set of size at least 2k. Then for every deterministic, efficiently computable and injective
mapping α : K → S there exists an encryption scheme E∗α = (G∗, E∗, D∗), whose secret key, sk∗, is
chosen at random from K, such that E∗α is KDM(n) secure w.r.t. the function class F ′ = F ◦ α =
{(f ◦ α)(sk∗1, . . . , sk∗n) = f(α(sk∗1), . . . , α(sk

∗
n)) : f ∈ F}.

For example, one can think of α(sk) as the vector of all monomials of degree d; namely,
α(x1, . . . , xk) = (

∏
i∈I xi)|I|≤d, where sk = (x1, . . . , xk) ∈ {0, 1}k. Another example is where α(sk)

is the vector of all Turing machines with description length O(log k) and running time at most t
(for some polynomial t), applied to sk. Namely, α(sk) = ⟨M(sk)⟩M , where M is a Turing machine
with description length O(log k) that runs for at most t steps on sk.

In the first example, if F is the class of all linear functions, then F ′ = F ◦ α is the class of
all degree ≤ d polynomials. In the the second example, if F contains the identity function, then
F ′ = F ◦ α contains all the Turing machines with description length O(log k) and running time at
most t.

We emphasize that in Theorem 1.1, we start with a scheme E that is entropy-k KDM(n)-secure
w.r.t. a function class F , and end up with a scheme E∗α that is not necessarily entropy-k secure
anymore. However, it is KDM(n)-secure w.r.t. a (supposedly richer) function class F ′. Therefore
this theorem gives a way to convert security with weak keys, into enhanced KDM security, thus
showing a formal connection between the two notions.3 Another connection between these notions
in the symmetric encryption case, was shown by Canetti et. al. [CKVW10], in the context of
obfuscation of multi-bit point functions: Loosely speaking, they show that an encryption scheme
that is entropy-k KDM-secure implies a multi-bit point obfuscators, and vice versa. However,
showing a direct implication between the notions (or showing that one does not exist) remains an
interesting open problem.

We apply Theorem 1.1 to the schemes of [BHHO08] and [ACPS09] to obtain Theorems 1.2
and 1.3, respectively, presented below. In order to do that, we will argue that these schemes (or
rather, a slight modification thereof) are entropy-k KDM(1)-secure. In what follows, λ denotes the
security parameter.

Theorem 1.2 (informal). Assume the DDH assumption in a group G of order q, and let g be
any generator of G. Then, for any class H = {h1, . . . , hℓ : hi ∈ {0, 1}k → {0, 1}} of poly(λ)-time
computable functions, with cardinality ℓ = poly(λ), there exists a KDM(1)-secure encryption scheme
w.r.t. the class of functions

FH =
{
f(gx) = g

∑
i∈[ℓ] tihi(x)+w : x ∈ {0, 1}k, (t, w) ∈ Zℓ

q × Zq

}
.

2This notion is different from security with key-leakage, where the leakage may depend on the public key.
3We stress that our reduction does not yield that leakage resiliency by itself implies KDM security; rather, we

show that leakage resiliency on top of KDM security enables amplifying the KDM security property.

2

In this scheme, the secret key is a vector in Gk whose ith coordinate is gxi ∈ {1, g}. Theorem 1.2
is obtained by applying Theorem 1.1 to the public-key encryption scheme of [BHHO08], which is
KDM secure w.r.t. affine functions in the exponent, using the mapping α(gx) = (gh1(x), . . . , ghℓ(x)).

In particular, taking H to be the class of all degree-d monomials, we show that for any constant
d ∈ N, there exists a public-key encryption scheme that is KDM(1)-secure w.r.t. all polynomials
of total degree d (in the exponent). This is because degree-d polynomials over k variables can be
viewed as affine functions applied to the vector of degree-d monomials. A different selection of H
implies that for any polynomial t, there exists a public-key scheme that is KDM(1)-secure w.r.t. all
Turing machines of description length bounded by log t and running time bounded by t.4

Theorem 1.3 (informal). Under the LWE assumption with modulus q = p2, for a prime p, for any
class H = {h1, . . . , hℓ : hi ∈ {0, 1}k → {0, 1}} of poly(λ)-time computable functions, with cardinality
ℓ = poly(λ), there exists a KDM(1)-secure encryption scheme w.r.t. the class of functions

FH =
{
f(x) =

∑
i∈[ℓ]

tihi(x) + w (mod p) : (t, w) ∈ Zℓ
p × Zp

}
.

The secret key space in this scheme is {0, 1}k. The result is obtained by applying Theorem 1.1
to (a variant of) the public-key encryption scheme of [ACPS09], which is KDM secure w.r.t. affine
functions, using the mapping α(x) = (h1(x), . . . , hℓ(x)).

In a similar manner to the DDH based result, appropriate selections of H imply a KDM(1)-
secure scheme w.r.t. all polynomials of total degree d and a KDM(1)-secure scheme w.r.t. all Turing
machines of description length bounded by log t and running time bounded by t, for t = poly(λ).

This ability, to tailor an encryption scheme to the required set of functions, can be useful when,
as a part of a cryptographic protocol, encryptions of certain functions of the secret key need to be
transmitted.

We are able to extend the above results, using additional techniques (Theorem 1.1 will not
suffice), and show that for the case of degree-d polynomials, both schemes obtained above are in
fact KDM(n)-secure, based on their respective assumptions. These results are stated in the theorems
below.

Theorem 1.4 (informal). Under the DDH assumption, for any constant d ∈ N, there exists a
public-key encryption scheme that is KDM(n)-secure w.r.t. degree-d polynomials in the exponent,
for any n = poly(λ).

Theorem 1.5 (informal). Under the LWE assumption, for any constant d ∈ N, there exists
a public-key encryption scheme that is KDM(n)-secure w.r.t. degree-d polynomials, for any n =
poly(λ).

Additional Uses for Our Amplification Theorem. While Theorem 1.1 is stated in terms
of public-key encryption, it in fact also works, in a straightforward manner, for other primitives
such as symmetric encryption or pseudo-random functions (under an appropriate adaptation of
the definitions of KDM and entropy-k security). In this paper, though, we focus on public-key
encryption.

4Bear in mind that any uniform function can be represented by a Turing machine of constant description. This
means that for any uniform function f (computable in time t), our scheme becomes secure asymptotically with the
security parameter.

3

One could also consider applying the theorem to the OAEP (i.e. random oracle) based scheme
of Backes, Dürmuth and Unruh [BDU08]. However, in order to do that, entropy-k secure one-
way trapdoor functions are required. Such are currently not known to exist, to the best of our
knowledge, and thus we do not elaborate on this scheme.
Comparison With [BHHI10]. As mentioned above, a recent independent work of [BHHI10]
achieves KDM security for a very rich class of functions: the class of functions computable by
circuits of polynomial size p (the polynomial p affects the parameters of the scheme as we explain
below). Their main technique is a non black-box use of the functions in the class, resulting in the
ciphertext’s containing a garbled circuit corresponding to a size-p circuit. Our implementation, in
contrast, makes black-box use of the functions and does not require garbled circuits. The downside
is that the size of the function class has to be limited (as demonstrated by the negative result
of [HH09]). Another difference is that in the KDM(n) scheme of [BHHI10], the ciphertext size
depends on n, unlike our schemes.

We also note that while the [BHHI10] framework applies only for public-key encryption, ours
can be applied to symmetric encryption as well as other primitives.

1.2 Our Techniques

Let us present the intuition behind the KDM amplification theorem (Theorem 1.1). Given an
encryption scheme E that is entropy-k KDM(n)-secure w.r.t. a function class F , we construct the
encryption scheme E∗ as follows: The key generation algorithm G∗, rather than choosing the secret

key from S, chooses sk
$← K, and sets pk to be the public key corresponding to the secret key

α(sk). As an example, one can think of K = {0, 1}k, S = {0, 1}ℓ where ℓ =
∑d

i=0

(
k
i

)
, and

α(sk) is the vector of all monomials of degree d; namely, α(x1, . . . , xk) = (
∏

i∈I xi)|I|≤d, where

sk = (x1, . . . , xk) ∈ {0, 1}k. Another example is where K = {0, 1}k, S = {0, 1}poly(k), and α(sk) as
being the vector of all Turing machines with description length O(log k) and running time at most
t (for some polynomial t), applied to sk. Namely, α(sk) = ⟨M(sk)⟩M , where M is a Turing machine
with description length O(log k) that runs for at most t steps on sk.

The encryption algorithm E∗ is identical to E. The decryption algorithm D∗ takes the secret
key sk, computes α(sk), and decrypts the ciphertext by applying the decryption algorithm D with
the secret key α(sk).5

We next exemplify why the scheme E∗ has amplified KDM security. Assume, for example, that
E was entropy-k KDM(1) secure w.r.t. all affine functions. Consider, as in the example above, α(sk)
that is the vector of all monomials of degree d. Then E∗ is still secure, because it applies the scheme
E with a weak secret key of min-entropy k. Moreover, the fact that E is entropy-k KDM(1)-secure
w.r.t. all affine functions, implies that the scheme E∗ is secure w.r.t. all affine functions of α(sk),
i.e. all degree d polynomials of sk. Similarly, if α(sk) is the vector of all Turing machines with
description length O(log k) and with running time at most t, applied to sk, then E∗ is KDM(1)

secure w.r.t. all functions computed by these Turing machines.
Thus, Theorem 1.1 provides us with a generic tool to amplify KDM security of schemes that

are entropy-k KDM-secure to begin with. However, the question that remains is: Do there exist
entropy-k KDM-secure schemes?

5We must require that α is deterministic so that α(sk) evaluates to the same value at each invocation (and thus
is consistent with pk). It is interesting to explore whether similar techniques can be used when α is a randomized
mapping (and thus can even increase the entropy of α(sk) compared to sk).

4

KDM(1) Security. [BHHO08, ACPS09] presented encryption schemes that are KDM(1)-secure
w.r.t. some classes of functions. We argue that these schemes are in fact entropy-k KDM(1)-secure
(for some setting of parameters). This enables us to apply Theorem 1.1 and amplify KDM(1)

security “for free”. Specifically, this implies KDM(1)-secure schemes w.r.t. degree-d polynomials or
bounded description and bounded running time Turing machines.
KDM(n) security. Two problems arise when trying to utilize Theorem 1.1 to obtain KDM(n)

security. First, a direct application of Theorem 1.1 may not produce the strongest result. Consider,
for example, the case of bounded degree polynomials. Even if we had a scheme that was entropy-k
KDM(n)-secure w.r.t. affine functions, Theorem 1.1 would only imply a scheme that is KDM(n)-
secure w.r.t. bounded-degree polynomials where each monomial only contains variables of the same
secret key. Second, we are not able to show entropy-k KDM(n) security for any scheme and therefore
cannot satisfy the conditions of the theorem.

To obtain Theorems 1.4 and 1.5, therefore, additional ideas are required. Rather than applying
Theorem 1.1 directly for KDM(n), we consider the schemes obtained by Theorems 1.2 and 1.3 for
the specific case where H is the class of all degree-d monomials. We then show that these schemes
are not only KDM(1)-secure w.r.t. degree-d polynomials, but are also KDM(n)-secure w.r.t. the
same class. We emphasize that monomials can contain variables from all secret keys in the system.
This part contains the bulk of technical difficulty of this work.

While the proof for each scheme requires special treatment, the crux of the idea in both cases
is similar. We use the “linear” behavior exhibited by both underlying schemes (in the DDH-based
scheme, linearity is in the exponent) which enables the following form of homomorphism: starting
from a single public key, that corresponds to a secret key sk, it is possible to generate a public key
that corresponds to a linearly-related secret key. This is done without knowing the original secret
key sk, only the (linear) relation. We need to be careful in utilizing this property: as it turns out
(and hinted by the intuition of Theorem 1.1 provided above), we need to apply this homomorphism
on secret keys whose coordinates are low-degree monomials. Therefore we cannot use arbitrary
linear transformations to “switch” between secret keys. We solve this problem by presenting a
class of linear transformations that do preserve the structure of the input secret key.

1.3 Other Related Works and Notions

One can consider an “entropy-k” variant for any security measure for public-key encryption, analo-
gously to our definition of entropy-k KDM security; i.e., requiring that the scheme remains secure,
in the relative measure, even when the secret key is sampled from an arbitrary entropy-k distribu-
tion. This notion is incomparable to that of key-leakage resilience, defined by Akavia, Goldwasser
and Vaikuntanathan [AGV09]. On the one hand, the notion of entropy-k security is weaker since
imperfect randomness is only used to generate the secret key, while the computation of the corre-
sponding public key uses perfect randomness. On the other hand, key-leakage resilience is weaker
since it requires security to hold, with high probability, over some family of distributions, whereas
entropy-k security requires security to hold for all high min-entropy distributions.

In this work, we restructure the secret key of a public-key encryption scheme in order to achieve
additional properties. Previous works also used a key distribution other than the obvious one to
obtain stronger results. In the KDM-secure scheme of [BHHO08], binary vectors in the exponent
of a group generator are used as secret keys, instead of the more natural selection of vectors in
Zq. This is done in order to achieve KDM security w.r.t. the desired function class. In [NS09], the
secret key distribution of the [BHHO08] scheme is again modified, this time using vectors of higher

5

dimension than required, thus achieving security against key-leakage. The KDM-secure public-key
scheme of [ACPS09] is very similar to that of [Reg05], with one of the changes being that the secret
key distribution is selected from a narrow Gaussian rather than being uniform. This is done, again,
in order for KDM security to apply w.r.t. the desired set of functions.

In a followup work, Brakerski and Goldwasser [BG10] present a KDM (and memory leakage re-
silient) secure scheme based on the quadratic residuosity assumption. They then use our techniques
to amplify the KDM security of their scheme by showing that it is entropy-k KDM secure.

1.4 Paper Organization

We provide notation and standard definitions in Section 2, new definitions and tools used through-
out the paper appear in Section 3. The KDM amplification theorem (Theorem 1.1) is formally
restated and proven in Section 4, where examples of applying it to specific function classes are also
provided. Sections 5 and 6 feature our DDH and LWE based constructions, respectively. Specifi-
cally, Theorems 1.2 and 1.4 are formally restated and proven in Section 5, while Theorems 1.3 and
1.5 are restated and proven in Section 6.

2 Notation and Definitions

We denote scalars in plain lowercase (x ∈ {0, 1}), vectors in bold lowercase (x ∈ {0, 1}k) and
matrices in bold uppercase (X ∈ {0, 1}k×k). All vectors are column vectors by default, a row
vector is denoted xT . The ith coordinate of x is denoted xi. For a set I, we use x = ⟨xi⟩i∈I to
denote a vector that is indexed by elements in I.

Vectors in {0, 1}k are treated both as elements in Zk
q and as elements in Zk

2. We use standard

arithmetic notation for arithmetics over Zk
q and use x⊕y to denote the addition in Zk

2 (i.e. bitwise
XOR operation).

For a group G with generator g and order q, if x ∈ Zn
q then gx ∈ Gn denotes the vector whose ith

coordinate is gxi ; similarly we denote gX for matrices. For sets S ⊆ Zq we denote g
S = {gx : x ∈ S}.

We note that given X ∈ Zm×n
q , Y ∈ Zn×k

q it is possible to compute gXY given either (gX,Y) or

(X, gY) using poly(m,n, k) group multiplications.

Let X be a probability distribution over domain S, we write x
$← X to indicate that x is

sampled from distribution X. Xn denotes the n-fold product distribution of X over Sn. The

uniform distribution over a set S is denoted U(S). We use x
$← S as abbreviation for x

$← U(S).
The min entropy of a random variable X over domain S is H∞(X) = − log (maxx∈S Pr[X = x]).
Logarithms here, and anywhere else in this paper, are taken to the base 2. For any function f
with domain S we let f(X) denote the random variable (or corresponding distribution) obtained

by sampling x
$← X and outputting f(x).

We write negl(n) to denote an arbitrary negligible function, i.e. one that vanishes faster than
the inverse of any polynomial.

The statistical distance between two distributions X,Y (or random variables with those dis-
tributions) over common domain S is defined as SD(X,Y) = maxA⊆S |Pr[X ∈ A]− Pr[Y ∈ A]|.
Two ensembles {Xn}n, {Yn}n are statistically indistinguishable if SD(Xn, Yn) = negl(n), and are
computationally indistinguishable if for every poly(n)-time adversary A it holds that

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| = negl(n) .

6

Let M be a deterministic Turing Machine. We use |M | to denote the description length of M
and use exec(M, 1t, x) to denote the content ofM ’s output tape after running on x for t computation
steps. Clearly exec(M, 1t, x) is computable in time poly(|M | , t).

2.1 Cryptographic Assumptions

Decision Diffie-Hellman (DDH). Let G be a group of prime order q (in fact, we consider a
family of groups parameterized by security parameter λ). The DDH assumption (on G) is that the
distributions (g, gx, gy, gz) and (g, gx, gy, gxy) are computationally indistinguishable, where g is a

random generator for G and x, y, z
$← Zq.

Learning with errors (LWE). We use the decisional version of the LWE ([Reg05]) assumption.
For any m,n, q ∈ N such that q > 2, all functions of the security parameter λ, and any probability
distribution χ on Zq, the LWEq,m,n,χ assumption is that the distributions (A,As+ x) and (A,u)

are computationally indistinguishable, where A
$← Zm×n

q , s
$← Zn

q , x
$← χm, u

$← Zm
q .

We remark that the search version of the assumption, where the challenge is to find s, is
equivalent to the decisional version, for prime q, under poly(q)-time reductions. It is shown in
[ACPS09] that this equivalence also holds for q = pe, for integer constant e and prime p, provided
that χ is a distribution over Zq that produces an element in {−p−1

2 , . . . , p−1
2 } with all but negligible

probability.
Worst-case to average-case reductions of [Reg05, Pei09] can be used to obtain a connection

between LWE instances and worst case lattice problems, for some (Gaussian like) distribution χ.

2.2 KDM Security

A public-key encryption scheme E = (G,E,D) is defined by its key generation, encryption and
decryption algorithms. The key generation algorithm G takes as input the unary vector 1λ, where λ
is called the security parameter of the scheme. All other parameters of the scheme are parameterized
by λ. We let S = {Sλ} denote the space of secret keys andM = {Mλ} denote the message space of
the encryption scheme. We refer the reader to [Gol04] for a formal definition of encryption schemes
and their security.

In the scenario of key-dependent messages, we wish to model the case where functions of the
secret key can be encrypted, and require that the resulting ciphertexts are indistinguishable from
encryptions of 0. We want our definition to apply also for the case of “key cycles” where a function
of one user’s secret key is encrypted by another’s public key and vice versa. The most inclusive
definition, therefore, is parameterized by the number of users n and allows encrypting a function
of the entire vector of n secret keys under any of the corresponding public keys (this is sometimes
referred to as “clique security”). An additional parameter to be considered is the set of functions
of the secret key that we allow to encrypt. We use the definition presented in [BHHO08].

Formally, let E = (G,E,D) be a public key encryption scheme, n > 0 be an integer, S = {Sλ}
be the space of secret keys, and let F = {Fλ} be a class of functions such that Fλ ⊆ Snλ →Mλ.

We define the KDM(n) game, w.r.t. the function class F , played between a challenger and an
adversary A, as follows.
Initialize. The challenger selects b

$← {0, 1} and generates, for all i ∈ [n], key pairs (ski, pki)
$←

G(1λ). The challenger then sends {pki}i∈[n] to A.

7

Query. The adversary makes queries of the form (i, f) ∈ [n]× Fλ. For each query, the challenger
computes y ← f(sk1, . . . , skn) and sends the following ciphertext to A.

c←
{

Epki(y) if b = 0
Epki(0) if b = 1.

Finish. A outputs a guess b′ ∈ {0, 1}.
Adversary A wins the game if b′ = b. The advantage of A, denoted KDM(n)Adv[A, E](λ) is

|Pr[W]− 1/2| where W is the event that A wins.

We sometime denote KDM
(n)
F to indicate the function class in discussion.

3 New Definitions and Tools

3.1 Projective Encryption Schemes and Weak Keys

Projection. Throughout this paper, we only consider encryption schemes that have a projection
between the secret and public key. Namely, the key generation can be described as first sampling
the secret key from some set and then applying an efficiently computable projection function (which
can be randomized) to generate the public key.

Definition 3.1 (projection). Let E = (G,E,D) be a public-key encryption scheme. E is projective

if G(1λ) = (sk, pk = Proj(sk)) where sk
$← S and Proj(·) is an efficiently computable (possibly

randomized) function.

We remark that many known encryption schemes are indeed projective, e.g. [RSA78, Gam84,
Reg05, BHHO08, ACPS09] and others. We further remark that any secure scheme can be mod-
ified to be projective by using the randomness of the key generation as the secret key. However
such transformation does not preserve KDM security and thus we will need to require projection
explicitly.
Weak keys and entropy-k security. We are also interested in a more specific case where a
(projective) scheme remains secure even when the key generation is “improper”: the secret key is
sampled from an arbitrary distribution on S that has min-entropy k. The projection is then applied
to the sampled value.

We can think of an “entropy-k variant” of any security notion σ, we thus provide a general
definition. In this work, however, we instantiate this definition with σ being KDM security.

Definition 3.2 (entropy-k security). Let E = (G,E,D) be a projective public-key encryption
scheme and let σ be some security notion. Consider a distribution ensemble D = {Dλ} over
S = {Sλ}. Let GD denote the following key-generator: GD(1

λ) = (sk,Proj(sk)) where sk← Dλ.
Let k : N→ R+ be some function. E is entropy-k σ-secure if for any ensemble D with H∞(Dλ) ≥

k(λ) it holds that ED(GD, E,D) is σ-secure.

We stress that entropy-k security, as defined above, is a notion incomparable to that of key-
leakage resilience (as defined in [AGV09, NS09]). On the one hand, the notion of entropy-k security
is weaker since imperfect randomness is only used to generate the secret key, while the projection
Proj(·) uses perfect randomness to compute the corresponding public key. On the other hand,
key-leakage resilience is weaker since it requires security to hold with high probability over some
family of distributions, whereas entropy-k security requires security to hold for all high min-entropy
distributions.

8

3.2 Transformations on Expanded secret keys

Let q be some modulus. The set of affine functions modulo q on Zk
q is

Faff = {ft,w(x) = tTx+ w : (t, w) ∈ Zk
q × Zq} .

The set of affine functions in the exponent over Gk, where G is a group of order q and g is a
generator of G, is denoted by

F̂aff = {ht,w(gx) = gt
Tx+w : (t, w) ∈ Zk

q × Zq} .

Degree-d polynomials over k variables can be viewed as affine functions applied to the vector
of degree-d monomials. While we consider polynomials over Zq, we only apply them to binary
variables, x ∈ {0, 1}k. We define a mapping γk,d that maps x ∈ {0, 1}k into the vector containing
all monomials of degree d of the variables of x.

Definition 3.3 (the vector of monomials γk,d). For all k, d ∈ N and x ∈ {0, 1}k, we define the
vector of all degree-d monomials in x by

γk,d(x) =
⟨∏

j∈J
xj

⟩
J⊆[k],
|J |≤d

.

In other words, letting νk,d =
∑d

j=0

(
k
j

)
denote the number of such degree-d monomials, γk,d :

{0, 1}k → {0, 1}νk,d is a mapping between vectors. We denote its image by Γk,d =
{
γk,d(x) : x ∈ {0, 1}k

}
.

It follows immediately from the definition that γk,d is injective, since (γk,d(x)){i} = xi, and

thus that |Γk,d| = 2k.
Intuitively, in the context of KDM-security amplification, x is our “real” secret key, whereas

γk,d(x), the expanded version of x, is used as a “secret key” for a scheme that is KDM-secure w.r.t.
affine functions. This results in a KDM-secure scheme w.r.t. degree-d polynomials.

We denote the set of all degree-d polynomials over Zq with binary variables x ∈ {0, 1}k by

Fd = {ft(x) = tT · γk,d(x) : t ∈ Zℓ
q} .

Note that γk,d(x)∅ = 1, i.e. the vector of monomials contains the empty monomial that always
evaluates to 1. Therefore there is no need for an additional free term w as in the definition of affine
functions.

Again, for the degree-d polynomials in exponent we denote

F̂d = {ht(gx) = gt
T ·γk,d(x) : t ∈ Zℓ

q} ,

where g is a generator of a group G of order q.
The following lemma states that that given y ∈ {0, 1}k, we can efficiently compute a matrix

T ∈ Zℓ×ℓ
q such that for all x ∈ {0, 1}k it holds that T · γk,d(x) = γk,d(x⊕ y). We think of y as the

known relation between secret keys x and x ⊕ y. The transformation T allows us to convert the
expanded version of x to the expanded version of x⊕ y, i.e. to convert γk,d(x) into γk,d(x⊕ y).

Lemma 3.1. For all k, d, q ∈ N such that q > 2, there exists an efficiently computable function
Tk,d,q : {0, 1}k → Zℓ×ℓ

q , where ℓ = νk,d, such that setting T = Tk,d,q(y), for all x ∈ {0, 1}k it holds
that T · γk,d(x) = γk,d(x⊕ y). Moreover T is an involution, i.e. T2 is the identity matrix.

9

Proof. Fix k, d, q, ℓ and y ∈ {0, 1}k. For any x ∈ {0, 1}k it holds that

(x⊕ y)i =

{
xi yi = 0
1− xi yi = 1

where the arithmetics is over Zq. Hence, given y, we can compute v,w ∈ Zk
q such that (x⊕ y)i =

vixi + wi: if yi = 0 then vi = 1, wi = 0 and if yi = 1 then vi = −1, wi = 1. Thus, for all J ⊆ [k],
|J | ≤ d, it holds that γk,d(x ⊕ y)J =

∏
i∈J(vixi + wi). We can now open the parenthesis of the

expression (note that this can be done in time poly(ℓ)) and express γk,d(x ⊕ y)J as a degree-d
polynomial in x with known coefficients, or, in other words, as a linear function of γk,d(x). These

coefficients will constitute the J th row of the matrix T = T(y). Computing row by row, we can
construct a matrix T such that Tγk,d(x) = γk,d(x⊕ y) as desired.

We note that T2 ·γk,d(x) = T ·γk,d(x⊕y) = γk,d(x) and thus conclude that T2 is the identity
matrix. In order to derive this last conclusion, we rely on the fact that there exist ℓ linearly-
independent vectors of the form γk,d(x).

4 Amplification of KDM Security

In this section we give a general result: We show that an entropy-k KDM-secure scheme, w.r.t. a
certain class of functions, can be converted into various schemes that are KDM-secure w.r.t. richer
classes. We start by stating the general result in Section 4.1 and then, in Section 4.2, we present
corollaries for specific classes of functions.

4.1 Main Theorem

Before stating our theorem, let us give some intuition for how KDM-security can be amplified for
projective entropy-k schemes (as defined in Section 3.1).

Consider, for example, a projective encryption scheme E that is entropy-k KDM-secure w.r.t.
the class of indexing functions I = {hi(s) = si} or, in other words, a bit by bit encryption of
the secret key is secure. Entropy-k security in particular means that we can sample the secret
key sk = s ∈ {0, 1}ℓ as follows: first, sample the first k bits uniformly, call this part x; then,
set the remaining bits of s to si = fi(x), where {fi}i=k+1,...,ℓ is an arbitrary class of efficiently
computable deterministic functions. The resulting secret key distribution has min-entropy k and
thus E is still KDM-secure w.r.t. I with the resulting secret key distribution. Namely, E is secure
w.r.t. the functions hi(s) = si = fi(x). Therefore, we can convert E into a scheme E∗ by setting the
secret key in E∗ to be x. This E∗ is KDM-secure w.r.t. indexing functions as well as the functions
{fi}i=k+1,...,ℓ.

Theorem 1.1 (restated). Let E = (G,E,D) be a projective public-key encryption scheme that is
entropy-k KDM(n)-secure w.r.t. a function class F . Let S = {Sλ} be the space of secret keys.

Let K = {Kλ} be a family of sets such that |K| ≥ 2k and let α : K → S be a deterministic,
efficiently computable and injective function. Then there exists a projective encryption scheme E∗α =
(G∗, E∗, D∗) with secret key space K that is KDM(n) secure w.r.t. F ◦ α = {(f ◦ α)(sk1, . . . , skn) =
f(α(sk1), . . . , α(skn)) : f ∈ F}.

Proof. Consider the ensemble D where Dλ = α(U(Kλ)) and consider the scheme ED = (GD, E,D)
as in Definition 3.2. E∗α is similar to ED with the following modifications. G∗(1λ) first samples

10

sk∗
$← K and then computes pk = Proj∗(sk∗) = Proj(α(sk∗)). Note that the distribution of the

public keys is identical to that of ED while the distributions of secret keys differ. The encryption E∗

is performed identically to E. The decryption D∗
sk∗(c) is performed by first computing sk = α(sk∗)

and then outputting Dsk(c).
Since α is injective, it holds that H∞(Dλ) ≥ k, and thus by definition, ED is KDM(n)-secure

w.r.t. F .
We next show that for any adversary A∗ for the KDM(n) game with E∗α, there exists an adversary

A for the KDM(n) game with ED such that

KDM
(n)
F Adv[A, ED](λ) = KDM

(n)
F◦αAdv[A∗, E∗α](λ) .

This will complete the proof of the theorem.
Adversary A simulates A∗.

Initialize. Since the public key distributions of ED and E∗α are identical, A forwards its input
pk1, . . . , pkn to A∗.
Queries. When A∗ sends the query (i, f ◦ α) ∈ [n] × (F ◦ α), A sends the query (i, f).6 Let sk∗i
denote the secret key corresponding to pki in E∗α, then by definition ski = α(sk∗i) is the secret key
corresponding to pki in ED. Therefore f(sk1, . . . , skn) = (f ◦ α)(sk∗1, . . . , sk∗n), and A can forward
the answer to A∗. Thus, A can simulate any query made by A∗ during the game.
Finish. When A∗ terminates and returns b′, A also terminates and returns the same b′.

Since A simulates A∗ exactly, it follows that A achieves the same advantage in the KDM(n)

game with ED as A∗ does with E∗α.

4.2 Exemplifying for Specific Function Classes

We demonstrate specific cases where Theorem 1.1 amplifies KDM security. We restrict our attention
to KDM(1) security (see discussion below).

• Bounded description functions. We first show how to amplify the class of indexing functions
I = {hi(s) = si} into the class of all functions computable by a Turing machine with bounded
description length and bounded running time. Let E be an entropy-k KDM(1)-secure encryp-
tion scheme w.r.t. the class of indexing functions, with message spaceM = {0, 1} and secret
key space S = {0, 1}ℓ. Let K = {0, 1}k and α(x) = ⟨exec(M, 1t(λ),x)⟩|M |≤log ℓ where t(·) is

some (fixed) polynomial. Then E∗α, defined in the proof of Theorem 1.1, is KDM(1)-secure
w.r.t. all functions computable by a Turing machine with description length log ℓ and running
time t(λ).7

• Bounded degree polynomials. We now show how to amplify the class of affine functions into
the class of bounded degree polynomials. Let E be an entropy-k KDM(1)-secure encryption
scheme w.r.t. the class of affine functions Fℓ → F, withM = F and S ⊆ Fℓ, for a finite field
F. Let K = {0, 1}k ⊆ Fk and let d be such that ℓ = νk,d (see Definition 3.3), this implies that

d is at least log ℓ
log(k+1) . Consider α(x) = γk,d(x), i.e. α contains all degree d monomials. Then

6We represent f ◦ α in such a way that enables to derive f .
7One has to be careful when showing that α is injective. We can either assume that the first k coordinates of the

output contain the input, or, if ℓ is sufficiently larger than k, we can rely on the short description and running time
of the indexing functions.

11

E∗α, defined in the proof of Theorem 1.1, is KDM(1)-secure w.r.t. all degree-d polynomials
Fk → F.

We provided examples only for the case of KDM(1)-security for two reasons. First of all, while
in Sections 5.2, 6.2 we present (candidates for) entropy-k KDM(1)-secure schemes, we are unable
to obtain entropy-k KDM(n)-secure schemes for n > 1. Secondly, even if such exist, the result of
applying Theorem 1.1 for the classes above would be weaker than expected. This is because while
the functions in the class F are applied to the vector of n secret keys, the mapping α is only applied
to one secret key at a time. Therefore, the first example above would imply KDM(n)-security w.r.t.
Turing machines that only take one of the secret keys as input; the second would imply KDM(n)-
security w.r.t. degree-d polynomials where each monomial only contains variables from one secret
key.

5 DDH Based KDM Security

For any constant d, we present a scheme that is KDM(n) secure w.r.t. all degree-d polynomials (in
the exponent), F̂d. We also present a scheme that is KDM(1)-secure w.r.t. the class of all functions
computed by Turing machines with description length at most log t and running time t, for some
polynomial t (more generally, w.r.t. any class of efficiently computable functions of polynomial
cardinality). Our starting point is the scheme presented in [BHHO08], which we denote EBHHO,
which is extended using ideas from Section 4.

In Section 5.1, we present EBHHO and state its entropy-k KDM-security properties. Then, in
Section 5.2, we show how to use Theorem 1.1 to amplify the KDM(1)-security of EBHHO to richer

classes of functions, including F̂d. Finally, in Section 5.3, we show that the KDM
(1)

F̂d
-secure scheme

is also KDM
(n)

F̂d
-secure.

5.1 Scheme EBHHO

The scheme, as defined in [BHHO08], assumes that the secret key is sampled uniformly from gS

for a specific set S = {0, 1}ℓ. They discussed the possibility of using different sets S in the context
of improving efficiency. For our purposes, we take S as one of the parameters of the scheme. The
scheme EBHHO[G,S] is defined as follows.
Parameters. Let G be a group of order q such that log q = poly(λ) and let g be some generator
of G. Let ℓ = poly(λ) and S ⊆ Zℓ

q. We require that group operations over G can be done efficiently

(in time poly(λ)). The secret key space of the scheme is gS and the message space is G. We require
that S is such that there exists an efficiently computable mapping that, for all s ∈ S, takes gs and
returns s.
Key generation. On input 1λ, the generator samples s

$← S and sets the secret key sk = gs ∈ Gℓ.

It then samples z
$← Zℓ

q and sets the public key pk = (gz, g−zT ·s) ∈ Gℓ ×G.

Encryption. On inputs a public key pk = (gz, gv) ∈ Gℓ ×G, and a message w ∈ G, encryption is

done by sampling r
$← Zq and outputting (gr·z, gr·v · w).

Decryption. On inputs a secret key sk = gs and a ciphertext c = (ga, gu), the decryption process
is as follows. First s is extracted from sk (note that we define S so that this can be done efficiently)

and then, w = gs
T ·a · gu is output.

12

The following statement on the security of EBHHO[G,S] is implicit in [BHHO08]. Specifically see
Corollary 1 and the discussion in Section 4 in their work.

Lemma 5.1 ([BHHO08]). If SD
(
(a,aT · s), (a, u)

)
= negl(λ) for a

$← Zℓ
q, s

$← S, u $← Zq and if

the DDH assumption holds for G, then EBHHO[G,S] is KDM(1)-secure w.r.t. F̂aff.

A useful corollary follows.

Corollary 5.2. EBHHO[G,S] is entropy-k KDM(1)-secure w.r.t. F̂aff if S = {0, 1}ℓ, q · 2−k = negl(λ)
and the DDH assumption holds.

Proof. Consider EBHHO[G,S] where the DDH assumption holds in G and where S ⊆ {0, 1}ℓ and
|S| ≥ 2k. In such case, there exists an efficiently computable mapping restoring s ∈ S from gs,
since gsi ∈ {1, g}.

In addition, an immediate corollary of the left-over hash lemma (see [BHHO08, Lemma 2])
implies that SD

(
(a,aT · s), (a, u)

)
≤

√
q/(4 |S|). Therefore, if |S| ≥ 2k where q · 2−k = negl(λ),

then Lemma 5.1 implies KDM(1)-security of EBHHO[G,S].
Since the above holds for any S with |S| ≥ 2k, entropy-k KDM(1)-security follows.

5.2 Amplification of KDM(1)-Security

We use Theorem 1.1 and Corollary 5.2 to amplify the KDM(1)-security of EBHHO. We say that a
finite set of functions, H = {h1, . . . , hℓ}, with a common domain, is entropy preserving if αH(x) =
(h1(x), · · · hℓ(x)) is an injective function.

Theorem 1.2 (restated). Let G be a group of order q for which the DDH assumption holds (more
precisely: a family of groups parameterized by λ). Let g be any generator of G. Let k be such that
q · 2−k = negl(λ). Let H = {h1, . . . , hℓ : hi ∈ {0, 1}k → {0, 1}} be an entropy preserving class of
efficiently computable functions with cardinality ℓ = poly(λ). Then there exists a KDM(1)-secure
public key encryption scheme w.r.t. the class of functions

FH =
{
f(gx) = g

∑
i∈[ℓ] tihi(x)+w : (t, w) ∈ Zℓ

q × Zq

}
.

Proof. By Corollary 5.2, EBHHO[G, {0, 1}ℓ] is entropy-k KDM(1)-secure w.r.t. F̂aff. We apply Theo-

rem 1.1 to this scheme with α : g{0,1}
k → g{0,1}

ℓ
, where α(gx) =

⟨
gh(x)

⟩
h∈H. To do this, we need

to show that α is injective and efficiently computable: α is injective since H is entropy preserving
and since g is a generator; moreover, it is efficiently computable since H is efficiently computable
and since x ∈ {0, 1}k, which means that it can be efficiently extracted from gx. Applying Theo-
rem 1.1, there exists a KDM(1)-secure scheme w.r.t. F̂aff ◦ α. By definition of F̂aff and α, it holds
that F̂aff ◦ α = {ft,w(gx) = g

∑
h∈H tih(x)+w : (t, w) ∈ Zℓ

q × Zq} = FH, as required.

The above implies that under the standard DDH assumption, for any constant d, there exists
a KDM-secure schemes w.r.t. to all degree-d polynomials. Assuming that DDH is exponentially
hard, this can be increased to d = Ω̃(kδ) where δ > 0 is related to the hardness. Details follow.

The “standard” form of the DDH assumption considers polylog(q)-time adversaries. Since we
consider adversaries that run in time poly(λ), this implies that log q ≥ λϵ for some ϵ > 0. Corollary
5.2 requires that q · 2−k = negl(λ), i.e. that k ≥ log q + ω(log λ) ≥ λϵ. Therefore, if we base
security on the standard DDH assumption then, since ℓ = poly(λ), it holds that ℓ = poly(k).

13

This restricts the size of classes H for which we can apply Theorem 1.2. One example is letting
t = poly(λ) be some polynomial and taking H be the set of all functions computable by a Turing
machine with description log ℓ and running time at most t. In this case, ℓ = poly(k) means that
we are restricted to Turing machines with description length at most O(log k). Another important
example, discussed in detail below, is taking H to be the class of all monomials of degree-d. Here,
the restriction ℓ = poly(k) means that we can only do so for d = O(1).

We note, however, that if we make a stronger assumption, e.g. assume that the DDH assumption
holds also for adversaries that run in time poly(2log

δ q), for some δ ∈ (0, 1), then we could take

q = 2log
1/δ λ and have k = log q + ω(log λ) = O(log1/δ λ), i.e. ℓ = poly(λ) = 2Ω(kδ). In the example

of degree-d monomials, since ℓ = νk,d ≤ (k + 1)d, we can set d = log ℓ
log(k+1) = Ω̃(kδ).

Recall that γk,d, νk,d, Γk,d were defined in Definition 3.3 and let us explicitly present the scheme

obtained in the case where H is the set of all degree-d monomials, i.e. α(gx) = gγk,d(x). We denote
this scheme by E1. Theorem 1.2 implies KDM(1)-security of E1 w.r.t. F̂d, the class of degree-
d polynomials in the exponent. In Section 5.3, we show that E1 actually has stronger security
properties.
Encryption scheme E1. Scheme E1 is parameterized by k, d ∈ N in addition to the parameters
of EBHHO[G,Γk,d]. We require that q · 2−k = negl(λ), where q is the order of G.

Key generation. On input 1λ, we generate the secret key by selecting x
$← {0, 1}k and setting

sk = gx ∈ Gk. Let s = γk,d(x), which is uniform in Γk,d. We generate the public key according to
EBHHO[G,Γk,d], as if g

s was the secret key. Note that the distribution of public keys is identical to
that of EBHHO[G,Γk,d].
Encryption. On inputs pk and w, the encryption algorithm runs the encryption of EBHHO[G,Γk,d]
on the same input.
Decryption. On inputs a secret key sk = gx and a ciphertext c, the decryption algorithm first
obtains x from sk, which can be done efficiently since x ∈ {0, 1}k. This enables it, in turn, to
compute s = γk,d(x). Decryption then runs the decryption algorithm of EBHHO[G,Γk,d] with inputs
a secret key gs and a ciphertext c.

5.3 KDM(n)-Security w.r.t. Degree-d Polynomials

We show that the scheme E1 presented above is in fact KDM(n)-secure w.r.t. F̂d.

Theorem 1.4 (restated). Scheme E1, with the parameters described above, is KDM(n)-secure
w.r.t. F̂d, for any n = poly(λ).

To prove the theorem, we use several additional properties of EBHHO, stated in Lemma 5.3 below.
The proof of the lemma is implicit in [BHHO08] and for the sake of completeness, we also provide
a proof in Appendix A.

Lemma 5.3. Consider EBHHO[G,S] where the DDH assumption holds on G. Let s ∈ Zℓ
q, w ∈ G

be arbitrary. Let (A,b) ∈ Zℓ×ℓ
q × Zℓ

q be an invertible linear transformation on Zℓ
q and define

s′ = As+ b.
Let pk, pk′ be random variables distributed as public keys corresponding to s, s′, respectively. Let

c, c′ be distributed as encryptions of the message w with the public keys pk, pk′ respectively. Then
the following hold.

• public key homomorphism. There exists an efficiently computable function P (pk,A,b) such
that the distributions (pk, pk′) and (pk, P (pk,A,b)) are computationally indistinguishable.

14

• Ciphertext homomorphism. There exists an efficiently computable function C(c,A,b) such
that the distributions (pk, pk′, c′) and (pk, pk′, C(c,A,b)) are computationally indistinguish-
able.8

We can now prove the theorem.

Proof of Theorem 1.4. The proof works by reduction to the KDM
(1)

F̂d
-security of E1 (established in

Theorem 1.2). Consider an adversary A for the KDM(n) game of E1 w.r.t. F̂d. We show that there
exists an adversary B for the KDM(1) game such that

KDM(1)Adv[B, E1](λ) ≥ KDM(n)Adv[A, E1](λ)− negl(λ) .

Initialize. B gets as input a public key pk that corresponds to some (unknown) secret x. B
samples y1, . . . ,yn

$← {0, 1}k and computes Ti = Tk,d,q(yi), where Tk,d,q is taken from Lemma 3.1.

Using the public key homomorphism property, B generates pk1, . . . , pkn where pki
$← P (pk,Ti, 0)

corresponds to the secret zi = x ⊕ yi. B forwards pk1, . . . , pkn to A as the public keys for the n
users.
Queries. B simulates the query phase of A. Suppose A makes a query (i, h), where h ∈ F̂d.
Namely, h(gz1 , . . . , gzn) = gφ(z1,...,zn), for a degree-d polynomial φ. B thinks of φ as a polynomial
in x rather than in z1, . . . , zn. That is, B computes a degree-d polynomial φ′(x) such that φ′(x) =
φ(z1, . . . , zn). This is done by first replacing each variable zi,j in φ with xj if yi,j = 0, or with
1− xj if yi,j = 1; and then computing the coefficients of all the monomials of φ′. This can be done
in time poly(ℓ) by opening the parenthesis of φ. Let h′(gx) = gφ

′(x).
The next step is sending h′ to the challenger and receiving c, an encryption under pk of either

either h′(gx) or 0. B uses the ciphertext homomorphism property to sample c′
$← C(c,Ti, 0), which

is computationally indistinguishable from an encryption of the same message under pki. B returns
c′ to A as an answer to the query (i, h).
Finish. Upon A’s completion and returning b′, B also terminates and returns the same b′.

We now use a hybrid argument to prove the required claim. For hybrid Hi, let pi denote the
probability that A returns b′ = b.

1. In hybrid H0, A interacts with the simulator B as described above. By definition,

KDM(1)Adv[B, E1](λ) = |p0 − 1/2| .

2. In hybrid H1, A interacts with with a simulator identical to B with one change: rather than
sample from the distribution P (pk,Ti, 0), in H1 the simulator samples an actual public key
for zi. Lemma 5.3 implies that |p1 − p0| = negl(λ), since otherwise we can consider a hybrid

H
(j)
1 where the first j keys are produced according to P (pk,Ti, 0) and the rest are properly

generated. Two adjacent hybrids which are computationally distinguishable enable to find
s,A,b that contradict public key homomorphism.

3. In hybrid H2, A interacts with a simulator identical to that of H1, with one change: rather
than sampling from the distribution C(c,Ti, 0), inH2 the simulator samples an actual encryp-
tion of the relevant message with public key pki. Again, |p2 − p1| = negl(λ) since otherwise

8Note that C(·) does not take pk′ as input. Therefore, this property also implies that two independent public keys
that correspond to the same secret key generate two computationally indistinguishable ciphertext distributions.

15

we can define H
(j)
2 where the first j encryptions are obtained using ciphertext homomorphism

and the rest are properly generated. This, in turn, will imply a distinguisher for ciphertext
homomorphism.

Noting that, H2 is identical to the KDM(n)-game of A, we get that KDM(n)Adv[A, E1](λ) =
|p2 − 1/2|.

We conclude that KDM(1)Adv[B, E1](λ) ≥ KDM(n)Adv[A, E1](λ)− negl(λ) as required.9

6 LWE Based KDM Security

In this section we show similar results to those of Section 5, this time under the LWE assumption.
We follow the same general outline. First, in Section 6.1, we present the relevant previous work, in
this case - the scheme of [ACPS09], denoted EACPS. Then, in Section 6.2, we prove the entropy-k
KDM(1)-security of EACPS w.r.t. affine functions Faff, and present the consequences of applying The-
orem 1.1 to EACPS. Finally, in Section 6.3, we show that in the special case of degree-d polynomials,
we can in fact prove KDM(n)-security of the scheme obtained from Theorem 1.1.
Preliminaries. In this section, we use distributions that are derived from Gaussians. For any
σ > 0, we denote Dσ(x) = e−π(x/σ)2/σ, the (scaled) density function of the one dimensional
Gaussian distribution. For any q ∈ N and σ > 0 we define Ψ̄σ to be the distribution over Zq obtained

by sampling y
$← Dσ and outputting ⌊q · y⌉ (mod q). We define DZm,σ to be the distribution over

all x ∈ Zm such that Pr[x] is proportional to
∏

i∈[m]Dσ(xi). We note that this distribution is
efficiently sampleable for any σ > 0.

6.1 Scheme EACPS

We present the EACPS[S] scheme which is similar to the scheme presented in [ACPS09]. The only
difference is that we take the distribution of secret keys as a parameter. We also use slightly
different notation for consistency with the rest of this paper.
Parameters. Let p be a prime and q = p2. We set ℓ,m ∈ N to be polynomial functions of λ such
that m ≥ 2(ℓ + 1) log q. Let χ = Ψ̄σ for σ = σ(λ) ∈ (0, 1) such that σ ≤ 1

p·
√
m·ω(log λ) . We also fix

some τ = ω(
√
log λ). Finally, let S ⊆ Zℓ

p. The secret key space is S and the message space is Zp.

Key generation. On input 1λ, sample s
$← S and set sk = s.10 Then, sample A

$← Zm×ℓ
q and

η
$← χm and set pk = (A,A · s+ η) ∈ Zm×ℓ

q × Zm
q .

Encryption. Define the distribution EA,b in Zℓ
q×Zq as follows. EA,b samples r

$← DZm,τ , e
$← Ψ̄τ ′

where τ ′ = τ
√
m(σ + 1

2q) and outputs (AT · r,bT · r+ e) ∈ Zℓ
q × Zq.

On input a public key pk = (A,b) and a message w ∈ Zp, the encryption algorithm samples

(u, v)
$← EA,b and outputs

(u, v + w · p) .
9In our proof, the number of hybrids H

(j)
1 and H

(j)
2 depend on n and on the number of queries made by A

(respectively). These parameters, therefore, factor into the advantage of the DDH adversary obtained in the reduction.
We remark that using a more complicated version of Lemma 5.3, it is possible to achieve a more efficient reduction
where the number of hybrids is O(ℓ), regardless of n and A (as in the security proof of [BHHO08]). For our purposes,
however, the simpler version suffices.

10In [ACPS09], s is sampled from the distribution χℓ.

16

Decryption. On input a secret key s and a ciphertext (u, c), the decryption algorithm outputs⌊(
c− uT · s (mod q)

)
/p

⌉
(mod p) .

The proof of correctness provided in [ACPS09] applies to any s ∈ Zℓ
p. It states that correctness

holds if σ ≤ 1
p·
√
m·ω(log λ) . In addition, they provide a few lemmas that we will use in the remainder

of this section. Let us state them here.
The first lemma shows that given a public key, it is possible (with all but negligible probability)

to generate encryptions of affine functions of the secret key s without knowing s. This is useful for
simulating the KDM game without knowing the secret key.

Lemma 6.1 ([ACPS09, Lemma 5]). For all s ∈ Zℓ
p, (t, w) ∈ Zℓ

p × Zp, with all but negligible

probability over A,η it holds that for (u, v)
$← E(A,b),

SD((u, v + (tT · s+ w) · p), ((u, v) + (−t · p, w · p))) = negl(λ) .

Note that (u, v + (tT · s + w) · p) is the distribution of encryptions of tT · s + w under public
key (A,b).

The second lemma shows that if the b component of the public key is sampled uniformly
(i.e. independently of s), then the resulting encryption scheme almost always generates uniformly
distributed ciphertexts. This is useful since the real distribution of b is computationally indis-
tinguishable from uniform, which enables us to claim that “real” public keys generate ciphertexts
which are computationally indistinguishable from uniform.

Lemma 6.2 ([ACPS09, Lemma 6]). With all but negligible probability over (A,b)
$← Zm×ℓ

q × Zm
q

it holds that SD(E(A,b), U(Zℓ
q × Zq)) = negl(λ).

6.2 Amplification of KDM(1) Security

We state and prove a theorem analogous to Theorem 1.2. Recall that a class of functions H =
{h1, . . . , hℓ} over the same domain is entropy preserving if the function αH(x) = (h1(x), · · · , hℓ(x))
is injective.

Theorem 1.3 (restated). Let p be a prime number that is super-polynomial in λ and denote q = p2.

Let m, ℓ, σ, χ be as in the parameters of EACPS. Let k ≤ ℓ and set k′ = k−ω(log λ)
log q . Let β = β(λ) ∈

(0, 1) be such that β
σ = negl(λ) and denote χ′ = Ψ̄β. Let H = {h1, . . . , hℓ : hi ∈ {0, 1}k → {0, 1}} be

an entropy preserving class of efficiently computable functions with cardinality ℓ = poly(λ). Then
under the LWEq,m,k′,χ′ assumption, there exists a public-key encryption scheme that is KDM(1)

secure w.r.t. function class

FH =
{
f(x) =

∑
i∈[ℓ]

tihi(x) + w (mod p) : (t, w) ∈ Zℓ
p × Zp

}
.

Before giving the proof, let us discuss the parameters of the assumption we rely on. The
decisional LWEq,m,k′,χ′ assumption (see Section 2.1) is equivalent to the search version under a
poly(q)-time reduction. The search version, in turn, is shown in [Reg05] to correspond to worst-case
lattice problems, under quantum reductions. In [Pei09], a classical reduction from other worst-case

17

lattice problems to search LWE is shown. Thus, we can set p and q to be quasi-polynomial in λ,
set β ≥ n/q and set σ

β to be quasi-polynomial in λ as well (recall that for correctness we must take

σ ≤ 1
p·
√
m·ω(log λ) , so we cannot set σ to be too large, but one can verify that a proper selection of

parameters does exist). Using such parameters we can relate the security of our scheme to either
the worst case hardness of obtaining a quasi-polynomial approximation factor for a lattice problem
such as GapSVP, using quasi-polynomial time quantum algorithms, or to the worst case hardness
of obtaining a classical quasi-polynomial time algorithm for a lattice problem such as GapSVPζ,γ

with quasi-polynomial ζ.
To prove Theorem 1.3, we employ Theorem 1.1. As a precondition, we will need to establish

entropy-k KDM(1)-security for EACPS. Unlike in the case of the DDH scheme EBHHO, this is not
straightforward. We do this in two steps. First, we prove KDM(1)-security based on a nonstandard
assumption (see Definition 6.1 below). Then, we use a result of Goldwasser, Kalai, Peikert and
Vaikuntanathan [GKPV09] that implies that for the parameters of Theorem 1.3, LWE reduces to
our new assumption, thus ultimately basing our scheme on standard decisional LWE. We remark
that it may be possible to achieve better parameters than those stated in Theorem 1.3 using a more
efficient reduction, if such exists.

We proceed by presenting the new assumption. Intuitively, recalling that the key generation of
EACPS is just generating an LWE instance, our new assumption is that LWE holds even if the secret
key s only has min-entropy k rather than being uniformly sampled.

Definition 6.1 (entropy LWE assumptions). Consider the distributions (A,As + x) and (A,u)

in the LWEq,m,ℓ,χ assumption, with the only difference being that s
$← S, for some set S ⊆ Zℓ

q

(instead of s
$← Zℓ

q). The LWEq,m,ℓ,χ[S] assumption is that these distributions are computationally
indistinguishable. The entropy-k LWEq,m,ℓ,χ assumption is that the LWEq,m,ℓ,χ[S] assumption holds
for all S ⊆ {0, 1}ℓ with |S| ≥ 2k.

The following lemma establishes the entropy-k KDM(1)-security of EACPS[S], based on the
LWEq,m,ℓ,χ[S] assumption. The proof is similar in spirit to [ACPS09, Theorem 2] and is deferred to
Appendix B. Recall that Faff = {ft,w(x) = tTx+w : (t, w) ∈ Zk

p ×Zp} is the set of affine functions
over Zp.

Lemma 6.3. Let S ⊆ Zℓ
p. If LWEq,m,ℓ,χ[S] holds, then EACPS[S] is KDM(1) secure w.r.t. Faff.

In a recent work, standard decisional LWE is reduced to entropy-k LWE.

Theorem 6.4 ([GKPV09, Theorem 1]). Let p be a prime of super-polynomial size, and set q = pe

for some constant e. Let m, ℓ = poly(λ). Let k ≤ ℓ and set k′ = k−ω(log λ)
log q . Let σ, β ∈ (0, 1) such

that β/σ = negl(λ) and set χ = Ψ̄σ, χ
′ = Ψ̄β. Then if the LWEq,m,k′,χ′ assumption holds then the

entropy-k LWEq,m,ℓ,χ assumption holds as well.

We remark that [GKPV09] only prove this for e = 1 (i.e. prime q) but the same proof can be
used for any constant (specifically for e = 2 which is used here).

The proof of Theorem 1.3 now follows.

Proof of Theorem 1.3. Fix a function class H as in the theorem statement. By Lemma 6.3, it
holds that under the entropy-k LWEq,m,ℓ,χ assumption, EACPS[{0, 1}ℓ] is entropy-k KDM(1)-secure
w.r.t. Faff. Thus we can apply Theorem 1.1, setting α(x) = (h1(x), · · · , hℓ(x)), and obtain a

18

KDM(1)-secure scheme w.r.t. FH, under the entropy-k LWEq,m,ℓ,χ assumption. To finish the proof,
we use Theorem 6.4 to argue that the LWEq,m,k′,χ′ assumption implies the entropy-k LWEq,m,ℓ,χ

assumption.

In the specific case of using the set of all degree-d monomials as the function class H, we obtain
a KDM(1)-secure scheme w.r.t. Fd, all degree-d polynomials modulo p. We describe this scheme,
E2, explicitly. In Section 6.3 we show that E2 is in fact KDM(n)-secure w.r.t. Fd. Recall that γk,d,
νk,d, Γk,d were defined in Definition 3.3
Encryption scheme E2. Let k, d ∈ N and consider p, q,m, σ, χ, τ , as in the definition of EACPS[Γk,d],
specifically let ℓ = νk,d. The secret key space of E2 is {0, 1}k and the message space is Zp.

Key generation. On input 1λ, select x
$← {0, 1}k and set sk = x. We denote s = γk,d(x)

and note that s is uniform in Γk,d. The public key pk is generated as in EACPS[Γk,d]. Namely,
pk = (A,A · s + η) ∈ Zm×ℓ

q × Zm
q . Note that the distributions of the public keys in E2 and

EACPS[Γk,d] are identical.
Encryption. On inputs a public key pk and message w, the encryption algorithm runs the en-
cryption algorithm of EACPS[Γk,d] with the same inputs.
Decryption. On inputs a secret key sk = x ∈ {0, 1}k and a ciphertext (u, c), the decryption
algorithm uses x to obtain s = γk,d(x). Decryption then proceeds as in EACPS[Γk,d], with inputs a
secret key s and a ciphertext (u, c).

6.3 KDM(n)-Security w.r.t. Degree-d Polynomials

We show that E2 is KDM(n)-secure w.r.t. Fd.

Theorem 1.5 (restated). Consider the scheme E2 with p being super-polynomial in λ. Let k′ =
k−ω(log λ)

log q and let β = β(λ) ∈ (0, 1) be such that β
σ = negl(λ). Define χ′ = Ψ̄β. Under the

LWEq,m·n,k′,χ′ assumption, E2 is KDM(n)-secure w.r.t. the class of degree-d polynomials modulo p.

Note that if LWEq,m·n,k′,χ′ is hard for all n = poly(λ), then E2 is KDM(n)-secure for any
polynomial number of “users”. We also note that as in Theorem 1.3, the LWE assumption we rely
on is related to worst-case lattice problems. See discussion in Section 6.2 for more details.

Proof. By Theorem 6.4, the LWEq,m·n,k′,χ′ assumption implies the entropy-k LWEq,m·n,ℓ,χ assump-
tion which, in turn, implies the LWEq,m·n,ℓ,χ[Γk,d] assumption. Therefore, it suffices to prove the

KDM(n)-security of E2 based on the LWEq,m·n,ℓ,χ[Γk,d] assumption.

Let A be an adversary for the KDM
(n)
Fd

game of E2. We present an adversary B such that

LWEq,(m·n),ℓ,χ[Γk,d]Adv[B](λ) ≥ KDM
(n)
Fd

Adv[A, E2](λ)− negl(λ) .11

The input to B is (A,b) ∈ (Z(mn)×ℓ
q × Zmn

q). We represent them as a sequence of n pairs

(Ai,bi) ∈ (Zm×ℓ
q ×Zm

q) where Ai is uniform and bi is either b
(0)
i = Ais+ηi for s

$← Γk,d, ηi
$← χm,

or b
(1)
i

$← Zm
q . Let x be such that γk,d(x) = s.

B simulates the KDM
(n)
Fd

game for A.

11Unlike Theorem 1.4, the reduction here is directly to the cryptographic assumption. This is done to achieve
better parameters.

19

Initialize. B flips a coin ξ
$← {0, 1}. It also selects yi

$← {0, 1}k for all i ∈ [n] and computes
Ti = Tk,d,q(yi) ∈ Zℓ×ℓ

q , where Tk,d,q is defined in Lemma 3.1. Denote zi = x ⊕ yi, Ci = AiTi.

Recall that for all x ∈ {0, 1}k and i ∈ [n] it holds that Ti · γk,d(x) = γk,d(x ⊕ yi) = γk,d(zi) and
T2

i ·γk,d(x) = γk,d(x). Notice that Ai · s = Ai ·T2
i ·γk,d(x) = Ci ·γk,d(zi). This, together with the

fact that Ci is uniformly distributed,12 implies that {(zi, (Ci,b
(0)
i))}i∈[n] is a legally distributed set

of n secret and public keys for E2. B sets pki = (Ci,bi) and sends pk1, . . . , pkn to A.
Queries. When A makes a query (j, φ) where φ(z1, . . . , zn) is a degree-d polynomial in all secret
keys, B uses the vectors y1, . . . ,yn to find a degree-d polynomial φ′ such that φ′(zj) = φ(z1, . . . , zn).
This is possible since

φ(z1, . . . , zn) = φ(x⊕ y1, . . . ,x⊕ yn) = φ(zj ⊕ (yj ⊕ y1), . . . , zj ⊕ (yj ⊕ yn))

which means we can replace each variable zi,i′ in φ with either zj,i′ if (yj⊕yi)i′ = 0 or with 1−zj,i′

if (yj ⊕ yi)i′ = 1. Opening the parenthesis and computing the coefficients of all the monomials
(which can be done in time poly(ℓ)) produces the required φ′, or in other words, the coefficients
vector t ∈ Zℓ

p such that φ′(zj) = tTγk,d(zj) (recall that γk,d(·) contains the free coefficient and
thus we do not need to add it explicitly).

Then, B samples (u, v)
$← E(Cj ,bj) and sets c0 = (u, v) + (−t · p, 0) and c1 = (u, v). B then

returns cξ as an answer to A.
Finish. When A terminates and returns ξ′, B returns 1 if ξ′ = ξ and 0 otherwise.

The analysis is almost identical to that of Lemma 6.3: if bi = b
(0)
i , then (Ci,bi) is a legal public

key for E2, that corresponds to secret key zi. In this case, by Lemma 6.1, B simulates the KDM
(n)
Fd

game up to a negligible statistical distance, and thus
∣∣∣Pr[B(A,b(0)) = 1]− Pr[A wins KDM(n)]

∣∣∣ =
negl(λ). However, if bi = b

(1)
i then by Lemma 6.2, c0, c1 are within negligible statistical distance

and thus the views of A where ξ = 0 and where ξ = 1 are within negligible statistical distance.
Therefore,

∣∣Pr[B(A,b(1)) = 1]− 1
2

∣∣ = negl(λ), and we conclude that∣∣∣Pr[B(A,b(0)) = 1]− Pr[B(A,b(1)) = 1]
∣∣∣ ≥ ∣∣∣∣Pr[A wins KDM(n)]− 1

2

∣∣∣∣− negl(λ)

as required.

12We remark that this is not straightforward since Zq is not a field, however it is true in our case.

20

References

[ABHS05] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of formal
encryption in the presence of key-cycles. In Sabrina De Capitani di Vimercati, Paul F.
Syverson, and Dieter Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in
Computer Science, pages 374–396. Springer, 2005.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Halevi
[Hal09], pages 595–618.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In Reingold [Rei09], pages 474–495.

[BDU08] Michael Backes, Markus Dürmuth, and Dominique Unruh. Oaep is secure under key-
dependent messages. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of Lecture
Notes in Computer Science, pages 506–523. Springer, 2008.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key en-
cryption under subgroup indistinguishability - (or: Quadratic residuosity strikes back).
In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2010.

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-dependent
message security. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes
in Computer Science, pages 423–444. Springer, 2010.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision diffie-hellman. In David Wagner, editor, CRYPTO, volume
5157 of Lecture Notes in Computer Science, pages 108–125. Springer, 2008.

[BPS07] Michael Backes, Birgit Pfitzmann, and Andre Scedrov. Key-dependent message security
under active attacks - brsim/uc-soundness of symbolic encryption with key cycles. In
CSF, pages 112–124. IEEE Computer Society, 2007.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security
in the presence of key-dependent messages. In Kaisa Nyberg and Howard M. Heys,
editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer
Science, pages 62–75. Springer, 2002.

[CCS09] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption
scheme secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in
Computer Science, pages 351–368. Springer, 2009.

[CKVW10] Ran Canetti, Yael Tauman Kalai, Mayank Varia, and Daniel Wichs. On symmetric
encryption and point obfuscation. In Daniele Micciancio, editor, TCC, volume 5978 of
Lecture Notes in Computer Science, pages 52–71. Springer, 2010.

21

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In Birgit Pfitzmann, editor,
EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages 93–118.
Springer, 2001.

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO, pages 10–18, 1984.

[GKPV09] Shafi Goldwasser, Yael Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness
of the learning with errors assumption. Manuscript, 2009.

[Gol04] Oded Goldreich. Foundations of Cryptography - Basic Applications. Cambridge Uni-
versity Press, 2004.

[Hal09] Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceed-
ings, volume 5677 of Lecture Notes in Computer Science. Springer, 2009.

[HH09] Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent en-
cryption. In Reingold [Rei09], pages 202–219.

[HK07] Shai Halevi and Hugo Krawczyk. Security under key-dependent inputs. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM Conference on
Computer and Communications Security, pages 466–475. ACM, 2007.

[HU08] Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security in
the standard model. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture
Notes in Computer Science, pages 108–126. Springer, 2008.

[LC03] Peeter Laud and Ricardo Corin. Sound computational interpretation of formal encryp-
tion with composed keys. In Jong In Lim and Dong Hoon Lee, editors, ICISC, volume
2971 of Lecture Notes in Computer Science, pages 55–66. Springer, 2003.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Halevi
[Hal09], pages 18–35.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, STOC, pages 333–342. ACM,
2009.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[Rei09] Omer Reingold, editor. Theory of Cryptography, 6th Theory of Cryptography Confer-
ence, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, volume
5444 of Lecture Notes in Computer Science. Springer, 2009.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

22

A Proof of Lemma 5.3

We use the fact that under the DDH assumption, the distributions (gz, gy) and (gz, grz), where

z,y
$← Zℓ

q, r
$← Zq, are computationally indistinguishable. This is true by definition for ℓ = 2 and

extends easily for any polynomial ℓ.
public key homomorphism. The function P (pk,A,b) is defined as follows. For pk = (gz, gv),

it samples r
$← Zq and outputs (gA

−T z·r, gv·r · g−r·zTA−1b). It remains to prove that

(pk, pk′) = ((gz, g−zT s), (gy, g−yT (As+b)))

is computationally indistinguishable from

(pk, P (pk,A,b)) = ((gz, g−zT s), (gA
−T z·r, g−zT s·r · g−r·zTA−1b)) ,

for z,y
$← Zℓ

q, r
$← Zq. To do this, we denote y′ = A−Tz · r and notice that

(pk, P (pk,A,b)) = ((gz, g−zT s), (gy
′
, g−y′T (As+b))) .

Therefore, it is sufficient to prove that (gz, gy) is computationally indistinguishable from (gz, gy
′
).

Since, as we mentioned, (gz, gy) and (gz, grz) are computationally indistinguishable, and since A
is invertible, the result follows.
Ciphertext homomorphism. The function C(c,A,b) is defined as follows. For c = (ga, gu), it

outputs (gA
−T a, gu · g−aTA−1b). We now need to prove that the distribution

(pk, pk′, c′) = ((gz, g−zT s), (gy, g−yT (As+b)), (gry, g−ryT (As+b) · w))

is computationally indistinguishable from

(pk, pk′, C(c,A,b)) = ((gz, g−zT s), (gy, g−yT (As+b)), (grA
−T z, g−rzT s · g−r·zTA−1b · w)) ,

where z,y
$← Zℓ

q, r ← Zq.

We define a random variable z′ ← Zℓ
q. Since (gz, grz) is computationally indistinguishable from

(gz, gz
′
), it follows that (pk, pk′, C(c,A,b)) is computationally indistinguishable from

((gz, g−zT s), (gy, g−yT (As+b)), (gA
−T z′ , g−z′T s · g−z′TA−1b · w)) .

Denoting y′ = A−Tz′, we get

((gz, g−zT s), (gy, g−yT (As+b)), (gy
′
, g−y′T (As+b) · w)) ,

which is computationally indistinguishable from (pk, pk′, c′) since (gy, gry) is computationally in-
distinguishable from (gy, gy

′
).

B Proof of Lemma 6.3

Let S be as in the lemma statement, and let A be an adversary for the KDM
(1)
Faff

security of EACPS[S].
We show that there exists an adversary B such that

LWEq,m,ℓ,χ[S]Adv[B](λ) ≥ KDM
(1)
Faff

Adv[A, EACPS[S]](λ)− negl(λ) ,

23

where
LWEq,m,ℓ,χ[S]Adv[B](λ) = |Pr[B(A,A · s+ η) = 1]− Pr[B(A,u) = 1]|

with A
$← Zm×ℓ

q , s
$← S, u $← Zm

q and η
$← χm.

Let A, η, s be as above and let b(0) = As + η, b(1) $← Zm
q . B gets as input (A,b) where

b ∈ {b(0),b(1)} and simulates the KDM
(1)
Faff

game for A as if (A,b) was a legal public key for
EACPS[S].
Initialize. B sends pk = (A,b) to A, and flips a coin ξ

$← {0, 1}.
Queries. Suppose A makes a query ft,w ∈ Faff, B samples (u, v)

$← E(A,b) and sets c0 = (u, v) +
(−t · p, w · p) and c1 = (u, v). Then, B returns cξ as an answer to A.
Finish. When A terminates and returns ξ′, B returns 1 if ξ′ = ξ and 0 otherwise.

To analyze B, first consider the case where b = b(0), i.e. (A,b) is a legal public key for EACPS[S].
In this case, by Lemma 6.1, B simulates the KDM

(1)
Faff

game up to a negligible statistical distance,
and thus ∣∣∣Pr[B(A,b(0)) = 1]− Pr[A wins KDM

(1)
Faff

]
∣∣∣ = negl(λ) .

Next, consider the case where b = b(1). In this case, by Lemma 6.2, c0 and c1 are within negligible
statistical distance, and thus the views of A where ξ = 0 and ξ = 1 are within negligible statistical
distance. Therefore, ∣∣∣∣Pr[B(A,b(1)) = 1]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[ξ = ξ′]− 1

2

∣∣∣∣ = negl(λ)

and we conclude that∣∣∣Pr[B(A,b(0)) = 1]− Pr[B(A,b(1)) = 1]
∣∣∣ ≥ ∣∣∣∣Pr[A wins KDM

(1)
Faff

]− 1

2

∣∣∣∣− negl(λ) .

Recalling that

LWEq,m,ℓ,χ[S]Adv[B](λ) =
∣∣∣Pr[B(A,b(0)) = 1]− Pr[B(A,b(1)) = 1]

∣∣∣
and that

KDM
(1)
Faff

Adv[A, EACPS[S]](λ) =
∣∣∣∣Pr[A wins KDM

(1)
Faff

]− 1

2

∣∣∣∣ ,

the proof is complete.

24

