
MIT Open Access Articles

Securing computation against continuous leakage

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Goldwasser, Shafi, and Guy N. Rothblum. “Securing Computation Against Continuous
Leakage.” Advances in Cryptology – CRYPTO 2010. Ed. Tal Rabin. LNCS Vol. 6223. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010. 59–79.

As Published: http://dx.doi.org/10.1007/978-3-642-14623-7_4

Publisher: Springer Berlin / Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/73956

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73956
http://creativecommons.org/licenses/by-nc-sa/3.0/

Securing Computation Against Continuous
Leakage

Shafi Goldwasser1,? and Guy N. Rothblum2,??

1 Weizmann Institute of Science and MIT
2 Princeton University

Abstract. We present a general method to compile any cryptographic
algorithm into one which resists side channel attacks of the only compu-
tation leaks information variety for an unbounded number of executions.
Our method uses as a building block a semantically secure subsidiary bit
encryption scheme with the following additional operations: key refresh-
ing, oblivious generation of cipher texts, leakage resilience re-generation,
and blinded homomorphic evaluation of one single complete gate (e.g.
NAND). Furthermore, the security properties of the subsidiary encryp-
tion scheme should withstand bounded leakage incurred while performing
each of the above operations.
We show how to implement such a subsidiary encryption scheme under
the DDH intractability assumption and the existence of a simple secure
hardware component. The hardware component is independent of the
encryption scheme secret key. The subsidiary encryption scheme resists
leakage attacks where the leakage is computable in polynomial time and
of length bounded by a constant fraction of the security parameter.

1 Introduction

Modern cryptographic algorithms are designed under the assumption that keys
are perfectly secret, and computations done within one’s computer are opaque
to the outside. Still, in practice, keys do get compromised at times, and compu-
tations are not fully opaque for a variety or reasons. A particularly disturbing
loss of secrecy is as a result of side channel attacks.

These attacks exploit the fact that every cryptographic algorithm is ulti-
mately implemented on a physical device and such implementations enable “ob-
servations” that can be made and measured on computations which use secret
data and secret keys, or on the secret keys and data directly. Such observations
can and have lead to complete breaks of systems which were proven secure, with-
out violating any of the underlying mathematical principles. (see [KJJ99,RCL]
for just two examples). Recently, a growing body of research on side-channel-
resilient cryptography aims to build general mathematical models of realistic side
? This research is supported in part by ISF710267, BSF710613, NSF6914349 and an

internal Weizmann KAMAR grant.
?? Research supported by NSF Grants CCF-0635297, CCF-0832797 and by a Comput-

ing Innovation Fellowship.

channel attacks, and to develop methods grounded in modern cryptography to
provably resist these attacks.

Modeling side channel attacks on a cryptographic algorithm so as to simul-
taneously capture real world attacks and achieve the right level of theoretical
abstraction, is an intriguing and generally controversial question. Indeed, the
number of answers seems to be nearly as high as the number of papers pub-
lished on the topic. Perhaps the only universally agreed on part of the modeling
is that each physical measurement should be modeled as the result of computing
an adversarially chosen but computationally bounded function ` (the so called
“leakage” function) on the “internal state of the computation”. We find the most
important modeling questions to be:
– How should we characterize which leakage functions ` can be measured?
– How many measurements occur and how often?
– Are all portions of the computation’s internal state subject to measurement

at the same time? Namely, what is the input to the leakage function `?
– Can we use secure hardware components, and if so which ones are reasonable

to assume as building blocks to achieve side channel security?

“Only computation leaks information” and the question of granularity. Micali
and Reyzin, in their pioneering work [MR04], set forth a model of physical se-
curity, which takes a particular approach at these modeling questions. One of
the axioms in their model was that any computation but only computation leaks
information (OC attack model). In other words, every time a computation step
of a cryptographic algorithm “touches” data which may contain portions of (but
not necessarily the entirety of): cryptographic secret keys, internally generated
randomness, and results of previous computations done on cryptographic keys,
a measurement on this data can be made by an adversary. However, data which
is not “touched” by a computation step of an algorithm, can not be measured
at this time (and thus does not leak). Stated in terms of leakage functions, this
means that a leakage function can be computed in each computation step, but
each such function is restricted to operate only on the data utilized in that com-
putation step. Within this model, various constructions of cryptographic prim-
itives [GKR08,DP08,Pie09,FKPR09] such as stream ciphers and digital signa-
tures, have been proposed and proved secure for certain leakage function classes
and under various computational intractability assumptions.

This is the model of attacks which we focus on in this paper. Our main result
addresses how to run any cryptographic algorithm (i.e an algorithm which takes
as input secret keys and uses secret randomness) securely in this model for an
unbounded number of executions.

Implicit in using this model, is the view of program execution (or com-
putation) as preceding in discrete ‘sub-computation steps’ S1, S2... Each sub-
computation Si computes on some data di (which is a combination of secret and
public data and randomness). At each Si, the side-channel attack adversary can
request to receive the evaluation of a new leakage function `i on di. The choice
of `i to be evaluated at step Si may depend on the results of values attained by
previous `1, ..., `i−1, but `i can only be evaluated on the di used in step Si.

An important question in evaluating results in the OC attack model emerges:
what constitutes a sub-computation step Si, or more importantly what is the
input data di to Si available to `i in this sub-computation? Let us look for exam-
ple at the beautiful work of Dziembowski and Pietrzak [DP08] which construct
secure stream ciphers in the OC model. Initialized with a secret key, their stream
cipher can produce an unbounded number of output blocks. In [DP08], the i-th
sub-computation is naturally identified with the computation of the i-th block of
the stream cipher. The input di to this sub-computation includes a pre-defined
function of the original input secret key. The class of tolerated leakage functions
`i (each computed on di) are (roughly) restricted to a length shrinking func-
tion whose output size is logarithmic in the size of the security parameter of
the stream cipher3. Another example is in the work of Faust et al. [FKPR09]
which construct secure randomized digital signature scheme which can generate
an unbounded number of signatures in the OC attack model. The i-th sub-
computation is identified with the computation of the ith signature, and di is
(essentially) fresh randomness generated for the i-th sub-computation. Coupled
with one-time signatures of [KV09], the class of leakage functions `i tolerated
are length shrinking functions whose output size is a constant fraction of the
size of the security parameter of the signature scheme, under the intractability
of DDH and various lattice problems.

An interesting practical as well as theoretical question is what granularity
(i.e. size of sub-computations) is reasonable to consider for general cryptographic
computation. Certainly, the larger the granularity (and the sub-computations),
the better the security guarantee. For security, ideally we’d prefer to allow the
leakage to work on the entire memory space of the computation. However, the
assumption that physical leakage is “local” in time and space, and applies to
small sub-computations as they happen, still encapsulates a rich family of at-
tacks. Carried to the extreme, one might even model leakage as occurring on
every single gate of a physical computation with some small probability, and
even this model may be interesting.

In this work, we advocate the approach of allowing the programmer of a
cryptographic computation, the freedom to divide the computation into arbi-
trary sub-computations, and then analyzing security by assuming that leakage
is applied to each sub-computation’s input independently (i.e. only computa-
tion leaks information). In particular, this will mean that the total amount of
leakage from a computation can grow with the complexity of the computation
(as well as the number of executions), as it well should, since indeed in practice
the possibility of leakage increases with the complexity (length of time) of the
computation. General approach aside, our positive results are much stronger: we
work with granularity that is a polynomial in a security parameter.

3 Alternatively stated, their construction of is based on an exponential hardness as-
sumption (where the assumption degrades as a function of the amount of leakage
tolerated).

1.1 The Contributions of this Work

In this work we focus on general cryptographic computations in the OC attack
mode, and address the challenge of how to run any cryptographic algorithm
securely under this attack model, for any polynomial number of executions.

Our contributions are twofold. First, we show a reduction. Starting with
a subsidiary semantically secure bit encryption scheme E, which obeys certain
additional homomorphic and leakage-resilience properties (see below and Section
3), we build a compiler that takes any cryptographic algorithm in the form of a
Boolean circuit, and probabilistically transforms it into a functionally equivalent
probabilistic stateful algorithm. The produced algorithm can be run by a user
securely for an unbounded number of executions in the presence of continuous
OC side-channel attacks. Second, we show how to implement such a subsidiary
encryption scheme E under the DDH intractability assumption and using a
secure hardware component. The hardware component (see Section 1.1) samples
from fixed polynomial time computable distribution (it does not compute on any
secrets of the computation). The security assumed about the component is that
there is no leakage on the randomness it uses or on its inner workings.
The execution and adversary model: We start with a cryptographic algorithm
C and its secret key y (C is a member of a family of poly(n)-size Boolean cir-
cuits {Cn} and y ∈ {0, 1}n). In an initial off-line stage when no side-channel
attacks are possible, C(y, ·) is converted via a probabilistic transformation to an
algorithm EvalC with state – which is updated each time EvalC is executed,
and is functionally equivalent to C, i.e EvalC(·) = C(y, ·). After this initial
off-line stage, EvalC is computed on an unbounded number of public inputs
x1, x2,... which can be chosen by the adversary in the following manner. The
computation of EvalC(xi) is divided into sub-computations Ci,1, ..., Ci,n each of
which are evaluated on data di,1, ..., di,n respectively. At this stage, for each sub-
computation Ci,j , the OC side-channel adversary is allowed to request the result
of evaluating leakage function `i,j on di,j . The leakage functions we tolerate can
be chosen adaptively based on the result of previously evaluated leakage func-
tions, and belong to the class of polynomial time computable length shrinking
functions. We emphasize that after the initial off-line stages all computations of
EvalC (including its state update) are subject to OC side-channel attacks.
The security guarantee: is that even under the OC side-channels and adversari-
ally chosen inputs, the adversary learns no more than the outputs of C(y, ·) on
the chosen inputs (formally, there is a simulation guarantee). In particular, it
is important to distinguish between leakage incurred on the cryptographic algo-
rithm C(y, ·) being protected, and the leakage on the subsidiary cryptographic
scheme. There is constantly leakage on the subsidiary scheme’s secret keys, and
the specific scheme we use can handle this. On the other hand, for the algorithm
C(y, ·) there is no leakage at all on y. Only its black-box behavior it exposed.

For example, if we think of C as the decryption algorithm for any public-
key scheme, and y as its secret decryption key (which is completely unrelated
to the secret keys of the subsidiary cryptosystem we use as a tool!), then an
adversary who wants to decrypt a challenge ciphertext x1, and has OC leakage

access to the evaluation of EvalC(y, x2) for decrypting another ciphertext x2,
still cannot break the security of x1 and in particular cannot decrypt it. This
is a qualitatively different security guarantee from the setting of memory-bound
leakage [AGV09] or even in the more recent work of Brakerski et al. [BKKV10]
on public key encryption under continual leakage. In these works, no security
is guaranteed for a challenge ciphertext that is known to the adversary when it
chooses the leakage function.
The granularity of our sub-computations: We let a subsidiary security parameter
λ govern the granularity of the computation steps as follows. The computation
of EvalC is divided into sub-computations each of which consist of performing
a basic cryptographic operations (e.g. encrypt, decrypt, key generate, etc.) of
a subsidiary encryption scheme E with security parameter λ. Essentially, E is
used as a tool to emulate a secure executions of C, in such a way that a constant
number of cryptographic operations of E emulate the evaluation of each gate
of C. Thus the complexity of EvalC is O(poly(λ) · |C|). In accordance with
the OC attack model, leakage functions are assumed to apply to each input of
the cryptographic operations of E separately. The main idea behind obtaining
the leakage resilience for any algorithm C, is that whereas how C works is out
of our control (as it is a given), we can choose an E for which we are able
to continually refresh its keys. As each key will be utilized as input for only a
constant number of cryptographic operations, only a bounded number of leakage
functions (measurements) can be made on each key. Indeed, for an appropriately
chosen E, we can tolerate any polynomial time computable leakage functions,
whose output length is up to a constant fraction of the security parameter λ.
Note that the security parameter λ is chosen for the purposes of side-channel
security, and may be chosen to be different than the security parameter n of the
cryptographic algorithm C, by the implementer.
Leakage grows with the complexity of EvalC : The total amount of leakage that
our method can tolerate per execution of EvalC is O(λ · |C|) whereas and the
complexity of EvalC is O(poly(λ) · |C|)). Thus, our method tolerates more mea-
surements and leakage as the computation time increases. This is in contrast with
previous general compilers (see Section 1.2), where the size of the transformed
circuit grows as a function of the total amount of leakage tolerated.

Main tool: a subsidiary cryptosystem The subsidiary cryptosystem utilized
by our compiler is a semantically secure bit encryption scheme with the following
special properties (even in the presence of OC side channel attacks). See Section
3 for full definitions of these properties.
• Semantic Security under Multi-source Leakage. We require semantic
security to hold even against an adversary who can (measure) receive leakage
both from the secret key and the cipher-texts which we attempt to protect, and
are encrypted under this secret key. Note that we depart here from the [AGV09]
model in considering leakage also on the challenge ciphertexts, and not only on
the keys. A priori, this might seem impossible. The reason it is facilitated is
that due to the OC nature of our attacks an adversary can never apply a leakage

function to the ciphertext and the secret-key at the same time (otherwise it could
decrypt); furthermore the leakage length bound ensures that the adversary will
not learn enough of the ciphertext to be useful for him at a later time when it
can apply an adaptively chosen leakage function to the secret key (otherwise,
again, it could decrypt the ciphertext).
• Key Refreshing. It should be possible to “refresh” secret keys in the scheme,
changing them into new keys, via a randomly generated correlation value. In
addition, we require that using the correlation value alone and without knowledge
of the secret key, one can also refresh old ciphertexts under the old secret key to
new ciphertext under the new secret key. Intuitively, this property is useful for
taking secret keys on which there has already been a large amount of leakage,
and transforming them into new keys on which there is less leakage (i.e. with
more entropy). The requirement that refreshing on ciphertexts must not use
the secret key, is due to the fact that otherwise a leakage function could be
evaluated on the ciphertext and key (which are computed on at the same time)
simultaneously and used to decrypt the ciphertext! The fact that the correlation
value alone can be used to refresh ciphertexts avoids attacks of this type.
• Oblivious Ciphertext Generation. It should be possible to generate fresh
encryptions of random bits. Even an OC adversary should not be able to tell
anything about the plaintexts in these new obliviously generated ciphertexts.
For example, the Goldwasser-Micali [GM84] cryptosystem naturally has this
property (by generating a random Jacobi symbol 1 element).
• Leakage Resilience Regeneration. It should be possible to “re-generate”
leakage resilience on ciphertexts and keys: i.e., to take a ciphertext and secret
key and repeatedly generate a new “random-looking” ciphertext and key pair,
encrypting the same value. The security requirement is that even after many
such regenerations (with accumulated ciphertext and key OC leakages), as long
as the amount of leakage between two successive regenerations is bounded, an
adversary cannot tell whether the original ciphertext was an encryption of 0 or
of 1. Intuitively, this property is useful for taking old ciphertexts and keys, on
which there has been previous leakage, and re-generating them into new ones
that are more secure (i.e. injecting new entropy).
• Blind Homomorphic NAND. It should be possible to take three cipher-
texts ci, cj , ck, encryptions of bi, bj , bk (respectively), and output a data string
hc (a “homomorphic ciphertext”) which can later be decrypted (using the secret
key) to yield b = (bi NAND bj) ⊕ bk.4 Moreover, we require a “blinding” prop-
erty: that the encrypted outcome hc contains no more information beyond the
plaintext outcome b, even w.r.t an adversary who can launch OC attacks on the
homomorphic evaluation, and who is later given OC access to the decryption
of hc (which also computes on the secret key). In particular, such an adversary
should not be able to learn anything about the values of bi, bj , bk beyond b. Note
that we do not require that hc itself be a ciphertext or support any further
homomorphic operations: i.e. we require only “one-shot” homomorphism.

4 Actually, we require homomorphic evaluation of a slightly more complex functional-
ity that also takes some plain-text inputs, see Section 3.

Instantiating the subsidiary cryptosystem A slight modification of the en-
cryption scheme of Naor and Segev [NS09] and Boneh et al[BHHO08], amplified
with a simple secure hardware device, satisfies all of these properties. Here we
highlight some of the novel challenges and ideas. See Section 3 for details.

We do not specify the scheme [NS09] in its full detail here, but only recall that
operates over a group G of order q where the Decisional Diffie Hellman Problem
(DDH) is hard. The secret key is a vector s ∈ GF[q]m for some small m > 0
(for our parameters m = 10 suffices) and the public key is gs, g for a generator
g. To encrypt b ∈ GF[q], the scheme masks gb by multiplying it by a group
element whose distribution is indistinguishable (under DDH) from g〈s,r〉, where
r ∈ GF[q]m is uniformly random. We note further that the scheme supports
homomorphic addition (over GF[q]) and scalar multiplication.

Semantic security under multi-source leakage. We need to prove that semantic
security holds when an adversary can launch a “multi-source” leakage attack
separately on the secret key and the cipher-texts which we attempt to protect
(encrypted under this secret key), a (constant fraction) of leakage is computed
on each. The proof of security uses ideas from theory of two source extractors.
In particular a theorem of Chor and Goldreich [CG88], showing how to extract
statistically close to uniform bits from two independent min-entropy sources. We
argue (assuming DDH) that the adversary’s view is indistinguishable from an
attack in which the plaintext b is masked by g〈s,r〉, where r is a uniformly random
vector in GF[q]m. Given the adversary’s separate leakage functions from the key
s and the ciphertext r, s and r will have sufficient entropy (because the amount
of leakage is bounded) and are independent random sources (because the leakage
operates separately on key and ciphertext). Using [CG88] we conclude that 〈s, r〉,
and also g〈s,r〉, are statistically close to uniform. This is all in an attack where
r is uniformly random, but this attack is (under DDH) indistinguishable from
the real one, and so semantic security holds. No secure hardware is used here.

Key refresh. Key refresh is enabled by the homomorphic properties of the Naor-
Segev cryptosystem. In particular, choosing a correlation value π ∈ GFqm, we
can add this value to the secret key and update the public key and any ciphertext
accordingly in a homomorphic manner, without accessing the secret key. No
secure hardware is used here.

Secure hardware. The secure hardware device CipherGen (see Section 3.1)
that is used in this work is simple. The device receives as input a public key
and mode of operation mode ∈ {0, rand}. In mode mode = 0 it computes and
outputs a fresh encryption of 0, and in mode mode = rand it chooses a uniformly
random bit b ∈ {0, 1} and computes and outputs a fresh encryption of b. I.e. it
only runs public key operations. We assume that when this device is invoked,
there is leakage on its input and output, but not on its internal workings or
randomness. It is interesting to compare this device to the device used by Faust et
al. [FRR+09]. Their device samples a random string whose XOR is 0. This can be
viewed as a string “encrypting” the bit 0. The adversary, who is bounded to AC0

bounded length leakage functions, cannot determine the XOR, or “decryption”,
of the string that was generated. We also note that in several works addressing
continual leakage for particular functionalities, it is assumed that during parts
of the computation either there is no leakage from the computation’s internal
randomness [DHLAW10], or that leakage from the internal randomness is very
limited [BKKV10].

Oblivious Generation and Leakage-Resilience Regeneration. These two proper-
ties are satisfied almost immediately by the CipherGen secure hardware device.
Activating the device in mode rand generates opaquely a ciphertext encrypting a
random plaintext bit — giving immediately an oblivious generation procedure.
For ciphertext and key regeneration we first use key refreshing to regenerate
the secret key (injecting new entropy). We then use mode 0 of CipherGen to
generate a fresh encryption of 0, and add it to the ciphertext. This effectively
regenerates the randomness of the ciphertext, injecting new entropy.

Homomorphic blinded masked NAND. Perhaps the most challenging obstacle
in constructing the subsidiary cryptoscheme is coming up with a procedure for
computing blinded homomorphic masked NAND, i.e. given ciphertext c1, c2, c3

encrypting plaintexts b1, b2, b3 ∈ {0, 1}, computing a homomorphic blinded ci-
phertext containing (b1 NAND b2)⊕ b3.

Suppose for a moment that b3 = 0 (i.e. we are computing the NAND of
b1 and b2). We could homomorphically add the three ciphertexts, obtaining
an encryption d of a plaintext γ, where γ is either 0,1 or 2 (it is important
the homomorphic addition here is over GF[q] only). Here γ = 2 means that
b1 = b2 = 1 and the NAND is 0, and γ ∈ {0, 1} outcomes imply that the NAND
is 1. We note however that the exact value of γ ∈ {0, 1} leaks information about
the input b1 and b2, which we will need to “blind”.

There are two main ideas in blinding. The first is to use mode rand of
CipherGen to generate an encryption u of a random bit in µ ∈ {0, 1}. We
can then homomorphically compute an encryption of γ − µ − 2, which will al-
ways be non-zero if the NAND is 1, and will be zero w.p. 1/2 (over the ciphertext
generated by CipherGen) if the NAND is 0. Similarly, for the case where b3 = 1
we can compute an encryption of γ − µ which will have the same distribution
depending on the value of the masked NAND. In conclusion, if we compute ho-
momorphically an encryption of b1+b2−µ−2·(1−b3) we obtain an encryption of
a non-zero value when the NAND is 1, or a zero value w.p. 1/2 when the NAND
is 0. Repeating this several times, for different u, all the homomorphic decryptor
needs to do is check whether any of these homomorphic computations resulted
in a zero plaintext (in which case the output is 0) or not (there is a negligible
error probability of incorrect decryption). We emphasize, that for each cipher-
text generated in the above procedure, being an encryption of a zero or non-zero
plaintext exposes no information about the inputs (beyond the output). This is
because even an OC leakage adversary cannot tell whether CipherGen gener-
ated an encryption of 0 or 1. In a different context and cryptosystem, similar
ideas for blinding were used by Sander, Young and Yung [SYY99].

Still, another idea is necessary, as the specific non-zero plaintext value (e.g. 1
rather than 2) might leak information about the inputs. An initial observation is
that homomorphic multiplication by a random scalar e leaves zero ciphertexts as
encryptions of zero, but completely randomizes the plaintext values of non-zero
ciphertexts. This can blind the ciphertexts while maintaining (for correctness)
their plaintext being zero or non-zero (respectively). Unfortunately, in the pres-
ence of OC leakage there will be leakage on the value e, and this blinding will
not be secure. We handle the OC leakage using a more complicated blinding pro-
cedure, which essentially homomorphically multiplies the plaintext by an inner
product of two vectors e and f of random scalars. We use ciphertext regenera-
tion (mode 0 of CipherGen) in-between homomorphic sub-steps to ensure that
the leakage from each scalar is independent (or rather indistinguishable under
DDH from an experiment with independent leakage). In the end, even given the
leakage, the scalar 〈e,f〉 by which we multiply the ciphertext is indistinguishable
from uniform, even to an OC leakage adversary, and blinding is guaranteed.

Main result: the compiler The main contribution of this paper is a compiler
which takes any cryptographic algorithm in the form of a Boolean circuit, and
transforms it into a functionally equivalent probabilistic stateful algorithm. In
this overview we assume an intuitive understanding of the subsidiary encryption
scheme E and its properties and letting (pkj , skj) denote public and secret key
pairs of E. See Section 4 for details. We emphasize that in the description that
ensues there is a distinction between a user who is executing the evaluation
algorithm and an adversary whose view of this execution (which proceeds by a
sequence of sub-computations) is only through the results of leakage functions
applied on secret data as sub-computations are actually performed on this data.

The input to the compiler is a secret input y ∈ {0, 1}n, and a public circuit C
of size poly(n) that is known to all (compiler and adversary alike). The circuit
takes as inputs y and also public input x ∈ {0, 1}n (which may have been chosen
by the adversary), and produces a single bit output.5 Without loss of generality,
the circuit C is composed of NAND gates with fan-in and fan-out 2, which are
organized in layers. The inputs of layer i arrive from the outputs of layer i− 1.
The output of the compiler on C and y is a probabilistic evaluation algorithm
EvalC with state (which will be updated during the run of EvalC) such that for
all x, C(y, x) = EvalC(x). The compiler is run once at the beginning of time and
is not subject to side-channels. See Section 2.2 for a formal security definition.

The idea of the evaluation algorithm is that in its state it keeps the value vj

of each wire j of the original input circuit C(y, x) in the following secret-shared
form: vj = aj

⊕
bj . The invariant for every wire is that the aj shares are public

and known to all whereas bj are secret and kept encrypted by the subsidiary
encryption algorithm E under a secret key skj (i.e. there is a key-pair for every
wire). We emphasize that the OC side-channel adversary does not actually ever
see even the cipher-text of plain text bj – let alone bj itself – in their entirely,
but rather only the result of a leakage function on these cipher-texts at the time
when they are involved in a sub-computation.
5 We focus on single bit outputs, the case of multi-bit outputs also follows naturally.

At the outset of computing EvalC , for all input wires corresponding to the
y-input, aj = 0; for all input wires corresponding to the x input, bj = 0; for all
the other wires bj are chosen uniformly at random independently of the input;
This generation of random ciphertexts containing the bj value is done using
the oblivious generation procedure of E. Finally, for the circuit’s output wire,
boutput = 0. As the user selects an input x to run EvalC on, he sets aj on the
input wires of the x-input by the value of the bits of x, and is now ready to start
updating the shares aj on the internal wires and compute aoutput = C(y, x).

The crux of the idea is to show how the user can compute the public shares
corresponding to the internal wires of C(y, x). Here is where we use the fact
that encryption scheme E can support a blinded homomorphic evaluation of
a single NAND gate. Say, the user already computed the values of aj of all
wires j on layer s (starting from the input wires this will hold inductively).
Then, for each pair of wires i, j into a gate on layer s + 1 with output wire k,
the user will compute the public share of the output wire ak via a sequence
of sub-computations as follows: first, transform the cipher texts of bi, bj (using
the key-refresh property) to encryptions of the same plaintexts under the secret
key pkk; second, homomorphically using ai, aj and the cipher texts of bi, bj , bk

all under pkk compute a (blinded) ciphertext hck of ak under pkk (note that
ak = ((ai⊕bi) NAND (aj⊕bj))⊕bk) 6 and finally, decrypt the blinded hck using
secret key skk to obtain ak. Note that this is one place the “only computation
leaks information” assumption is of essence. For example, if the leakage function
would have taken the inputs to the first sub-computation as well as to the third
sub-computation, it could have used skk to decrypt bi and discover in full the
value of vi, which of course would destroy the security of the entire construction
(since it is non black-box information about the computation being performed).
It is also important to note here that we will set the leakage parameter λ to be
such that the adversary cannot even see enough of the ciphertexts corresponding
to secret shares bj under any key (and in particular under skk). Otherwise, the
adversary could “remember” these ciphertexts and then adaptively choose a
future leakage function applied on skk to decrypt it. Proceeding inductively,
finally the user will compute aoutput and since boutput was set initially to 0, the
user has obtained voutput = aoutput .

Finally, to prepare for another execution of Eval(x′) for a new x′, all ci-
phertexts and keys containing secret shares of the bits of the secret input y are
regenerated. This effectively “resets” the amount of leakage that has happened
on these ciphertexts and keys. In the next execution we again (from scratch)
choose a new oblivious encryption of a random bj for each internal wire j.

Summary: One of the main advantages of the above construction was that it
let us go from a procedure for blinded OC-secure homomorphic evaluation of
a single (NAND) gate, and obtain an evaluation mechanism for an arbitrary
functionality (using several other properties of the subsidiary cryptosystem).
We note that if the subsidiary cryptosystem supports more complex homomor-

6 Note that, in terms of leakage, this sub-computation may itself be separated into
smaller sub-computations

phic computations, we may hope to use the same framework to obtain a more
efficient construction, operating at the level of larger computations rather than
gate-by-gate (perhaps with improved granularity). We also note that the above
construction should be viewed mainly as a proof-of-concept, we did not attempt
here to make it practical enough for implementation.

1.2 Related Work

Our work is inspired by many beautiful classical techniques in the field of cryp-
tography. For one, the central idea of our compiler may be thought of as a
cross between the garbled circuit method originated by Yao [Yao82] and the
pioneering idea of Goldreich, Micali, and Wigderson [GMW87] of computing on
data by keeping it in a secret shared form and computing on the shares. Using
limited homomorphic properties of encryption schemes in order to perform re-
duced round oblivious circuit evaluation was proposed in the work of Sander,
Young, and Yung [SYY99]. Secure hardware was proposed in many prior works
in the context of achieving provable security, starting with work of Goldreich
and Ostrovsky [GO96] on software protection which assumes a universal secure
leak-free processor. Most importantly, our work should be compared to results
in other side channel attack models. We note that in the random oracle model
other works have appeared (we do not cover all these results here).

The pioneering work of Ishai, Sahai, and Wagner [ISW03] first considered
the questions of converting general cryptographic algorithms (or circuits) to
equivalent leakage resistant circuits. They treat leakage attacks which leak the
values of an a-priori fixed number of wires of the circuit, and produce leakage
resistent circuits which grow in size as a function of the total bound on number
of wires which are allowed to leak. The work applies to an unbounded number
of executions of the circuit, assuming leakage attacks only apply per execution.
Stated differently, the assumption is that the history of all past executions is
erased. This is closely inspired by the model of proactive security. In quantitative
terms, they place a global bound L on the number of wires whose values leak,
compile any circuit C into a new circuit of size roughly C · L2 which is resilient
to leakage of up to L wire values (in our work the leakage bound grows with the
complexity of the transformed circuit).

Faust, Tromer, Rabin, Reyzin, and Vaikuntanathan [FRR+09] also address
converting general cryptographic algorithms (or circuits) to equivalent leakage
resistant circuits extending [ISW03] significantly. They allow a (measurement)
a side channel attack on an execution to receive the result of a leakage function
which takes as input the entire existing (non-erased) state of the computation
(rather than values of single wires), but in return restrict the leakage functions
`i that can be handled to AC0. Quantitatively, as in [ISW03], they place a fixed
bound L on the amount of leakage, and blow up the computation size by a factor
of roughly L2. [FRR+09] require a secure hardware component as well.

The bounded memory leakage model [AGV09] has received much attention.
Here one allows ` to be defined on the entire contents of memory including all
stored cryptographic secret keys, all previous computation done on the secret key

results, and internally generated randomness. Obviously, in this strong setting,
if no erasures are incorporated in the system, one must bound the total amount
of information that measurements can yield on the original cryptographic keys,
or else they will eventually be fully leaked by the appropriate adversarial choice
of `. This is the model used in the works of [AGV09,NS09]. In contrast, in
our work, we are interested in the continuous leakage question. Namely, the
cryptographic algorithm initialized with secret cryptographic keys is invoked
again and again for a (not specified in advance) polynomial (in the size of the
initial cryptographic keys) number of times; each time the side-channel adversary
continues to get some information on the secrets of the computation. Thus, the
total amount of information that the adversary gets over the life time of the
system will unbounded.

Coming back to the OC attack model, the ideas of Goldwasser, Kalai, and
Rothblum [GKR08] in the work on one-time programs provide another avenue
for transforming general cryptographic circuits to equivalent leakage resistant
algorithms. The resulting leakage resistant algorithm will be secure in the OC
attack model if it is executed once. To obtain an unbounded number of execu-
tions of the original circuit, one can resort to an off-line/on-line per-execution
model where every execution is preceded by an off line stage in which the circuit
conversion into a leakage resistent algorithm is performed a-new (obviously us-
ing new randomness). This is done prior to (and independently from) the choice
of input for the coming execution. Surprisingly, the produced circuits are secure
even if all data which is touched by the computation leaks. Namely, in presence
of any polynomial time leakage functions including the identity function itself!

A recent independent work published in this proceedings is by Juma and
Vahlis [JV10]. They also work in the OC attack model and address the question
of how to run general computations in this model. They use as a tool a fully
homomorphic encryption scheme and a leakage free hardware component in-
dependent from the functionality being computed. In terms of granularity, they
divide each activation into two parts: one of which is large (a homomorphic com-
putation of the entire circuit), and the second of which is small (a decryption).
Quantitatively, To tolerate a leakage bound of L bits in total, they transform
the computation into one of size C · exp(L). Under stronger assumptions (e.g.
sub-exponential security of the fully homomorphic encryption) the transformed
computation can be of size C · poly(L).

2 Security Definitions

2.1 Leakage Model

Leakage Attack. A leakage attack is launched on an algorithm or on a data string.
In the case of a data string x, an adversary can request to see any efficiently
computable function `(x) whose output length is bounded by λ bits. In the case of
an algorithm, we divide the algorithm into disjoint sub-computations. We assume
that only computation leaks information, and so the adversary can request to
see a bounded-length function of each sub-computation’s input (separately).

Definition 1 (Leakage Attack A[λ : s](x)). Let s be a source: either a data
string or a computation. We model a λ-bit leakage attack of adversary A with
input x on the source s as follows.

If s is a computation (viewed as a boolean circuit with a fixed input), it is
divided into m disjoint and ordered sub-computations sub1, . . . , subm, where the
input to sub-computation subi should depend only on the output of earlier sub-
computations. A λ-bit Leakage Attack on s is one in which A can adaptively
choose PPTM functions `1, . . . `m, where `i takes as input the input to sub-
computation i, and has output length at most λ bits. For each `i (in order), the
adversary receives the output of `i on sub-computation subi’s input, and then
chooses `i+1. The view of the adversary in the attack consists of the outputs to
all the leakage functions.

In the case that s is a data string, we treat it as a single subcomputation. A
λ-bit leakage attack of A on s is one in which A adaptively chooses λ single-bit
functions of the string in its entirety.

Multi-Source Leakage Attacks. A multi-source leakage attack is one in which
the adversary gets to launch concurrent leakage attacks on several sources. Each
source is an algorithm or a data string. The leakages from each of the sources
can be interleaved arbitrarily, but each leakage is computed as a function of a
single source only.

Definition 2 (Multi-Source Leakage Attack A[λ : s1, . . . , sk](x)). Let s1, . . . , sk

be k leakage sources (algorithms or data strings, as in Definition 1). We model a
λ-bit multi-source leakage attack on [s1, . . . , sk] as follows. The adversary A with
input x runs concurrently k separate λ-bit leakage attacks, one attack on each
source. The attacks can be interleaved arbitrarily and adaptively. The attacks on
each of the sources separately form a λ-bit leakage attack as in Definition 1. It
is important that each leakage function is computed as a function of a single
sub-computation in a single source (i.e. the leakages are never a function of the
internal state of multiple sources). It is also important that the attacks launched
by the adversary are concurrent and adaptive, and their interleaving is controlled
by the adversary.

Simulated Multi-Source Leakage Attacks. For security definitions, we will oc-
casionally want to replace the adversary’s access to one or more source in a
multi-source leakage attack with a view generated by a simulator. To facilitate
composition, we view some sources as fixed: these are outside of the simulator’s
control. Both the adversary and the simulator get leakage access to these fixed
sources (these are analogous to the environment in the UC framework [Can01]).
Access to all of the other sources is simulated by the simulator.

Definition 3 (Simulated Multi-Source Leakage Attack). Let s1, . . . , sk

each be either a special symbol ⊥ or a leakage source (algorithm or data string,
as in Definition 1). Denote by s′1, . . . , s

′
` the subset of s1, . . . , sk that are not ⊥. A

simulated λ-bit multi-source leakage attack (A[λ : s1, . . . , sk](x),S[λ′ : s′1, . . . , s
′
`](x

′))
on [s1, . . . , sk] is defined as follows.

A with input x runs concurrently k separate λ-bit leakage attacks, one attack
on each of its k sources, as in Definition 2. The difference here is that the
sources which are ⊥ are all under the control of the simulator S. The simulator
S, which itself has an input x′ and can launch a λ′-bit multi-source leakage attack
on [s′1, . . . , s

′
`], produces the answers to all of the adversary’s queries to all of the

sources (including the ⊥ sources).
As in Definition 2, the adversary’s (and the simulator’s) access to its sources

can be interleaved arbitrarily. The only difference is that the adversary’s leakage
queries to some of the sources are answered by the simulator. The simulator’s
answers may also be adaptive and depend on its prior view, which includes all
of the adversary’s past queries to simulated sources.

As discussed above, the motivation for including sources that are outside the
simulator’s control is to facilitate composition between different components that
are each (on their own) resilient to multi-source leakage attacks. Throughout this
work, it will be the case that λ′ ≥ λ, and so it is “easy” for the simulator to
answer A’s queries to the “non-⊥ sources” (by making the same query itself).
The challenge is answering A’s queries to the “⊥-sources”.

2.2 Continuous Side-Channel Secure Compiler

We divide a side-channel-secure compiler into two parts: the first part, the ini-
tialization occurs only once at the beginning of time. This procedure depends
only on the circuit C being compiled and the private input y. We assume that
during this phase there are no side-channels. The second part is the evaluation.
This occurs whenever the user wants to evaluate the circuit C(·, y) on an input
x. In this part the user specifies an input x, the corresponding output C(x, y) is
computed, and side-channels are in effect.

Definition 4 (λ(·)-Continuous Side-Channel Secure Compiler). for a
circuit family {Cn(x, y)}n∈N, where Cn operates on two n-bit inputs, we will
say that a compiler (InitC ,EvalC) offers λ(·)-security under continuous side-
channels, if for every integer n > 0, every y ∈ {0, 1}n, and every security pa-
rameter κ, the following holds:

– Initialization: InitC(1κ, Cn, y) runs in time poly(κ, n) and outputs an initial
state state0

– Evaluation: for every integer t ≤ poly(κ), the evaluation procedure is run
on the previous state statet−1 and an input xt ∈ {0, 1}n. We require that
for every xt ∈ {0, 1}n, when we run: (output t, statet) ← EvalC(statet−1, xt),
with all but negligible probability over the coins of InitC and the t invocations
of EvalC , output t = Cn(xt, y).

– λ(κ)-Continuous Leakage Security: for every PPTM (in κ) leakage-adversary
A, there exists a PPTM simulator S s.t. the view of A when adaptively
choosing inputs (x1, x2, . . . xT) while running a continuous leakage attack on
the evaluation procedure, is indistinguishable from the view generates by S
which only gets the inputs-output pairs ((x1, C(x1, y)), . . . , (xT , C(xT , y))).

Formally, the adversary repeatedly and adaptively, in iterations t ← 1, . . . , T ,
chooses an input xt and launches a λ(κ)-bit leakage attack on EvalC(statet−1, xt)
(see Definition 1). The view viewA,t of the adversary in iteration t includes
the input xt, the output output t, and the leakages. The complete view of the
adversary is viewA = (viewA,1, . . . , viewA,T), a random variable over the
coins of the adversary, of the InitC and of the EvalC procedure (in all of its
iterations).
We note that modeling the leakage attacks requires dividing the EvalC pro-
cedure into sub-computations. In our constructions the size of these sub-
computations will always be at most polynomial in the security parameter.
The simulator’s view is generated by running the adversary with simulated
leakage attacks. In each iteration t the simulator gets the input xt chosen
by the adversary and the circuit output C(xt, y). It generates simulated side-
channel information as in Definition 3. It is important that the simulator sees
nothing of the internal workings of the evaluation procedure. We compute:

stateS,0 ← S(1κ, Cn), xt ← A(viewS,1, . . . , viewS,t−1),

(stateS,0, view t,S) ← S(1κ, xt, C(xt, y), viewS,t−1)

where viewS,t is a random variable over the coins of the adversary when
choosing the next input and of the simulator. The complete view of the sim-
ulator is viewS = (viewS,1, . . . , viewS,T).
We require that viewS and viewA are computationally indistinguishable.

3 Subsidiary Cryptosystem and Hardware

We now present the subsidiary cryptosystem and hardware device we will use to
instantiate our main construction. We also define the properties we need from
the subsidiary cryptosystem. We omit the full formal details of the instantiations
of these properties by the subsidiary cryptosystem for lack of space, but direct
the reader back to Section 1.1 for an overview of these properties and how they
are instantiated.

3.1 The Naor-Segev/BHHO Scheme and Secure Hardware

Security is based on the Decisional Diffie-Hellman (DDH) Assumption: Let Gen
be a probabilistic group generator, s.t. G ← Gen(1κ) is a group of order q = q(κ).
We will take G to be GF[q], i.e. the field of prime order q (which also supports
addition operations). The DDH assumption for Gen is that the ensembles below
are computationally indistinguishable:

(G, g1, g2, g
r
1, g

r
2) : G ← Gen(1κ), g1, g2 ∈R G, r ∈R GF[q]

(G, g1, g2, g
r1
1 , gr2

2) : G ← Gen(1κ), g1, g2 ∈R G, r1, r2 ∈R GF[q]

The cryptosystem has the following algorithms (we take m = 10, this choice is
arbitrary and effects the constant in the fraction of leakage we can tolerate):

• KeyGen(1κ): choose g = (g1, . . . , gm) ∈R Gm and s = (s1, . . . , sm) ∈R GF[q]m.
Define: y =

∏m
i=1 gsi

i . Output pk = (g, y) and sk = s.
• Encrypt(pk, b ∈ {0, 1}): parse pk = (g, y) and choose r ∈R GF[q].
Output: c ← (gr

1, . . . , g
r
m, yr · gb

1)
• Decrypt(sk, c): parse sk = s and c = (f1, . . . , fm, h). Compute h′ =

∏m
i=1 fsi

i .
Output 1 if h = g1 · h′ and output ⊥ otherwise.

CipherGen Secure Hardware. This device will be used to realize additional
useful properties for the subsidiary cryptosystem. We assume that when this
device is invoked, there is leakage on its input and output, but not on its internal
workings or randomness. The device receives as input a public key and mode
of operation m ∈ {0, rand}. In mode m = 0 it computes and outputs a fresh
encryption of 0, and in mode m = rand it chooses a uniformly random bit
b ∈ {0, 1} and outputs a fresh encryption of b.

3.2 Homomorphic and Leakage-Resilient Properties

Definition 5 (Semantic Security Under λ(·)-Multi-Source Leakage). An
encryption scheme (KeyGen,Encrypt ,Decrypt) is semantically secure under multi-
source leakage attacks if for every PPTM adversary A, when we run the game
below, the adversary’s advantage in winning (over 1/2) is negligible:

1. The game chooses a key pair (pk, sk) ← KeyGen(1κ), chooses uniformly at
random a bit b ∈R {0, 1}, and generates a ciphertext c ← Encrypt(pk, b).

2. The adversary launches a multi-source leakage attack on sk and c, and out-
puts a guess b′ for the value of b:

b′ ← A[λ(κ) : sk, c](pk)

The adversary wins if b′ = b.

Lemma 1. The Naor-Segev cryptosystem, as defined in Section 3.1, is seman-
tically secure under (λ = mq/3)-multi-source leakage.

Definition 6 (Key Refreshing). An encryption scheme supports key-refreshing
if it has additional algorithms with the following properties:

1. The key refresh procedure Refresh(1κ) outputs a “correlation value” π every
time it is run.

2. The key correlation procedures output new secret and public keys pk′ ←
PKCor(pk, π) and sk′ ← SKCor(sk, π). Here pk′ is a public key correspond-
ing to sk′. We require that even for fixed sk, the new sk′ (as a function of a
randomly chosen π) is uniformly random.

3. The ciphertext correlation procedure transforms an encryption from one key
to the other. I.e. if c′ ← CipherCor(pk, c, π), then Decrypt(sk, c) = Decrypt(sk′, c′).

4. The key linking procedure outputs a correlation value linking its two input
secret keys. I.e. if π ← KeyLink(sk, sk′), then sk′ = SKCor(sk, π).

5. A correlation-inverter CorInvert such that π−1 ← CorInvert(π) satisfies
that if sk′ = SKCor(sk, π), then sk = SKCor(sk′, π−1). Also for the corre-
sponding public keys pk = PKCor(pk′, π−1).

Definition 7 (λ(·)-Leakage Oblivious Generation). An encryption scheme
(KeyGen,Encrypt ,Decrypt) supports oblivious generation if there exists a ran-
domized procedure OblivGen such that:

1. OblivGen outputs the encryption of a random bit:

∀b ∈ {0, 1} : Pr
c←OblivGen(pk)

[Decrypt(sk, c) = b] = 1/2

2. The security requirement is that there exists a Simulator S such that for
every bit b1 ∈ {0, 1} and every PPTM adversary A, when we run the game
below, the real and simulated views are indistinguishable:
(a) The game chooses a key pair (pk, sk) ← KeyGen(1κ).
(b) In the real view, A launches a λ(κ)-bit multi-source leakage attack:

A[λ(κ) : sk, c0 ← OblivGen(pk), c0](pk)

In the simulated view, the game encrypts bit b1: c1 ← Encrypt(pk, b1),
and we run A with a simulated λ(κ)-multi-source leakage attack:

(A[λ(κ) : sk,⊥, c1](pk),S[λ′(κ) : sk, c1](pk))

I.e., here the leakage attacks on the oblivious generation procedure are
simulated by S. We require that λ′(κ) = O(λ(κ)) (the simulator may get
access to a little more leakage than the adversary).

Definition 8 (λ(·)-Leakage Ciphertext Regeneration). An encryption scheme
(KeyGen,Encrypt ,Decrypt) supports oblivious generation if it has a procedure
Regen such that:

1. When we run (pk′, sk′, c′) ← Regen(pk, sk, c), it is the case that Decrypt(sk′, c′) =
Decrypt(sk, c).

2. The security requirement is that for every PPTM adversary A that runs for
T repeated regenerations, every bit b ∈ {0, 1} (determining whether the input
ciphertext is an encryption of 0 or 1), the view generated by the adversary
in the game below is indistinguishable.
(a) The game chooses a key pair (pk0, sk0) ← KeyGen(1κ) and generates a

ciphertext c0 ← Encrypt(pk, b).
(b) The adversary A launches λ(κ)-bit multi-source leakage attack on T re-

peated regenerations:

A[λ(κ) : sk0, c0, (pk1, sk1, c1) ← Regen(pk0, sk0, c0),
sk1, c1, (pk0, c0pk2, sk2, c2) ← Regen(pk1, sk1, c1),
. . . ,

skT−1, cT−1, (pkT , skT , cT) ← Regen(pkT−1, skT−1, cT−1)](pk0, . . . , pkT)

We further require that the input to each sub-computation in the Regen pro-
cedure depends either on the input secret key or the input ciphertext, but
never on both.

Homomorphic Masked NAND. A homomorphic masked NAND computation is
given three ciphertexts c1, c2, c3 encrypted under the same key and with corre-
sponding plaintexts b1, b2, b3 ∈ {0, 1}, and two plain-text values a1, a2 ∈ {0, 1}.
It should compute homomorphically (without using the secret key) compute a
“blinded” (see below) ciphertext hc that can later be decrypted to retrieve the
value ((a1 ⊕ b1) NAND (a2 ⊕ b2))⊕ b3

Definition 9 (λ(·)-Leakage Blinded Homomorphic NAND). An encryp-
tion scheme (KeyGen, Encrypt, Decrypt) supports blinded homomorphic masked
NANDs if there exist procedures HomEval and HomDecrypt such that:

1. When take hc ← HomEval(pk, a1, a2, c1, c2, c3), for the secret key sk corre-
sponding to pk w.h.p. it holds that HomDecrypt(sk, hc) = ((a1⊕b1) NAND (a2⊕
b2))⊕ b3.

2. The result should be “blinded”. There exists a Simulator S such for every
PPTM adversary A, PPTM ciphertext generators G1, G2, G3,7 and plaintext
values a1, a2 ∈ {0, 1}, the real and simulated views in the game below are
indistinguishable:
(a) The game chooses a key pair (pk, sk) ← KeyGen(1κ) and generates ci-

phertexts c1 ← G1(pk), c2 ← G2(pk), c3 ← G3(pk) using random strings
r1, r2, r3 for G1, G2, G3 respectively.

(b) In the real view, the adversary A launches a multi-source leakage attack
on the homomorphic evaluation and decryption:

A[λ(κ) : sk, c3 ← G3(r3),
hc ← HomEval(pk, a1, a2, c1, c2, c3),
a3 ← HomDecrypt(sk, hc)](pk, a1, a2, r1, r2)

In the simulated view, the simulator does not get any access to homo-
morphic evaluation or decryption, but rather gets only the output a3 of
the homomorphic decryption:

(A[λ(κ) : sk, c3 ← G3(r3),⊥,⊥](pk, a1, a2, r1, r2),
S[λ′(κ) : sk, c3 ← G3(r3)](pk, a1, a2, r1, r2, a3))

We require that λ′(κ) = O(λ(κ)).

4 A Continuous-Leakage Secure and Compiler

The compiler can be based on any subsidiary cryptosystem with the properties
of Section 3. We refer the reader to Section 1.1 for the construction overview and
preliminaries, and to Section 2.2 for the security definition. The initialization and
evaluation procedures are presented below in Figure 1. The evaluation procedure
7 In the security proof for our construction these generation procedures will be the

OblivGen or Regen procedure.

is separated into sub-computations (which may themselves be separated into sub-
computations of the cryptographic algorithms). For each such sub-computation
we explicitly note which data elements are computed on (“touched”) in the sub-
computation. We defer the proof of security to the full version.

Initialization InitC(1κ, C, y)

For every input wire i, corresponding to bit j of the input y, generate new keys: (pki, ski) ← KeyGen(1κ)
and compute an encryption ci = Encrypt(pki, yj). state0 ← {(pki, ski, ci)}i : i is a y-input wire

Evaluation EvalC(statet−1, xt)

1. Generate keys and ciphertexts for all wires of C except the y-input wires.
For the x input wires, generate fresh keys and encryptions of 0.
Proceed layer-by-layer (from input to output). For each gate g with input wires i and j and output
wire k: (repeat independently for gate g’s second output wire `)

(a) Generate a random correlation value πi,k ← Refresh(1κ). Apply this value to wire i’s keys to get
a new key pair for wire k: pkk ← PKCor(pki, πi,k), skk ← SKCor(ski, πi,k). Derive a correlation
value specifying the correlation between the keys of wires j and k: πj,k ← KeyLink(skk, skj).
Store the keys and correlation values. “Computed on” keys, correlation values

(b) Generate a ciphertext encrypting the share bk for wire k: for internal wires, use the oblivious
generation procedure to generate an encryption of a random bit ck ← OblivGen(pkk).
For the output wire o, generate an encryption co ← Encrypt(pko, 0).
Store the ciphertexts. “Computed on” ciphertexts

2. Compute the value of C(y, xt).
Proceed layer by layer (from input to output). For each gate g with output wire k and input wires
i, j, the previous gate evaluations yield the shares ai, aj ∈ {0, 1} of the gate’s input wires. Compute
an encryption of ak: (do the same independently for gate g’s second output wire `):

(a) First transform the ciphertexts ci and cj to be encryptions under pkk: c′i ←
CipherCor(pki, ci, πi,k) and c′j ← CipherCor(pkj , cj , πj,k). “Computed on” ciphertexts and cor-
relation values.

(b) Run the blinded homomorphic evaluation procedure: hck ← HomEval(pkk, ai, aj , c
′
i, c

′
j , ck).

“Computed on” ciphertexts.
(c) Compute ak ← HomDecrypt(skk, hck). “Computed on” hck and the secret key.

Taking o to be the output wire, the output is output t ← ao.
3. Generate the new state.

For each y-input wire i regenerate wire i’s keys and ciphertext: (pki, ski, ci) ← Regen(pki, ski, ci).
The new state is statet ← {(i, pki, ski, ci)}i : i is a y-input wire.

Fig. 1. InitC , performed off-line without side channels, and EvalC , performed on input
xt in the presence of side-channel attacks.

Theorem 1. Let (KeyGen,Encrypt ,Decrypt) be a subsidiary encryption scheme
with security parameter κ and with the properties specified in Definitions 6
(key refreshing), 5 (multi-source leakage resilience), 7 (oblivious generation),
8 (leakage resilience regeneration), and 9 (homomorphic masked NAND), all

with λ = Ω(κ)-leakage resilience.8 Then the (InitC ,EvalC) compiler specified
in Figure 1 offers Ω(κ)-leakage security under continuous side-channels as in
Definition 4.

References

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In TCC, pages
474–495, 2009.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky.
Circular-secure encryption from decision diffie-hellman. In CRYPTO,
pages 108–125, 2008.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikun-
tanathan. Cryptography resilient to continual memory leakage. Cryptol-
ogy ePrint Archive, Report 2010/278, 2010.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS, pages 136–145, 2001.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity. SIAM J. Comput.,
17(2):230–261, 1988.

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Lopez-Alt, and Daniel
Wichs. Efficient public-key cryptography in the presence of key leakage.
Cryptology ePrint Archive, Report 2010/154, 2010.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptog-
raphy. Annual IEEE Symposium on Foundations of Computer Science,
pages 293–302, 2008.

[FKPR09] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy Rothblum.
Leakage-resilient signatures. Cryptology ePrint Archive, Report 2009/282,
2009. http://eprint.iacr.org/2009/282.

[FRR+09] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod
Vaikuntanathan. Protecting against computationally bounded and noisy
leakage. Manuscript, 2009.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time
programs. In CRYPTO, pages 39–56, 2008.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game or a completeness theorem for protocols with honest majority.
In STOC, pages 218–229, 1987.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation
on oblivious rams. J. ACM, 43(3):431–473, 1996.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, pages 463–481, 2003.

[JV10] Ali Juma and Yevgeniy Vahlis. On protecting cryptographic keys against
continual leakage. Cryptology ePrint Archive, Report 2010/205, 2010.

8 We mean that there exists an explicit constant 0 < c < 1 s.t. we allow leakage of
c · λ bits

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Wiener, editor, CRYPTO99, pages 388–397, 1999.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with
bounded leakage resilience. In ASIACRYPT, pages 703–720, 2009.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (ex-
tended abstract). In TCC, pages 278–296, 2004.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leak-
age. In CRYPTO, pages 18–35, 2009.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In EURO-
CRYPT, pages 462–482, 2009.

[RCL] Boston University Reliable Computing Laboratory. Side channel attacks
database. http://www.sidechannelattacks.com.

[SYY99] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for
nc1. In FOCS, 1999.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. Symposium
on Foundations of Computer Science, 0:80–91, 1982.

