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ABSTRACT Strong electron-electron interactions in graphene are expected to result in
multiple-excitation generation by the absorption of a single photon. We show that the impact
of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling,
resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the
photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a char-
acteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent
sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport
and carrier multiplication.

Graphene, a two-dimensional material with a gap-
less electronic spectrum, possesses a unique combina-
tion of optoelectronic characteristics [1]over a wide range
of frequencies [2, 3]. Its high mobility enables high-
speed photodetection[4, 5]. Combined with optical trans-
parency and gate-tunable carrier density (field effect),
this makes graphene an attractive material for photonic
and optoelectronic applications[6, 7]. One particularly
appealing aspect of photoresponse in graphene, antic-
ipated by theory but yet to be confirmed experimen-
tally, is the possibility of multiple-excitation generation
by a single photon[8]. This phenomenon, known as
carrier multiplication (CM), is of fundamental impor-
tance for optoelectronics, since many optoelectronic de-
vices can achieve much higher efficiencies if operated in
the CM regime. Although CM has been reported in
nano-particles such as colloidal PbSe and CdSe quantum
dots[9–11], at present the interpretation of these mea-
surements remains controversial [12].

Recent theory suggests that CM can be readily
achieved in graphene [8]. Multiple-carrier production re-
sults from impact ionization and Auger-type processes
induced by photoexcited carriers [13] (see Figure 1a).
Fast carrier scattering, which dominates over electron-
phonon scattering, is predicted by theory[14, 15] and con-
firmed by ultrafast dynamics observed in optical and ter-
ahertz pump-probe studies [16, 17]. We distinguish the
CM effect in graphene as ‘intrinsic’ from the effects in
avalanche photodiodes, which operate at relatively high
reverse bias, sometimes just below breakdown.

Here we set out to understand the relation between CM
and photocurrent response in graphene. We argue that
the contribution of CM processes, which occur locally in
the photoexcitation region, is enhanced by energy trans-
port throughout the entire system area. In particular,
because of slow electron-lattice relaxation which serves as
a bottleneck process for electron cooling[18], photogener-
ated carriers are thermally decoupled from the crystal
lattice over length scales which, even at room tempera-
ture, can be as large as ξ ∼ 7µm. Thermoelectric cur-
rents, arising in the presence of hot carriers, can lead to

FIG. 1: (a) Carrier multiplication in graphene via impact ion-
ization of secondary electron-hole pairs. (b) Schematic of an
optoelectronic device with two separately gated regions 1 and
2, a laser excitation region positioned at the 1-2 interface, and
a pair of contacts for collecting photocurrent. (c,d) Photore-
sponse in homogeneous (c) and inhomogeneous (d) systems.
Arrows indicate thermoelectric current due to photogenerated
hot carriers. Maximal quantum efficiency is achieved for op-
posite carrier polarities in regions 1 and 2, indicated by dif-
ferent colors (d).

a dramatic enhancement of photoresponse.

As we shall see, these effects can have a direct impact
on the quantum efficiency of photoresponse, namely the
number of photogenerated carriers transmitted through
the contacts per absorbed photon, q = Nel/Nph. This
quantity is a cumulative characteristic of the measured
photoresponse, which depends on various effects occur-
ring throughout the system, including the CM processes
in the excitation region, as well as charge and energy
transport from this region to the contacts. These pro-
cesses are characterized by very different time scales: fast
generation of carriers by the CM process is followed by a
much longer “charge harvesting” stage dominated by the
drift of carriers from the excitation region to the contacts.

We emphasize that the hot-carrier regime arising under
CM conditions is distinct from the effects of overall heat-
ing. In the latter case, since the electron heat capacity
is very small compared to the lattice heat capacity, only
a small fraction of the absorbed photon energy, equipar-
titioned between all degrees of freedom, would remain in
the electron subsystem. As discussed in more detail be-
low, this would result in a vanishingly small temperature
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change, and suppression of the hot-carrier effects.

In contrast, slow electron-lattice relaxation triggers
thermal imbalance of the electron and lattice subsys-
tems, amplifying the CM effects. The electron-lattice
relaxation slows down for temperatures below the Debye
temperature. Under these conditions, the extreme inef-
ficiency of cooling mediated by acoustic phonons allows
the carriers to remain hot during their entire lifetime be-
fore reaching the contacts. Proliferation of hot carriers
dramatically alters the nature of photoresponse.

We exhibit the essential physics of photoresponse by
considering a double-gated device comprising two regions
with gate-tunable carrier densities (see Figure 1b). As we
will show, the quantum efficiency q for this system has a
simple dependence on the local electrical conductivities
σ1,2 and chemical potentials µ1,2 in the two regions:

q =
αǫ0

(σ1 + σ2)2

(

σ2
∂σ1

∂µ1
− σ1

∂σ2

∂µ2

)

, ǫ0 = hf, (1)

where the factor α (0 < α < 1) describes the net frac-
tion of the photon energy ǫ0 which is transferred to the
electron system through photoexcitation and subsequent
decay. Remarkably, under realistic conditions q does not
depend on device dimensions and temperature, and can
take values as high as q >

∼ 2 (see detailed estimate below).

We characterize the electron system by an electron
temperature, Tel, which in general is different from the
lattice temperature T0. The electron energy distribu-
tion is established via electron-electron scattering which
occurs on a sub-picosecond time scale[14]. Since these
times are shorter than the electron-phonon timescales,
the electron-lattice relaxation can be described by a two-
temperature model. Crucially, the processes due to opti-
cal phonons, which occur on relatively short times of sev-
eral picoseconds[17], become quenched when the photo-
generated carrier energies drop well below the Debye en-
ergy, ωD ≈ 200meV[19]. For the carriers with lower ener-
gies, the dominant cooling process is mediated by acous-
tic phonons, giving a slow cooling rate. The cooling rate
mediated by the absorption and emission of an acoustic
phonon was studied by Bistritzer and MacDonald[18].
For cooling rate defined as dTel/dt = −γ1(Tel − T0),
Tel ≈ T0, they find

γ1 =
3V 2µ3

4π2h̄3ρv4FkBTel

≈ 0.87
(µ [meV]/100)3

Tel [K]/300
ns−1, (2)

where V = 20 eV, ρ = 7.6 × 10−8 g/cm2, and vF =
106m/s are the deformation potential, mass density,
and Fermi velocity for graphene. For realistic values
µ = 100meV and Tel ∼ 300K, we arrive at timescales
as long as a few nanoseconds.

Slow cooling results in thermal decoupling of the elec-
trons from the crystal lattice and energy transport me-
diated by hot carriers. As we shall see, the effects due

to energy transport dominate over the conventional pho-
tovoltaic contribution to photoresponse. The hot-carrier
mechanism and the photovoltaic mechanism of photore-
sponse have very different experimental signatures. In
particular, hot carriers manifest themselves in multiple

sign reversals of photoresponse as carrier concentration
is tuned by a monotonic sweep of gate voltage. Multi-
ple sign changes do not occur in the absence of CM (see
Fig.2). Thus the pattern of photocurrent sign changes
provides a fingerprint that can be used to experimentally
identify the hot-carrier regime and the presence of strong
CM.
We describe the electric current in the hot-carrier

regime through the local current density

j = σE− eηnx(r)∇Ug(r) + σs∇Tel. (3)

The first two terms describe the conventional photo-
voltaic (PV) effect: primary photogenerated carriers are
accelerated by the gate-induced electric field −∇Ug, and
create a local photocurrent in the excitation region (here
nx is the steady state density of photoexcited carriers and
η is the mobility at energy ǫ ∼ 1

2hf). The redistribution
of carriers associated with this local photocurrent sets
up an electric field E = −∇(φ−µ/e) that drives current
outside the excitation region, reaching the contacts. The
last term in Eq.(3) describes the contribution of energy
transferred to electrons via multiple-carrier generation,
which takes the form of a thermoelectric current driven
by the electron temperature gradient.
The quantities s and σ in Eq.(3) are the Seebeck coef-

ficient and electrical conductivity, which depend on local
carrier density and sign. The temperature profile can be
found using the energy flux

W =
(

φ−
µ

e

)

j−Πj− κ∇Tel, (4)

where Π = sT and κ are the Peltier and the thermal con-
ductivity coefficients. The values of σ, s and κ depend
on the microscopic scattering mechanisms. In the practi-
cally interesting regime of disorder-dominated scattering,
we have

s =
〈(ǫ − µ)τ〉

eTel〈τ〉
, κ =

σ

e2Tel

(

〈ǫ2τ〉

〈τ〉
−

〈ǫτ〉2

〈τ〉2

)

, (5)

where 〈...〉 denotes averaging over the energy distribution
of carriers, and τ(ǫ) is the mean free scattering time for
elastic collisions.
We consider a simple model of photocurrent generation

in graphene, based on Eqs.(3),(4), which accounts for the
multiscale character of photoresponse: fast carrier kinet-
ics within a micron-size excitation region set up a pat-
tern of local electron temperature and electric fields that
drive current throughout the entire device. As shown in
Figure 1b, we consider a rectangular graphene sample of
width W and length L, with a step in carrier density at
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FIG. 2: Photocurrent map as a function of chemical poten-
tials µ1 and µ2 for the device shown in Figure 1b. Separately
shown are the HC contribution (a) and the PV contribution
(b), described by Eq.(7) and Eq.(11), respectively. Note mul-
tiple polarity changes for the HC contribution as opposed to a
single polarity change for the PV contribution. The scales of
I(HC) and I(PV) have been calibrated to agree with the ratio
calculated in Eq.(17) with L = 6µm. Current slices along
the dotted lines µ1 = µ∗ shown for the HC contribution (c)
and the PV contribution (d). The Seebeck coefficient s(µ) is
shown in (c).

the interface between regions 1 and 2. Photocurrent is
collected through two contacts placed at y = ±L/2.
In this model, using the continuity relation ∇ · j = 0

and Eq.(3), we express the photocurrent as

I =

∫ W

0

∫ L/2

−L/2

(

s(y)∇Tel − σ−1(y)eηnx∇Ug

) dydx

RW
(6)

where R = 1
W

∫ L/2

−L/2
σ−1(y)dy is the total resistance,

and the contacts are taken to be at equal potentials,
∫ L/2

−L/2 Eydy = 0. We focus on the term s(y)∇Tel in

Eq.(6), and for the time being ignore the other term. The
latter contribution will be analyzed below and shown to
be small. Approximating the dependence s(y) by a step
that mimics the density profile, we express the hot-carrier
(HC) contribution through the average increase of the
electron temperature along the 1-2 interface

I(HC) =
s1 − s2

R
∆T, ∆T = T ave

el, y=0 − T0, (7)

where s1 and s2 are the Seebeck coefficients in regions 1
and 2, T0 is the lattice temperature, and the superscript
‘ave’ stands for the value averaged over 0 < x < W ,
y = 0. The spatial profile of Tel must be determined
from the heat transport equation

∇ ·W + γCel(Tel − T0) = αǫ0Ṅ, ǫ0 = hf, (8)

where γ is the electron-lattice cooling rate (2), Cel is the
electron specific heat, and Ṅ is the photon flux absorbed

in the laser spot. Since typical spot sizes ∼ 0.5 − 1µm
[23] are smaller than other relevant length scales, such
as the system size and cooling length (see below), the
absorbed photon flux can be approximated as a delta-
function source of hot electrons.

Next, we analyze the HC photocurrent dependence on
gate voltages of regions 1 and 2. Two simple cases are
illustrated in Figures. 1c,d: the net HC current vanishes
for a spatially uniform carrier density, and is maximized
for a p-n interface. The full dependence on the chemical
potentials µ1,2, illustrated in Figure 2a, shows stronger
photoresponse for µ1 and µ2 of opposite sign. This is
in agreement with the ‘gate-activated photoresponse’ ob-
served in Ref.[20] in the presence of a gate-induced p-n
junction.

We model the dependence on the chemical poten-
tials µ1,2, given by the factor s1−s2

R in Eq.(7), using

R = L
2W

σ1+σ2

σ1σ2

and the Mott formula[21] for the Seebeck
coefficient obtained from the non-interacting model (5),

s(µ) = −
π2k2BT

3e

1

σ

dσ

dµ
, σ(µ) = σmin

(

1 +
µ2

∆2

)

, (9)

where kBT ≪ max(µ,∆). Here σ(µ) describes a linear
dependence of conductivity on carrier concentration away
from the Dirac point, with parameters σmin, the mini-
mum conductivity, and ∆, the width of the neutrality re-
gion. The dependence s(µ), Eq.(9), is in good agreement
with the measurements of thermopower in graphene[22].

The dependence of photocurrent on µ1 and µ2 has a
number of interesting features. Because of the depen-
dence on s(µ1) − s(µ2), the HC current (7) vanishes on
the diagonal µ1 = µ2 and, in addition, on two hyperbo-
lae µ1µ2 = ∆2 that cross the diagonal. We shall refer
to the latter as ‘anomalous’ polarity reversal. As illus-
trated in Figure 2c, this behavior can be traced to the
non-monotonic character of the dependence s(µ). In par-
ticular, for any nonzero value of µ1 excluding extrema of
s(µ), the dependence on µ2 features two polarity changes.
This is illustrated by the slice µ1 = µ∗ in Figure 2c. At
the nodes µ2 = µ′, µ′′, the Seebeck coefficient satisfies
s(µ∗) = s(µ′) = s(µ′′), as shown by the horizontal dashed
line in Figure 2c. Hence the photocurrent has opposite
polarity inside and outside the interval µ′ < µ2 < µ′′.
Using a numerical evaluation of the integral in Eq.(7),
we checked that multiple polarity reversal, ‘proper’ and
‘anomalous’, as well as other qualitative features are in-
sensitive to the photoexcitation spot size, surviving even
for spatially uniform photoexcitation.

A model similar to Eq.(7) was used in Ref.[23] to
describe a laser-induced photo-thermoelectric effect ob-
served in a heterogeneous system, a monolayer-bilayer
interface. The measured photocurrent sign was consis-
tent with Eq.(7) but not with the PV effect (see below).
The multiple polarity reversal in the dependence on µ1

and µ2 is unique for the HC mechanism. It is instructive
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to make a comparison with the photocurrent response
in the conventional photovoltaic (PV) regime where the
primary photogenerated pair is the main contributor to
photoresponse. This contribution is described by the sec-
ond term of Eq.(6), giving

I(PV) = −
1

RW

∫ ∫

σ−1(r)eηnx(r)∇Ug(r) dxdy. (10)

The integration simplifies when the size of the photoexci-
tation spot is larger than the depletion length, l0 ≫ wd.
Setting eUg(r) = µ(r), using the model dependence σ(µ)
from Eq.(9), and replacing the integration over y by in-
tegration over µ, gives

I(PV) =
η∆

σminR

(

tan−1 µ1

∆
− tan−1 µ2

∆

)

nave
x (y = 0).

(11)
Result (11) also shows photoresponse maximized in the
presence of a p-n junction, i.e. for µ1 and µ2 of opposite
sign. Thus the ‘gate-activated photoresponse’ of Ref.[20]
cannot be used to distinguish the HC and PV contribu-
tions to photocurrent.
The difference between the two contributions to pho-

tocurrent is most striking when µ1 and µ2 have equal
signs [see Figure 2a,b]. Since the polarity of the PV cur-
rent is determined solely by the sign of field gradient
∇Ug, there is only one sign reversal occurring at µ1 = µ2.
In contrast, the nonmonotonic character of s(µ) produces
multiple polarity reversal of the HC contribution. Thus
the polarity of photocurrent as a function of gate poten-
tials offers a direct way to differentiate between the two
mechanisms.
To estimate the magnitude of the photocurrent,

Eq. (7), we need to obtain the steady state profile of Tel

from Eq.(8). Since j has zero divergence, we can write

∇ ·W = −σ−1|j|2 − j · ∇Π−∇ · (κ∇T ). (12)

The first term, which is quadratic in j, can be ignored.
The second term describes the Peltier cooling effect due
to photocurrent passing through the 1-2 interface. Incor-
porating it in Eq.(8) gives

−∇ · (κ∇Tel) + γCel(Tel − T0) = αǫ0Ṅ + j · ∇Π. (13)

Since the spatial extent of the Peltier term j · ∇Π is of
order of the the p-n junction width, which is <∼ 0.1µm in
the state-of-the-art devices, it can be well approximated
as a delta function source localized at the 1-2 interface.
Eq.(13) can be conveniently analyzed using quantities

averaged over the device width 0 < x < W , T ave
el (y) =

1
W

∫W

0 Tel(x, y)dx, Ṅave(y) = 1
W

∫W

0 Ṅ(x, y)dx, and
transforming Eq.(13) to a one-dimensional equation. For
simplicity, we will consider the case when the laser spot
is positioned on the 1-2 interface. Treating it as a delta
function, we solve Eq.(13) by piecing together solutions of

the homogeneous equation satisfying zero boundary con-
dition at the contacts y = ±L/2, and performing match-
ing of the boundary values at the 1-2 interface.
Estimating the cooling length ξ =

√

κ/γCel we find a
large value ξ ≈ 7µm which exceeds L/2 for typical de-
vice dimensions. Eq.(13) can thus be solved by approx-
imating γ ≈ 0, yielding temperature profile δT ave

el (y) =
(1−2|y|/L)∆T with the average temperature increase at
the 1-2 interface

∆T =
αǫ0l0Ṅ

ave
y=0

2
L (κ1 + κ2) +

T0

RW (s1 − s2)2
. (14)

Since R ∝ L, ∆T grows linearly with system size, sat-
urating when L/2 exceeds the cooling length ξ. For
not too high temperatures, kBT <

∼ max(µ1,2,∆), the
second term in the denominator is smaller than the
first term and can thus be ignored. Combining this re-
sult with Eq.(7), we evaluate the quantum efficiency as
q = I(HC)/(el0WṄave

y=0). Using the Wiedemann-Franz

(WF) relation e2κ = π2

3 k2BTσ, and the Mott formula,
Eq.(9), we arrive at Eq.(1). The result (1) describes the
realistic situation of large cooling length, ξ >

∼ L.
For a general system size L, the solution can be ob-

tained as δT (y < 0) = A1 sinh((y + 1
2L)/ξ1), δT (y >

0) = A2 sinh((
1
2L−y)/ξ2). After matching the boundary

values and derivatives at y = 0, we obtain

∆T =
αǫ0l0Ṅ

ave
y=0

κ1

ξ1
coth L

2ξ1
+ κ2

ξ2
coth L

2ξ2
+ T0

RW (s1 − s2)2
. (15)

This result agrees with Eq.(14) for small system size
L ≪ ξ1,2. At large L, it describes saturation to the value

∆T = αǫ0l0Ṅ
ave
y=0/(κ1/ξ1 + κ2/ξ2).

For an estimate of the numerical value of q, we use
the factor α calculated in Ref.[8] which predicts αǫ0 =
MkBT0 with M = 4.3, T0 = 300K, thus giving α ≈ 0.07.
Taking the chemical potentials at the minimum and max-
imum of s(µ) described by the model (9), µ1,2 = ±∆, we
obtain q = MkBT0/2∆. Taking a typical value for the
neutrality region width for graphene on BN substrate,
∆ <

∼ 300K, we find q >
∼ 2. Thus, high quantum ef-

ficiencies are feasible for realistic system sizes of up to
5− 10µm.
We now proceed to estimate the relative strength of

the HC and PV contributions to photoresponse. Using
the WF relation and the Mott formula, Eq.(9), we find

I(HC)

I(PV)
≈

σminsl0Lαǫ0Ṅ
ave

2∆κηnave
x

=
eαǫ0l0L

4ητ0∆
×

σmin

σ2

dσ

dµ
, (16)

where we estimated the photoexcited carrier density as
nx = 2τ0Ṅ with τ0 the carrier lifetime. Near the Dirac
point, estimating σmin

σ2

dσ
dµ ∼ 1/∆, we obtain

I(HC)

I(PV)
≈

eαǫ0l0L

4ητ0∆2
≈ 2.6L [µm] ∼ 15− 25 (17)
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for L ∼ 5 − 10µm, where we used parameter val-
ues: η = 104 cm2V −1s−1, τ0 = 1ps[16], the neutral-
ity region width ∆ ≈ 100meV estimated for graphene
on SiO substrate[24], α ≈ 0.07 [8], the photon energy
ǫ0 ∼ 1.5 eV, and the laser spot size l0 ≈ 1µm [23].
We therefore conclude that, due to very inefficient

electron-lattice cooling (Eq.(2)) and efficient CM process,
an abundance of hot carriers leads to a dominant HC con-
tribution to the photoresponse. Furthermore, because
the ratio I(HC)/I(PV) scales inversely with the square of
the neutrality region width ∆2, we expect hot-carrier-
related phenomena such as high quantum efficiency to
become more pronounced for high mobility samples, e.g.
graphene on a boron nitride substrate.
To better understand the relation between the result

(17) and CM, it is instructive to consider the situation
when energy is equally partitioned between all degrees of
freedom, electrons and lattice (which would be the case
for very fast electron-lattice relaxation). Crucially, the
large difference between the electron and phonon specific
heat values makes the lattice act as a nearly ideal heat
sink. In this case, the value α ≈ 0.07 used above, de-
scribing the fraction of photon energy remaining in the
electron subsystem, would be replaced by the heat ca-
pacity ratio Cel/Cph, which is very small. In the ide-
alized case of a sharp Dirac point and undoped sys-
tem, we have Cel/Cph = v2ph/v

2
F ≈ 10−4. Although

Cel is somewhat enhanced at finite doping, under re-
alistic conditions it remains quite small. We estimate
Cel/Cph ≈ (v2ph/v

2
F) × (µ/kBT ), where kBT ≪ µ. Tak-

ing µ = 100meV, for temperatures 10K < T < 300K
we obtain Cel/Cph ≈ 10−2 − 10−4. This would reduce
our estimate of the ratio I(HC)/I(PV) by a large factor
10− 103, strongly suppressing I(HC). Hence, a dominant
I(HC) signals that the electronic system and lattice are
out of equilibrium viz. the presence of CM.
In summary, hot-carrier transport in the presence of

photoexcitation leads to a novel type of photoresponse
dominated by photo-thermoelectric effects. Multiple sign
reversals of photocurrent over a monotonic sweep of gate
voltage is a hallmark of this regime. The pattern of
sign changes provides a clear fingerprint for experimen-
tally identifying efficient carrier multiplication. Better
understanding of nonequilibrium transport physics in
graphene, and in particular of different pathways for cool-
ing, is needed to develop a detailed picture of this new
regime. This will open up broad vistas for both the ex-
ploration of novel opto-electronic properties as well as

the design of more efficient graphene photodetectors.
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