MITSIloan

MANAGEMENT

MIT Sloan School of Management

MIT Sloan Working Paper 4325-03
July 2003, revised April 2004

ApproximateL ocal Search in Combinatorial Optimization

JamesB. Orlin, Abraham P. Punnen, and Andreas S. Schulz

© 2004 by JamesB. Orlin, Abraham P. Punnen, and Andreas S. Schul z.
All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted

without explicit permission, provided that full credit including © noticeis given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=423560
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ABSTRACT. Local search algorithms for combinatorial optimization problems are in general of pseu-
dopolynomial running time and polynomial-time algorithms are often not known for finding locally
optimal solutions for NP-hard optimization problems. We introduce the concept of e-local opti-
mality and show that, for every € > 0, an e-local optimum can be identified in time polynomial in
the problem size and 1/¢ whenever the corresponding neighborhood can be searched in polynomial
time. If the neighborhood can be searched in polynomial time for a d-local optimum, a variation of
our main algorithm produces a (4 + ¢)-local optimum in time polynomial in the problem size and
1/e. As a consequence, a combinatorial optimization problem has a fully polynomial-time approxi-
mation scheme if and only if the problem of determining a better neighbor in an exact neighborhood
has a fully polynomial-time approximation scheme.

1. INTRODUCTION

A combinatorial optimization problem II consists of a collection of instances (F,c), where the
set F of feasible solutions is a family of subsets of a finite ground set £ = {1,...,n}. The
objective function ¢ : E — Q4 assigns a nonnegative cost to every feasible solution S € F through
c(S) == ecs ce.t We assume that IT is closed under component-wise scaling of objective function
coefficients; i.e., if (F,c) € II, then (F,d) € II for all ¢ € Q4. For technical reasons, let us
also assume that ¢(S) # 0 for S € F. The goal is to find a globally optimal solution, i.e.,
a feasible solution S* such that ¢(S*) < ¢(S) for all S € F.2 The TRAVELING SALESPERSON
PROBLEM (T'sP) or the MINIMUM SPANNING TREE PROBLEM are typical examples of combinatorial
optimization problems (see, e.g., Lawler 1976; Papadimitriou and Steiglitz 1982; Lawler et al. 1985;
Cook et al. 1998; Korte and Vygen 2002).

Many combinatorial optimization problems are NP-hard, and one popular practical approach for
attacking them is using local search strategies, which presupposes the concept of a neighborhood.
A neighborhood function for an instance (F,c) of a combinatorial optimization problem II is a
mapping Nz : F — 27. Note that we assume that Nz does not depend on the objective function c.
For convenience, we usually drop the subscript and simply write N. For a feasible solution S,
N(S) is called the neighborhood of S. We assume that S € N(S). A feasible solution S is said to
be locally optimal with respect to N if ¢(S) < ¢(S) for all S € N(S). The local search problem
is that of finding a locally optimal solution. Classic neighborhood functions include the k-opt
neighborhood for the Tsp (Lin 1965), the flip neighborhood for MAX CUT and MAX 2SAT (Schéffer
and Yannakakis 1991), and the swap neighborhood for GRAPH PARTITIONING (Kernighan and
Lin 1970). However, the class of problems that we are considering here also includes neighborhoods
of exponential size, like, for the Tsp, the twisted sequences neighborhood, the pyramidal tours

1Formally7 we should point out that we focus on linear combinatorial optimization problems as opposed to “general”
combinatorial optimization problems, in which the cost of a feasible solution is not necessarily the sum of the cost
coefficients of its elements. In other words, the class of problems we are looking at here is equivalent to that of
0/1-integer linear programming problems.
2Although we restrict the following discourse to minimization problems, all results extend in a natural way to the
case of maximization problems.
1
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neighborhood, the permutation tree neighborhood, neighborhoods based on partial orders, and
neighborhoods induced by polynomial-time solvable special cases. We refer the reader to Deineko
and Woeginger (2000), Ahuja et al. (2002), and Gutin, Yeo, and Zverovitch (2002) for a detailed
description of these neighborhood functions.

Roughly speaking, a local search algorithm sets out with an initial feasible solution and then
repeatedly searches neighborhoods to find better and better solutions until it reaches a locally
optimal solution. Figure 1 gives a generic description of the standard local search algorithm, which
is sometimes also called iterative improvement.

Step 1: Compute a feasible starting solution S;

Step 2: while S is not locally optimal do
Choose S € N(S) such that ¢(S) < ¢(9);
S .= S;

Step 3: Output S.

FIGURE 1. Algorithm Standard Local Search

Computational studies of local search algorithms and their variations have been extensively
reported in the literature for various combinatorial optimization problems (see, e.g., Johnson
et al. (1989) and Johnson and McGeoch (1997) for studies of the GRAPH PARTITIONING PROBLEM
and the TSP, respectively). Empirically, local search heuristics appear to converge rather quickly,
within low-order polynomial time. Compared to this wealth of information on empirical analysis,
relatively little is known on theoretical properties of this class of algorithms. Of course, if one
first multiplies all cost coefficients with their smallest common denominator to make them inte-
ger, the standard local search algorithm terminates in a pseudopolynomial number of iterations
since it improves the objective function value by an integral amount in each iteration.> However,
polynomial-time algorithms for computing a local optimum are in general not known. This is espe-
cially true for the above-mentioned combinatorial optimization problems and neighborhoods. On
the other hand, Lawler (1976) constructed instances of the metric TSP such that the standard local
search algorithm with the 2-opt neighborhood takes an exponential number of iterations under a
particular pivoting rule. Chandra, Karloff, and Tovey (1999) extended this result to k-opt for all
fixed k > 2.

This discontenting situation prompted Johnson, Papadimitriou, and Yannakakis (1988) to in-
troduce the complexity class PLS. A combinatorial optimization problem II together with a given
neighborhood function NV belongs to PLS if (a) instances are polynomial-time recognizable and a
feasible solution is efficiently computable, (b) the feasibility of a proposed solution can be checked in
polynomial time, and (c) neighborhoods can be searched efficiently. That is, there is a polynomial-
time algorithm that decides whether a given feasible solution is locally optimal and, if not, computes
a better solution in its neighborhood; see Figure 2 for a detailed description of the input and out-
put of this algorithm. Note that all common local search problems are in PLS, in particular the
problems mentioned earlier. The class PLS has its own type of reduction, which gives rise to
the identification of complete problems in that class. For instance, MAX CUT and MAX 2SAT
with the flip neighborhood, GRAPH PARTITIONING with the swap neighborhood, and TSP with the
Lin-Kernighan neighborhood are PLS-complete (Krentel 1990; Schéiffer and Yannakakis 1991; Pa-
padimitriou 1992), and so is T'SP with the k-opt neighborhood for some constant k¥ (Krentel 1989).
In particular, if a local optimum can be found in polynomial time for one of these problems, then

3Note that the scaling of rational coefficients to integers does not cause a superpolynomial blowup. We henceforth
assume w.l.o.g. that all cost coefficients c. for e € E are integers. An algorithm is pseudopolynomial if it is polynomial
in the input dimension n and in cmax := MaXcck Ce-
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Input: Objective function ¢ : £ — N and feasible solution S € F.

Output: “YES”, if S is locally optimal with respect to ¢ and N.
“NO” and S, if there exists S’ € N(S) with ¢(S") < ¢(5).

FIGURE 2. Specification of the subroutine (oracle) IMPROVEy

a local optimum can be computed in polynomial time for all problems in PLS. Unfortunately, it
is unknown whether it is hard to find a local optimum for a PLS-complete problem (but Johnson
et al. (1988) pointed out that this would imply NP = co-NP) or whether this can be done in
polynomial time.*

In light of this somewhat elusive situation, it is interesting to explore the possibility of identifying
approzimately locally optimal solutions in polynomial time. We therefore introduce the notion of an
e-locally optimal solution, which is to some extent related to the worst-case relative performance
guarantee of an approximation algorithm. We say that a feasible solution S to an instance of a
combinatorial optimization problem IT with neighborhood function N is an e-local optimum if

c(8%) — c(5)

c(5) -
for some € > 0. Hence, while S¢ is not necessarily a local optimum, it “almost” is. A family of
algorithms (A¢)es¢ for IT is an e-local optimization scheme if A, produces an e-local optimum. If the
running time of algorithm A is polynomial in the input size and 1/e, it is called a fully polynomial-
time e-local optimization scheme. In this paper, we show that every combinatorial optimization
problem with an efficiently searchable neighborhood has a fully polynomial-time e-local optimiza-
tion scheme. In particular, an e-locally optimal solution can be computed in polynomial time for
every problem in PLS, including the PLS-complete problems and the problems with exponentially
sized neighborhoods mentioned above.

€ for all S € N(S°) ,

Related Work. Ausiello and Protasi (1995) introduced the class GLO (for guaranteed local op-
tima) of optimization problems that have the property that the objective function value of each
local optimum is guaranteed to be within a constant factor of that of a global optimum. Khanna
et al. (1998) extended this notion to nonoblivious GLO problems, which allow for a modification of
the objective function used to compute a local optimum. In either class, the underlying neighbor-
hoods contain all solutions of bounded Hamming distance from the current solution; moreover, it
is assumed that the number of distinct objective function values over the set of feasible solutions is
polynomially bounded. Hence, the standard local search algorithm yields a locally optimal solution
in polynomial time. In contrast, we do not make any assumption on the objective function values
or neighborhoods considered; we show that an e-local optimum can always be computed with a
polynomial number of calls to the IMPROVE subroutine. On the other hand, while an e-local opti-
mum has nearly the properties of a local optimum, its objective function value is not guaranteed
to be close to that of a global optimum. However, this is in general true for local optima as well.
For instance, Papadimitriou and Steiglitz (1977) showed that no local optimum of an efficiently
searchable neighborhood for the TSP can be within a constant factor of the optimal value, unless
P = NP. Yet, whenever a combinatorial optimization problem has an efficiently searchable neigh-
borhood such that the value of each local optimum is within a constant factor o > 1 of that of a

4Note that the negative results for the TsP mentioned at the end of the previous paragraph only apply to the
standard local search algorithm, as described in Figure 1. Actually, there exist instances for every PLS-complete
problem for which the standard local search algorithm takes exponential time, regardless of the tie-breaking and
pivoting rules used (Yannakakis 1997, Theorem 13).
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global minimum, then we can compute in polynomial time an e-local optimum of cost not worse
than « + ¢ times that of a global optimum. In other words, we give an («a + ¢)-approximation
algorithm, for any fixed ¢ > 0.

Klauck (1996) studied the complexity of finding a solution whose objective function value is
approximately as good as that of the worst local optimum, by using a restricted form of PLS-
reductions. Completeness under this reduction implies that an approximation of a local optimum
cannot be achieved efficiently unless P = PLS. For instance, 0/1-PROGRAMMING with the k-
flip neighborhood and Tsp with the k-opt neighborhood for constant k£ are complete under this
reduction.

A neighborhood function N of a combinatorial optimization problem IT is ezact if every locally
optimal solution with respect to N is also globally optimal. In this case, our fully polynomial-time
e-local optimization scheme actually is a fully polynomial-time approximation scheme (FPTAS).
This remains true even if IMPROVE already outputs “YES” when the current feasible solution is a d-
local optimum (and does so in time polynomial in the input size and 1/0, for any § > 0). Grotschel
and Lovdsz (1995) and Schulz, Weismantel, and Ziegler (1995) showed that, if a combinatorial
optimization problem has an exact neighborhood that can be searched efficiently (and exactly),
one can actually find an exact optimal solution efficiently. Schulz and Weismantel (1999, 2002)
discussed extensions of this result from 0/1-integer linear programming problems (i.e., combinatorial
optimization problems) to arbitrary integer programs. However, none of the employed techniques
can be extended to compute a local optimum in polynomial time, unless the neighborhood is exact.
In fact, otherwise P = PLS.

Fischer (1995) examined a different question, which implies that our main result is best possible
if one considers the class of algorithms that iteratively moves from one feasible solution to a feasible
solution in its neighborhood: Given a feasible solution S to an instance (F,c) of a combinatorial
optimization problem II and a number %k in unary, does there exist a local optimum within &
neighborhood steps of §7 She showed that this question is NP-complete for MAX CuT and MAX
2SAT under the flip neighborhood and for Tsp under the 2-opt neighborhood, among others.

Our Results. Apart from our main result presented above and discussed in more detail in Section 2
below, we offer various evidence in Section 3 to show that this result is indeed “best possible”:

First, the fully polynomial-time e-local optimization scheme produces an e-locally optimal solu-
tion by proceeding from one feasible solution to a solution in its neighborhood, and so forth. In
this sense, it is a typical local search algorithm. Fischer’s result shows that one cannot hope to
find a local optimum in polynomial time by proceeding in this manner. Yet, an e-local optimum
can be determined in polynomial time. The key is to modify the original objective function so as
to make sufficient progress in a relatively small number of steps. It is worth mentioning that our
algorithm follows a path of feasible solutions that is not necessarily monotone with respect to the
original objective function. In particular, it differs from a standard local search algorithm, which
always replaces the current solution with a neighboring solution of lower cost.

Secondly, we point out that any algorithm for computing a local optimum that treats the neigh-
borhood search and the feasibility check of PLS problems as oracles must be in the worst case
expounential in the input dimension. In other words, if there exists a polynomial-time algorithm to
compute a local optimum for a PLS-complete problem, it must use problem-specific knowledge. In
contrast, our algorithmic scheme works for any combinatorial optimization problem so long as a
feasible solution can be efficiently computed; in particular, it treats the subroutine IMPROVE as a
black box.

Thirdly, we show that the existence of a family (A¢).~¢ of algorithms that find e-local optima in
time polynomial in the input size and log 1/¢ implies the existence of a polynomial-time algorithm
for computing a local optimum, and we just argued why this is impossible in our framework.
Hence, the dependence of the running time on 1/ cannot be improved. Furthermore, we prove



APPROXIMATE LOCAL SEARCH IN COMBINATORIAL OPTIMIZATION 5

that replacing the relative error in the definition of an e-local optimum with the absolute error
would also yield the existence of a polynomial-time algorithm for computing a local optimum.

Finally, in Section 4 we present various extensions and variations of the main result, including
more general integer linear programming problems and the new characterization for when a combi-
natorial optimization problem has a fully polynomial-time approximation scheme, which we already
described in the context of related results for exact neighborhoods. Moreover, we discuss neighbor-
hoods of polynomial size and efficiently searchable neighborhoods with local optima guaranteed to
be near-optimal.

2. A FuLLy POLYNOMIAL-TIME e-LOCAL OPTIMIZATION SCHEME

In this section we develop a polynomial-time algorithm to compute an e-local optimum for a given
instance (F,c) with ground set E of a combinatorial optimization problem IT with neighborhood
function N.5 The algorithm starts with a feasible solution S°. We then alter the element costs c,
for e € E according to a prescribed scaling rule to generate a modified instance. Using local search
on this modified problem, we look for a solution with an objective function value (with respect to
the original cost) that is half that of S°. If no such solution is found we are at a local optimum for
the modified problem and output this solution. Otherwise we replace S° by the solution of cost
less than half, call the latter one S', and the algorithm is repeated. A formal description of the
algorithm is given in Figure 3. Note that the modification of the cost coeflicients in Step 2 merely

Input: Objective function ¢ : £ — N; subroutine IMPROVEy; initial feasible
solution S° € F; accuracy € > 0.

Output: Solution S¢ € F that is an e-local optimum with respect to N and c.
Step 1: Let 4 := 0;

) Ke c
Step 2: Let K :=¢(S%), ¢:= ————, and ¢, := | = | ¢ fi e E;
ep e c(SY), q P+ ) and ¢, [q-|q or e ;

Step 3: Let k := 0 and S"* := §%;
Step 4: repeat

Call IMPROVEN(S%F, ¢);

if the answer is “NO”, then

Let S¥F*+1 € N(S%¥) such that ¢'(S**+1) < ¢/ (S%F); set k := k + 1;
else S¢ := S¥F; stop.
until ¢(S*F) < K/2;

Step 5: Let S"t1 := §%* gset i := i + 1 and goto Step 2.

FIGURE 3. Algorithm e-Local Search

amounts to rounding them up to the closest integer multiple of ¢q. Let us establish correctness first.

Theorem 2.1. Algorithm e-Local Search produces an e-local optimum.

Proof. Algorithm e-Local Search terminates, which follows from the running time analysis following
this proof. Let S be the solution produced by the algorithm, and let S € N(S¢) be an arbitrary

5The algorithm presented here works for neighborhoods of any size, in particular exponential-sized neighborhoods.
Section 4.3 features a somewhat simpler algorithm for neighborhoods of polynomial size, which are given explicitly.
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solution in its neighborhood. Let K and ¢ denote the corresponding values from the last execution
of Step 2 of the algorithm. Note that

(8= < [E]qu [EW qSZq(EH) <Y et ng=c(S)+nq ,
ecSe ecsSe q ecS q ecS q ecS
where n = |E|. Here, the second inequality follows from the fact that S° is locally optimal with
respect to ¢’. Together with ¢(S%) > K/2, this implies
c(S%) — ¢(S) < M ng < 2nq
c(S) - ¢S) T (S )—ng T K-—-2ngq

0

Let us now analyze the running time of Algorithm e-Local Search. In each improving move
within the local search in Step 4 of the algorithm, the objective function value (with respect to ')
is decreased by at least ¢ units. Thus the number of calls to IMPROVE between two consecutive
iterations of Step 2 is O(n(1 +¢)/e) = O(n/e). Step 2 is executed at most logc(S°) times, where
S0 is the starting solution. Thus the total number of neighborhoods searched is O(ne~! log ¢(S)).
Therefore, if the neighborhood N can be searched in polynomial time for an improving solution,
we have a fully polynomial-time e-local optimization scheme. Note that the number of iterations
includes the factor log ¢(S°) and hence the bound is not strongly polynomial. However, it is possible
to prove a strongly polynomial bound on the number of iterations. For this, we make use of the
following lemma, which Radzik (1993) attributed to Goemans.

Lemma 2.2. Let d = (di,...,d,) be a real vector and let yi,...,y, be vectors in {0,1}". If, for
alli=1,...,p—1,0<dyi41 < %dyi, then p = O(nlogn).

Note that the value of K at each execution of Step 2 is reduced at least by half. Further,
K is a linear combination of ¢, for e € E and the coefficients in this linear combination are
from the set {0,1}. Lemma 2.2 implies that Step 2 of Algorithm e-Local Search can be exe-
cuted at most O(nlogn) times. Thus the total number of calls of IMPROVE in Step 4 throughout
the algorithm is O(e~! n?logn). If {(n,log cmax) is the time needed to search the neighborhood
N for an improving solution (i.e., the running time of IMPROVE) and £(n) is the time needed
to obtain a feasible starting solution, the complexity of Algorithm e-Local Search is O({(n) +
¢(n,10g cmax)n et min{n logn,log K°}), where K° := ¢(S) is the objective function value of the
starting solution and cpay is the maximal value of an objective function coefficient. The following
theorem summarizes the preceding discussion.

Theorem 2.3. Algorithm e-Local Search correctly identifies an e-locally optimal solution of an in-
stance of a combinatorial optimization problem in O(&(n)~+¢(n,log cmax)n €~ min{n log n,log K°})
time.

Thus if ((n,logcmax) and &(n) are polynomial, then Algorithm e-Local Search is a fully

polynomial-time e-local optimization scheme. Note that ((n,log cmax) and &(n) are indeed polyno-
mials of the input size for all problems in PLS.

Corollary 2.4. Ewvery problem in PLS has a fully polynomial-time c-local optimization scheme.

The running time of Algorithm e-Local Search can sometimes be improved by exploiting the
special structure of the underlying neighborhood. A neighborhood function N generates a so-
called k-opt neighborhood if S;, S2 € N(S) implies |(S1 \ S2) U (S2 \ S1)| < k, which is equivalent
to bounding the Hamming distance between the incidence vectors of S7 and Se by k. For the
k-opt neighborhood, by choosing the parameter ¢ := % in Algorithm e-Local Search, we
still get an e-local optimum. Moreover, the number of calls of IMPROVE between two consecutive

executions of Step 2 of this modified algorithm is O(e~!), for fixed k. This brings down the
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total number of such calls to O(¢~! min{nlogn,log K°}) and implies a running time of O(£(n) +
nFe~! min{nlogn,log K°}) for Algorithm e-Local Search.

Similarly, if the considered combinatorial optimization problem possesses a 2-approximation
algorithm, one can use this algorithm to compute the starting solution S°. If such a solution is
used as the starting solution, then Algorithm e-Local Search executes Step 2 only once and hence the
total number of improving moves is O(ne~!). Consequently, the overall running time of Algorithm
e-Local Search is O(&(n) + ¢(n,log cpax)ne~t), where £(n) now denotes the running time of the
2-approximation algorithm. In fact, whenever one has a feasible solution S° for an instance I such
that ¢(S°) < p((I))c(S*) for some polynomial p of the input size (I}, then one can adapt the value
of g to ¢ := (Ke¢)/(np({I))(1+¢€)) and the stopping criterion of the while-loop accordingly, so that
Algorithm e-Local Search computes an e-local optimum in O(np({(I))e~!) iterations.

Arkin and Hassin (1998) applied a similar approach to that used in Algorithm e-Local Search to
compute a local optimum in polynomial time in the context of the weighted k-set packing problem.
They considered a neighborhood for which the value of each local optimum is within a certain factor
of the value of a global optimum; hence, this approach, which they attributed to Rubinstein, leads
to a polynomial-time approximation algorithm. It has since been applied in related situations as
well; see, e.g., Arkin et al. (2002).

3. NEGATIVE RESULTS

In this section we present a collection of results that underscore that neither the accuracy of the
solutions produced by Algorithm e-Local Search nor its running time can be significantly improved,
unless additional, problem-specific knowledge is used. Let us first argue that any algorithm to
compute a local optimum for a problem in PLS has to have exponential running time in the worst
case if the algorithms for checking feasibility and neighborhood search are oracles completely hiding
both the set of feasible solutions and the neighborhood structure.

Theorem 3.1. If the only available information on an instance (F,c) of a combinatorial optimiza-
tion problem II is the objective function vector c, a feasible solution S® € F, a membership oracle,
and a neighborhood search oracle IMPROVE, then any algorithm for computing a local optimum
takes exponential time in the worst case.

Proof. Let the ground set be E = {1,2,...,n}. The objective function coefficients are ¢; = 2!~}
for i = 1,2,...,n. Let the nonempty subsets of E be labeled S°, S', ..., S?"~2 such that ¢(S°) >
¢(SY) > --- > ¢(5?"72). Let A be an arbitrary algorithm that computes a local optimum. Note
that A can either call IMPROVE with a feasible solution and some objective function, or it can check
whether a particular solution is feasible by asking the membership oracle. We show that A needs
exponential time in the worst case by exhibiting an adverse strategy. In fact, an adversary adapts
the set of feasible solutions and the neighborhood function to A’s sequence of questions as follows.
Whenever A asks the membership oracle whether a set S? is feasible, the adversary answers “No”
unless S* has been declared feasible earlier. On the other hand, whenever A calls up IMPROVE with
a feasible solution S* and an objective function vector ¢/, IMPROVE returns S7, where j > i is the
smallest index for which S/ has not been labeled infeasible. If no such j exists or ¢(S7) > ¢/(S%),
then S? is locally optimal (w.r.t. ¢/). It is not difficult to see that A has to touch every single subset
before it can identify the unique minimum. O

The importance of Theorem 3.1 relates to the fact that Algorithm e-Local Search only requires
a subset of the information stated in the assumptions of this theorem; in particular, it does not
make use of the membership oracle.

We next note that finding an e-local optimum of additive error ¢ with respect to a given neigh-
borhood structure is as hard as finding a local optimum with respect to the same neighborhood
structure. While its proof relies on a standard argument, the result is still worth recording.
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Observation 3.2. If there is an algorithm that for every instance (F,c) of a combinatorial opti-
mazation problem 11 with neighborhood N finds in polynomial time a feasible solution S: such that
c(S:) <c(S)+e€ forall S € N(S:), for some fized ¢ > 0, then there is a polynomial-time algorithm
to find a local optimum.

Proof. Let (F,c) be an instance of II, where w.l.o.g. ¢ is an integer-valued function. Create a new
instance (F,c') by setting ¢, := (1 + ¢)c, for all elements e of the ground set. Apply the given
algorithm to the new instance and let S’ be the resulting solution. Then, ¢/(S’) — ¢/(S) < ¢ for
all S € N(S'). Thus, ¢(S") —¢(S) <e/(e +1) <1 for all S € N(S’). Since c is integer-valued, it
follows that S’ is a local optimum for the original instance. O

The next result is somewhat similar to (Garey and Johnson 1979, Theorem 6.8) except that we
are discussing it in the context of local optimality.

Observation 3.3. If a combinatorial optimization problem 11 has a fully polynomial-time e-local
optimization scheme (Ag)eso such that the actual running time of Ac is polynomial in the input
size and log 1/e, then there is a polynomial-time algorithm that computes a local optimum.

Proof. Let (F,c) be an instance of II, where w.l.o.g. ¢ is an integer-valued function. Choose
€ :=1/(ncmax +1) and apply A.. Note that its running time is polynomial in the input size of the
instance. If S¢ is the solution returned by this algorithm, then ¢(S%) < (14 €)¢(S) < ¢(S) + 1 for
all S € N(S%). Hence, S° is a local optimum. O

4. EXTENSIONS AND VARIANTS

We now discuss some extensions and variations of the results of Section 2 that range from
approximation guarantees in case of exact neighborhoods, over simplifications of Algorithm e-Local
Search for explicitly given neighborhoods of polynomial size, to replacing IMPROVE with weaker
oracles and bounded integer programming problems.

4.1. Exact Neighborhoods. Recall that a neighborhood function N for a combinatorial opti-
mization problem II is exact if every local optimum is already globally optimal. In view of this,
one may be tempted to conjecture that the objective function value of an e-local optimum with
respect to an exact neighborhood is also within a factor of (1+¢) of the value of a global optimum.
However, this is not true as shown by the following example.

Let G = (V, E) be a connected graph with edge weights ¢, for e € E. Let F be the family of
all spanning trees of G. Hence, we are considering the MINIMUM SPANNING TREE PROBLEM. For
any tree T' € F, consider the neighborhood N(T') that consists of those spanning trees obtained
from T by adding an edge e € E\T to T and removing an edge f € T from the induced elementary
cycle. This is the 2-opt neighborhood, which is known to be exact. Now choose G as a wheel (see
Figure 4) with node set {0,1,...,n}. For each edge (0,i), i = 1,2,...,n, of this wheel, assign a
cost of 1 and for each edge (i,i+ 1), i = 1,2,...,n (where node n + 1 is identified with node 1)
assign a cost of zero. The spanning tree T, which is a star rooted at node 0, is a 1/(n — 1)-local
optimum for any n > 3. However, the Hamiltonian path 7% = (0,1,...,n) is a minimum span-
ning tree and ¢(7%) —¢(T*) = (n—1)¢(T*). Thus, T¢ is not a (14¢)-approximation for any ¢ < n—1.

Still, for exact neighborhoods our fully polynomial-time e-local optimization scheme actually is
a fully polynomial-time approximation scheme (FPTAS), as the following theorem shows.

Theorem 4.1. If the neighborhood N of a combinatorial optimization problem 11 is exact, then the
objective function value of the solution produced by Algorithm e-Local Search is within a factor of
(1 +¢) of that of a global minimum.
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FIGURE 4. A wheel on n + 1 nodes

Proof. Let (F,c) be a given instance of II. Let S* be an optimal solution and S° be the solution
produced by the algorithm. Let K, ¢, and ¢’ denote the corresponding values from the last execution
of Step 2 of Algorithm e-Local Search. Since S¢ is locally optimal with respect to ¢’ and the
neighborhood is exact, S¢ is an optimal solution for (F,¢’). Thus,

(5 < S Fﬂqg 3y Fﬂqg Zq(%Jrl) < e(8%) +ng < e(S") + 7 elS7)

ecsSe ecS* ecS*

where the last inequality follows from the definiton of ¢ and the fact that ¢(S) > K/2. The result
follows. O

Theorem 4.1 implies that whenever a combinatorial optimization problem has an exact neigh-
borhood and an initial feasible solution is readily available, then Algorithm e-Local Search is
a (1 + €)-approximation algorithm that calls IMPROVE a polynomial number of times (for fixed
e > 0). However, Grotschel and Lovasz (1995) and Schulz et al. (1995) showed that under these
circumstances, one can actually compute an optimal solution with a polynomial number of calls of
IMPROVE. Yet, one still obtains an FPTAS even if the exact neighborhood can only be searched
approximately, as we are about to see next.

4.2. Approximate Version of Neighborhood Search. Very large-scale neighborhood (VLSN)
search algorithms are local search algorithms using neighborhoods of very large size; see Ahuja
et al. (2002) for a survey. For many very large-scale neighborhoods of NP-hard combinatorial op-
timization problems, the problem of finding an improving solution is itself NP-hard. On the other
hand, solutions produced by local search algorithms using such huge neighborhoods could be of very
high quality. To keep the complexity of a VLSN algorithm manageable, approximation algorithms
are often employed to search an underlying neighborhood such that if the approximation algorithm
fails to find an improving move, the algorithmm terminates leaving an “approximate” local solution.
More precisely, instead of IMPROVE, we may only have at our command a subroutine J-IMPROVE,
which solves the following problem:

Given an objective function vector ¢ and a solution S € F, find S' € N(S)

such that ¢(S") < ¢(S), or assert that S is a d-local optimum. (4.1)

Naturally, finding a d-local optimum efficiently, given an algorithm §-IMPROVE, faces similar
difficulties as the problem of finding a local optimum when an algorithm IMPROVE is provided.
However, one can easily modify Algorithm e-Local Search so that it computes a (d+¢)-local optimum
in polynomial time. In fact, if one uses J-IMPROVE in lieu of IMPROVE and selects the scaling

parameter q to be q := MW, the resulting algorithm produces a (J + €)-local optimum in
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time O(£(n) + 1(n,1og cmax) n e~ min{nlogn,log K°}), where 1 (n,log cmax) is the running time
of 6-IMPROVE. Hence, a (strongly) polynomial-time algorithm for solving (4.1) implies a (strongly)
polynomial-time algorithm to compute a (0 + ¢)-local optimum, for every fixed € > 0. In view of
the results discussed in Section 4.1, it is particularly interesting to note that in case of an exact
neighborhood, the existence of a polynomial-time algorithm §-IMPROVE for all § > 0 implies that
the combinatorial optimization problem possesses a fully polynomial-time approximation scheme.
Indeed, if we call (4.1) the augmentation problem if N is exact (e.g., N(S) = F for all S € F) and
d =0, and a family of algorithms §-IMPROVE (with running time polynomial in the input size and
1/6 for all 6 > 0) a fully polynomial-time approzimation scheme for the augmentation problem, we
can state the following result.

Theorem 4.2. A combinatorial optimization problem has a fully (strongly) polynomial-time ap-
prozimation scheme if and only if its corresponding augmentation problem has a fully (strongly)
polynomaial-time approzimation scheme.

The proof of Theorem 4.2 is similar to that of Theorem 4.1.

Sometimes the objective function value of each local optimum is within a constant factor of that

of a global optimum. The class of problems with this property contains the class GLO (Ausiello
and Protasi 1995). For instance, each local optimum of the flip neighborhood for the Max Cut
PROBLEM has value at least half that of an optimal cut (Sahni and Gonzalez 1976). The following
theorem can be proved in a similar manner to Theorem 4.1 by setting ¢q := % in Algorithm
e-Local Search.
Theorem 4.3. Let 11 be a combinatorial optimization problem with efficiently searchable neighbor-
hood function N such that every local optimum is within a constant factor o > 1 of the optimal
value. Then there is an algorithm that computes a feasible solution of cost at most o+ € times that
of an optimal solution in time polynomial in the input size and 1/e, for any € > 0.

4.3. Polynomial-Sized Neighborhoods. Algorithm e-Local Search is designed to work for any
local search problem for which an IMPROVE (or §-IMPROVE) oracle is available, regardless of the size
or structure of the neighborhood and the implementation of IMPROVE. In particular, Algorithm
e-Local Search identifies for the TsP and each of the following neighborhoods an e-local optimum
in polynomial time: the twisted sequences neighborhood, the pyramidal tours neighborhood, the
permutation tree neighborhood, neighborhoods based on partial orders, as well as neighborhoods
induced by polynomial-time solvable special cases. While all these exponential-sized neighborhoods
can be searched efficiently (i.e., they have polynomial-time improvement oracles), it is not known
for any of them how to find a local optimum in polynomial time (Deineko and Woeginger 2000;
Ahuja et al. 2002; Gutin et al. 2002).

Nonetheless, neighborhoods frequently are of polynomial size and explicitly given, like the k-opt
neighborhood for the Tsp (for fixed k), the flip neighborhood for MAX CuT and MAX 2SAT, or
the swap neighborhood for GRAPH PARTITIONING. In this case, one can give a simpler algorithm
for computing an e-local optimum, see Figure 5. Note that Step 1 can be realized by an exhaustive
search of the neighborhood of S§. Obviously, the running time of this algorithm is polynomial
in the input size and 1/e. By using an appropriately modified version of Lemma 2.2, one can
actually show that the running time only depends on the input dimension n and 1/e. However, this
simpler algorithm has some drawbacks compared to Algorithm e-Local Search, even if one limits
this comparision to problems with explicitly given neighborhoods of polynomial size. In particular,
neither Theorem 4.1 nor Theorem 4.2 can be proved with its help. In fact, for the minimum
spanning tree example described in Figure 4, the simpler algorithm with accuracy € > 1/(n — 1)
would terminate with the initially given solution 7 although the cost of this solution is n times
that of an optimal solution. In contrast, Algorithm e-Local Search would return an optimal solution
in this case (and a (1 + ¢)-approximate solution in general).
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Input: Objective function ¢ : E — N; neighborhood function N : F — 27;
initial feasible solution S € F; accuracy € > 0.

Output: Solution S° € F that is an e-local optimum with respect to N and c.

Step 1: while S is not e-locally optimal do
Choose S’ € N(S) satistying ¢(S") < ¢(S)/(1 + ¢);
S:=5"

Step 2: return 5S¢ := S.

FIGURE 5. e-local search algorithm for neighborhoods of polynomial size

4.4. Weaker Version of Neighborhood Search. In the context of global optimization, Schulz
et al. (1996) pointed out that the requirements on the improvement oracle can be somewhat weak-
ened. Interestingly, this extension also works in the context of local optimization, as we will show
now. For that, we replace IMPROVE with another subroutine, which we call TEST. TEST accepts
the same input as IMPROVE, namely a current feasible solution S together with an objective func-
tion vector ¢. It also answers “YES” or “NO” depending on whether S is locally optimal with
respect to ¢ or not, but in contrast to IMPROVE it does not provide a solution S’ € N(S) of lower
cost if S is not locally optimal. It just answers “YES” or “NO”.

Lemma 4.4. TEST can emulate IMPROVE in polynomial time; i.e., whenever the input solution S
is not locally optimal, a polynomial number of calls to TEST suffices to create a solution S' € N(S)
of lower cost.b

Proof. Let (F,c) be an instance and S a feasible solution that is not locally optimal with respect to ¢
under the given neighborhood N. W.l.o.g., we may assume that S = E.” Here, E = {1,2,...,n} is
the ground set. The algorithm that we are about to explain proceeds by considering one coordinate
after the other. In particular, it will call TEST n times. The first call TESTx (S, c!) is made with
the objective function

Cp 1= foreec B,

Ce otherwise,

. {Cl—M ife =1,

where M := ncmax + 1. If TEST responds with “YES”, then we can infer that all solutions S’ in
N(S) of lower cost than S with respect to ¢ satisfy 1 ¢ S’. On the other hand, if the reply is “No0”,
then there is at least one solution S’ € N(S) such that ¢(S’) < ¢(S) and 1 € S".

In general, assume that we already know a subset R C {1,2,...,k}, forsome k € {1,2,...,n—1},
with the following two properties:

(i) there exists a solution S’ € N(S) with ¢(S’) < ¢(S) such that R =5"N{1,2,...,k};

(i) if j ¢ R for 1 < j < k, then all solutions S” € N(S) with ¢(S”) < ¢(S) satisfy RN

(1,2,...,5} =8"N{1,2,...,5).

We then call TESTy (S, cF*!) with

Ce — M if e € R,
=g —M ife=k+1, forec £ .

Ce otherwise,

6In contrast to all other results presented in this paper, here we need to assume that TEST accepts arbitrary, not
just nonnegative cost coefficients. In particular, we set ¢max := maxeer |Cel.
"Otherwise one can transform the given instance into an equivalent one for which this is the case.
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If the result is “YES”, then we can infer that all solutions S’ € N(S) with ¢(S") < ¢(S) and
S"N{L,2,...,k} = R satisfy k + 1 ¢ S’. However, if the reply is “N0O”, then there must be a
solution S" € N(S) with ¢(S") < ¢(S) and S'N{L,2,...,k} = R such that k+ 1 € S’. We leave R
unchanged in the former case, and set R := R U {k + 1} in the latter case.

Consequently, after n steps we have identified a set S’ = R € N(S) such that ¢(S") < ¢(S). O

Lemma 4.4 and Theorem 2.3 imply the following result.

Corollary 4.5. An e-local optimum of an instance (F,c) of a combinatorial optimization problem 11
with neighborhood function N that is given via a TEST oracle of running time ((n,log cmax), can
be computed in time O(&(n) + ((n,10g cmax)n? e~ min{n logn, log K°}).

4.5. Bounded Integer Linear Programming Problems. Let us finally discuss some general-
izations to the case of integer linear programs with bounded variables. In our discussions so far, we
considered combinatorial optimization problems, which in fact are 0/1-integer linear programs, i.e.,
problems of the form min{cz : z € F} with F C {0,1}". Interestingly, most of our results extend
directly to the case of integer linear programs with bounded variables, which can be described as
follows: min{cz : z € F} with F C {0,1,...,u}" for some nonnegative integer u. In this context,
a neighborhood assigns to each feasible solution z € F a set of feasible points in {0,1,...,u}".
If an initial feasible solution and an algorithm IMPROVE are available, Algorithm e-Local Search
can easily be modified to compute an e-local optimum in this setting as well. In fact, by choosing
the scaling parameter ¢ := %é(ife)u , its number of iterations (and therefore the number of calls of
IMPROVE) is O(n e tulog KY). Thus, if an initial feasible solution can be identified in polynomial
time, if IMPROVE can be implemented in polynomial time, and if v is bounded by a polynomial
in n and log ¢yax, Algorithm e-Local Search runs in polynomial time.
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