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We study analytically the corrections to the leading terms in the Rényi entropy of a massive lattice theory,
showing significant deviations from naive expectations. In particular, we show that finite size and finite mass
effects give rise to different contributions (with different exponents) and thus violate a simple scaling argument.
In the specific, we look at the entanglement entropy of a bipartite XYZ spin-1/2 chain in its ground state. When
the system is divided into two semi-infinite half-chains, we have an analytical expression of the Rényi entropy
as a function of a single mass parameter. In the scaling limit, we show that the entropy as a function of the
correlation length formally coincides with that of a bulk Ising model. This should be compared with the fact that,
at criticality, the model is described by a c = 1 conformal field theory and the corrections to the entropy due
to finite size effects show exponents depending on the compactification radius of the theory. We will argue that
there is no contradiction between these statements. If the lattice spacing is retained finite, the relation between
the mass parameter and the correlation length generates new subleading terms in the entropy, whose form is path
dependent in phase space and whose interpretation within a field theory is not available yet. These contributions
arise as a consequence of the existence of stable bound states and are thus a distinctive feature of truly interacting
theories, such as the XYZ chain.
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I. INTRODUCTION

In the past few years, there has been a growing interest
in quantifying the degree of “quantumness” of a many-body
state, which is usually taken as the ground state |0〉 of a
given Hamiltonian.1–3 As the entanglement constitutes an
intrinsically quantum property, one popular way to measure
this is through bipartite entanglement entropy.4,5 To this end,
the system is divided into two subsystems (A and B) and one
looks at the reduced density matrix, obtained by tracing out
one of the two subsystems

ρ̂A ≡ TrB |0〉〈0|. (1)

We will be interested in the Rényi entropies6

Sα ≡ 1

1 − α
ln Trρ̂α

A, (2)

which, in the α → 1 limit, reduces to the Von Neumann
entropy

S ≡ −Trρ̂A log ρ̂A. (3)

Varying the parameter α in (2) gives us access to a lot of
information on ρ̂A, including its full spectrum.7,8

For gapped systems, the entanglement entropy satisfies the
so-called area law, which means that its leading contribution
for sufficiently large subsystems is proportional to the area
of the boundary separating system A from B. In 1 + 1
dimensional systems, the area law implies that the entropy
asymptotically saturates to a constant (the boundary between
regions being made just by isolated points).

Critical systems can present deviations from the simple area
law. In one dimension, in particular, the entanglement entropy
of systems in the universality class of a conformal field theory
(CFT) is known to diverge logarithmically with the subsystem

size.9,10 From CFT, a lot is known also about the subleading
corrections, which, in general, take the unusual form11–14

Sα(�) = c + c̄

12

(
1 + 1

α

)
ln

�

a0
+ c′

α + bα(�) �−2h/α + · · · ,
(4)

where c is the central charge of the CFT, � is the length of
subsystem A, a0 is a short distance cutoff, c′

α and bα(�) are
non-universal and the latter includes a periodic function of �

(with the period given by the Fermi momentum12,14), and h

is the scaling dimension of the operator responsible for the
correction (relevant or irrelevant, but not marginal since these
operators generate a different kind of correction, which will
be discussed later). This result is achieved using replicas, and
thus, strictly speaking, requires α to be an integer. Moreover,
it should be noted that in Ref. 13 the corrections are obtained
from dimensionality arguments, by regularizing divergent
correlations by an ultraviolet cutoff a0. Thus, technically,
the subleading contributions in (4) are extracted from scaling
properties and are all of the form �/a0.

Determining the exponents of the corrections is important
both in fitting numerics (where often really large � are
unobtainable) and also for a better understanding of the model.
For instance, the scaling exponent h also determines the large
n limit of the entropy (single copy entanglement).11 Moreover,
especially for c = 1 theories, h provides a measure of the
compactification radius of the theory14 and thus of the decaying
of the correlation functions. Up to now, this conjecture has
been checked in a variety of critical quantum spin chains
models.15–17

Moving away from a conformal point, in the gapped
phase universality still holds for sufficiently small relevant
perturbations. Simple scaling arguments guarantee that the
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leading terms survive, but with the correlation length ξ

replacing the infrared length-scale �. Recent results, based
on exactly solvable models, indicate the appearance of the
same kind of unusual corrections to the Rényi entropies, which
are now functions of the correlation length ξ with the same
exponent h11:

Sα = c

12

(
1 + α

α

)
ln

ξ

a0
+ Aα + Bαξ−h/α + · · · . (5)

There is a factor of 2 difference in each term between (4) and
(5), due to the fact that the first is a bulk theory (with both
chiralities in the CFT), while the latter is expected to be akin
to a boundary theory, were only one chirality in the light-cone
modes effectively survives.

In this paper we are going to investigate the subleading
terms in the Rényi entropy of the one-dimensional XYZ

model. In the scaling limit we find that the entropy is (modulo
a multiplicative redefinition of the correlation length)

Sα = 1 + α

12α
ln

ξ

a0
− 1

2
ln 2

− 1

1 − α

∞∑
n=1

σ−1(n)

[(
ξ

a0

)− 2n
α

−
(

ξ

a0

)− 4n
α

]

+ α

1 − α

∞∑
n=1

σ−1(n)

[(
ξ

a0

)−2n

−
(

ξ

a0

)−4n
]

, (6)

where σ−1(n) is a divisor function, defined by (41). While
the leading term correctly reproduces a c = 1 central charge,
the interpretation of the scaling exponents in the subleading
addenda is less straightforward: we will show that the operator
content that can be extracted from (6) matches that of a
bulk Ising model and thus the leading term can be equally
interpreted as c+c̄

12 with c = c̄ = 1
2 .

Furthermore, if we include also lattice effects, which vanish
in the strict scaling limit, additional corrections appear in (6)
and, while they are less important than the dominant one
for sufficiently large α, they can be relevant for numerical
simulations in certain ranges of α. These corrections turn out
to be path dependent (probably due to the action of different
operators) and many kind of terms can arise, such as ξ−2h,
ξ−2h/α , ξ−(2−h), ξ−2(1+1/α), or even 1/ ln(ξ ). In light of Ref. 13,
some of these terms were to be expected, but the others
still lack a field theoretical interpretation, which might be
possible by applying a reasoning similar to that of Ref. 13
for a sine-Gordon model.

The paper is organized as follows: in Sec. II we
introduce the XYZ model, its phase-diagram and elementary
excitations. In Sec. III we discuss the structure of the reduced
density matrix obtained by tracing out of the ground state
half of the system and its formal equivalence with the
characters of an Ising model. In Sec. IV we present the full
expansion of the Rényi entropy and discuss how in the scaling
limit this expansion coincides with that of a bulk Ising model.
Then we discuss the lattice corrections both in the regime
where the low-energy excitations are free particles and where
they are bound states. In the latter case we show that different
paths of approach to the critical point give rise to different
sub-subleading corrections. Finally, in Sec. V we discuss our
results and their meaning.

II. THE XY Z SPIN CHAIN

We will consider the quantum spin-1/2 ferromagnetic XYZ

chain, which is described by the following Hamiltonian:

ĤXYZ = −J
∑

n

[
σx

n σ x
n+1 + Jyσ

y
n σ

y

n+1 + Jzσ
z
nσ z

n+1

]
, (7)

where the σα
n (α = x,y,z) are the Pauli matrices acting on the

site n and the sum ranges over all sites n of the chain; the
constant J , which we take to be positive, is an overall energy
scale while (Jy,Jz) take into account the degree of anisotropy
of the model.

In Fig. 1 we draw a cartoon of the phase diagram of the
XYZ chain. The model is symmetric under reflections along
the diagonals in the (Jz,Jy) plane. The system is gapped in
the whole plane, except for six critical half-lines/segments:
Jz = ±1, |Jy | � 1; Jy = ±1, |Jz| � 1; and Jz = ±Jy , |Jz| �
1. All of these lines correspond to the paramagnetic phase
of an XXZ chain, but with the anisotropy along different
directions. Thus, in the scaling limit they are described by
a c = 1 CFT, with compactification radius varying along the
line. We will use 0 � β �

√
8π (the sine-Gordon parameter of

the corresponding massive theory) to parametrize the radius.
The critical segments meet three by three at four “tricritical”
points. At these endpoints, β is the same along each line, but the
different phases have a rotated order parameter. Two of these
points—C1,2 = (1, − 1),(−1,1)—are conformal points with
β2 = 8π ; while the other two—E1,2 = (1,1),(−1, − 1)—

FIG. 1. (Color online) Phase diagram of the XYZ model in the
(Jz,Jy) plane. The blue solid lines—Jz = ±1, |Jy | � 1; Jy = ±1,
|Jz| � 1; and Jz = ±Jy , |Jz| � 1—correspond to the critical phase of
a rotated XXZ chain. Out of the four “tricritical” points, C1,2 are con-
formal and E1,2 are not. The area within the red rectangle is the portion
of the phase diagram we study in this article, and it is completely
equivalent to the principal regime of the eight-vertex model. The
yellow and green lines are the curves of constant l and μ, respectively,
in the (Jz,Jy) plane, according to the parametrization (11).

115428-2



CORRELATION LENGTH AND UNUSUAL CORRECTIONS TO . . . PHYSICAL REVIEW B 85, 115428 (2012)

correspond to β2 = 0 and are nonconformal. The former points
correspond to an antiferromagnetic (AFM) Heisenberg chain
at the BKT transition, while the latter describe the Heisenberg
ferromagnet. Thus, at E1,2 the system undergoes a transition
in which the ground state passes from a disordered state to a
fully aligned one. Exactly at the transition, the ground state is
highly degenerate while the low-energy excitations are gapless
magnons with a quadratic dispersion relation.

In studying the XYZ chain, one takes advantage of the
fact that (7) commutes with the transfer matrices of the the
zero-field eight-vertex model (see, for example, Refs. 18 and
19) and thus the two systems can be solved simultaneously. The
solution of the latter is achieved through the parametrization
of Jy,Jz in terms of elliptic functions

Jy = −	 ≡ cn(iλ) dn(iλ)

1 − k sn2(iλ)
,

(8)

Jz = −� ≡ −1 + k sn2(iλ)

1 − k sn2(iλ)
,

where (�,	) are the well-known Baxter parameters,19 and
sn(x), cn(x), and dn(x) are Jacobian elliptic functions of
parameter k. λ and k are parameters, whose natural domains
are

0 < k < 1, 0 � λ � I (k′), (9)

I (k′) being the complete elliptic integral of the first kind of
argument k′ ≡ √

1 − k2.
The definition of (	,�) itself is particularly suitable to

describe the antiferroelectric phase of the eight-vertex model
(also referred to as the principal regime), corresponding to
	 � −1 and |�| � 1. However, using the symmetries of the
model and the freedom under the rearrangement of parameters,
it can be applied to the whole of the phase diagram of the spin
Hamiltonian (for more details see Ref. 19). For the sake of
simplicity, in this paper we will focus only on the rotated
principal regime: Jy � 1, |Jz| � 1, see Fig. 1, and we defer
to a different publication some interesting properties of the
generalization to the whole phase diagram.

Before we proceed, it is more convenient to switch to an
elliptic parametrization equivalent to (8):

l ≡ 2
√

k

1 + k
, μ ≡ π

λ

I (k′)
. (10)

The elliptic parameter l corresponds to a gnome τ ≡ i I (l′)
I (l) =

i I (k′)
2I (k) , which is half of the original. The relation between k and

l is known as Landen transformation. Note that 0 � μ � π .
In terms of these new parameters, we have

� = 1

dn[2iI (l′)μ/π ; l]
, 	 = − cn[2iI (l′)μ/π ; l]

dn[2iI (l′)μ/π ; l]
. (11)

Curves of constant l always run from the AFM Heisenberg
point at μ = 0 to the isotropic ferromagnetic point at μ = π .
For l = 1 the curve coincides with one of the critical lines
discussed above, while for l = 0 the curve run away from the
critical one to infinity and then back. In Fig. 1 we draw these
curves for some values of the parameters.

For later convenience, we also introduce

x ≡ exp

[
−π

λ

2I (k)

]
= eiμτ . (12)

Using Jacobi’s θ functions, we introduce the elliptic parameter
k1 connected to x, that is,

k1 ≡ θ2
2 (0,x)

θ2
3 (0,x)

= x
1
2

4

(−1; x2)4
∞

(−x; x2)4∞
≡ k(x), (13)

or, equivalently, π
I (k′

1)
I (k1) = −iμτ (i.e., l is to τ what k1 is to

μτ/π ). In (13) we also used the q-Pochhammer symbol

(a; q)n ≡
n−1∏
k=0

(1 − aqk). (14)

The correlation length and the low-energy excitations of the
XYZ chain were calculated in Ref. 20. There are two types of
excitations. The first can be characterized as free quasiparticles
(spinons). The lowest band is a two-parameter continuum with

	Efree(q1,q2) = −J
sn[2I (l′)μ/π ; l′]

I (l)
I (k1)

× (
√

1 − k2
1 cos2 q1 +

√
1 − k2

1 cos2 q2).

(15)

The energy minimum of these state is achieved for q1,2 =
0, ± π and gives a mass gap

	Efree = 2J
1

I (l)
sn

[
2I (l′)

μ

π
; l′

]
I (k1)k′

1. (16)

For μ > π/2, in addition to the free states just discussed,
some bound states become progressively stable. They are
characterized by the following dispersion relation:

	Es(q) = −2J
sn[2I (l′)μ/π ; l′]

I (l)

I (k1)

sn(sy; k′
1)

×
√

1 − dn2(sy; k′
1) cos2

q

2

×
√

1 − cn2(sy; k′
1) cos2

q

2
, (17)

where y ≡ iI (k1)τ ( μ

π
− 1) and s counts the number of quasi-

momenta in the string state. In the scaling limit, these bound
states become breathers. The mass gap for the bound states is
(setting q = 0 above)

	Es = 	Efree sn(sy; k′
1), (18)

from which one sees that for μ > π/2 the s = 1 bound state
becomes the lightest excitation.

The correlation length for the XYZ chain (Fig. 2) was also
calculated in Ref. 20 and it is given by

ξ−1 = 1

a0

⎧⎨
⎩

− 1
2 ln k2 0 � μ � π

2 ,

− 1
2 ln k2

dn2
[

i2I (k2) τ
π

(
μ− π

2

)
;k′

2

] π
2 < μ � π ,

(19)
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where a0 is a short distance cutoff, such as the lattice spacing,
that sets the length unit and the new parameter k2 is the Landen
transformed of k1:

k2 ≡ k(x2) = 1 − k′
1

1 + k′
1

. (20)

The first behavior in (19) is due to the free particles states,
while the s = 1 bound state is responsible for the second.21

III. THE REDUCED DENSITY MATRIX

The bipartite entanglement entropy for the ground state of
the XYZ chain was calculated in Refs. 22 and 23, in the limit
where the infinite chain is partitioned in two (semi-infinite)
half-lines. For this configuration, the reduced density matrix
can be computed as the product of the four corner transfer
matrices (CTM) of the corresponding eight-vertex model.24–26

In Ref. 22 it was shown that it can be written as

ρ̂ = 1

Z

∞⊗
j=1

(
1 0

0 x2j

)
, (21)

where Z ≡ (−x2,x2)∞, that is, the partition function of the
eight-vertex model, is the normalization factor that ensures
that Trρ̂ = 1. Thus we have

Trρ̂α = (−x2α; x2α)∞
(−x2; x2)α∞

(22)

FIG. 2. (Color online) Curves of constant correlation length of the
XYZ model in the (Jz,Jy) plane. Regions of similar colors correspond
to the same correlation length values and red colors are associated
to higher values of ξ . It is worth stressing that the correlation length
does not show any essential critical behavior, while the block entropy
shows it in proximity of points E1 and E2.

and for the Rényi entropy

Sα = α

α − 1

∞∑
j=1

ln(1 + x2j ) + 1

1 − α

∞∑
j=1

ln(1 + x2jα).

(23)

The structure [Eqs. (21)–(23)] for the reduced density matrix
of the half-line is common to all integrable, local spin-1/2
chains19 and thus the entanglement spectrum of these models
is the same and only depends on x, which in this context is
usually parametrized as x = e−ε . For the XYZ chain, ε =
−iμτ . In Ref. 23 we showed that ε (and thus the entropy) has
an essential singularity at nonconformal points, and thus its
behavior differs dramatically from the conformal one.

From (23), one can see that the Rényi entropy is a
monotonically decreasing function of ε:

lim
ε→0

Sα = ∞, lim
ε→∞Sα = 0. (24)

Using (12) and19

l =
√

1 − �2

	2 − �2
, dn

[
2iI (l′)

μ

π
; l

]
= 1

�
(25)

we can plot the entanglement entropy in the phase diagram
of the XYZ model. In Fig. 3 we show a contour plot of the
Von Neumann entropy in the (Jz,Jy) plane, from which one
can clearly see the different behavior of the conformal and
nonconformal points.

FIG. 3. (Color online) Curves of constant entropy of the XYZ

model in the (Jz,Jy) plane. Regions of similar colors have similar
entropy values and the line where colors change are the lines of
constant entropy. The brighter is the color, the bigger the entropy.
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q products of the form (22) give easy access to the spectral
distribution of the reduced density matrix8 since

(−q,q)∞ =
∞∏

k=1

(1 + qk) = 1 +
∞∑

n=1

p(1)(n)qn, (26)

where p(1)(n) is the number of partitions of n in distinct positive
integers. Also note that since

∞∏
k=1

(1 + qk) =
∞∏

k=1

(1 − q2k−1)−1, (27)

p(1)(n) = pO(n), that is, the number of partitions of n into
positive odd integers.

Moreover, one can recognize Z to be formally equal to the
character of the spin field of the Ising CFT. To show this, we
write

Z(q = x2) =
∞∏

j=1

(1 + qj ) =
∞∏

j=1

1 − q2j

1 − qj
(28)

and we use the Euler’s formula for pentagonal numbers (which
is a consequence of the Jacobi triple-product identity)27

∞∏
j=1

(1 − q2j ) =
∞∑

n=−∞
(−1)nqn(3n−1)

=
∞∑

n=−∞
[q2n(6n−1) − q(2n+1)(6n+2)] (29)

to recognize that

Z = x− 1
12 χ

Ising
1,2 (iε/π ) , (30)

where χ
Ising
1,2 (τ ) is the character of the spin h1,2 = 1/16

operator of a c = 1/2 CFT:

χ (p,p′)
r,s (τ )= q−1/24∏∞

j=1(1 − qj )

∞∑
n=−∞

[
q

[2pp′n+rp−sp′ ]2
4pp′ −q

[2pp′n+rp+sp′]2
4pp′

]
,

(31)

with q ≡ e2iπτ and (p,p′) = (4,3) for the Ising minimal model.
We have

Trρ̂α = χ
Ising
1,2 (iαε/π )[

χ
Ising
1,2 (iε/π )

]α
. (32)

As we discussed above, the critical line of the XXZ chain is
approached for l → 1, that is, for τ → 0 and x → 1. On this
line, excitations are gapless and in the scaling limit the theory
can be described by a conformal field theory with central
charge c = 1. To each 0 < μ < π it correspond a different
point on the critical line, with sine-Gordon parameter β2 =
8π (1 − μ

π
).28 The two endpoints are exceptions since μ = 0,π

identify the same points for every l. However, while in the
conformal one we still have x → 1, close to the ferromagnetic
point, around μ = π , both x and q can take any value between
0 and 1. Hence a very different behavior of the entanglement
entropy follows.23,29

In order to study the asymptotic behavior of the entangle-
ment entropy close to the conformal points, it is convenient to
use the dual variable

x̃ ≡ e−i π2

μτ = e− π2

ε . (33)

which is such that x̃ → 0 as l → 1.
Expressions like (22) involving q products can be written in

terms of elliptic θ functions. For instance, this was done for the
entanglement entropy of the XYZ in Refs. 23 and 30. To study
the conformal limit, one performs a modular transformation
that switches x → x̃. Since

k(x̃) = k′(x) = k′
1 = (x; x2)4

∞
(−x; x2)4∞

, (34)

and using (13) we have

(−x2α; x2α)∞ =
[

k2(xα)

16xαk′(xα)

]1/12

=
[

k′2(x̃1/α)

16xαk(x̃1/α)

]1/12

= (x̃1/α; x̃2/α)∞
21/2xα/12x̃1/24α

. (35)

Thus

Trρ̂α = 2
α−1

2 x̃
α2−1
24α

(x̃1/α; x̃2/α)∞
(x̃; x̃2)α∞

. (36)

The modular transformation that allowed us to switch from x

to x̃ is the same one that connects characters in minimal model
of inverse temperature. For the spin operator of the Ising model
we have

χ
Ising
1,2 (τ ) = 1√

2

[
χ

Ising
1,1 (−1/τ ) − χ

Ising
2,1 (−1/τ )

]
. (37)

Using (31) and the identities (27) and (29) one can prove that

χ
Ising
1,2 (iε/π ) = 1√

2
x̃− 1

24 (x̃; x̃2)∞, (38)

which agrees with (36) and implies

Trρ̂α = 2
α−1

2
χ

Ising
1,1 (iπ/αε) − χ

Ising
2,1 (iπ/αε)[

χ
Ising
1,1 (iπ/ε) − χ

Ising
2,1 (iπ/ε)

]α
. (39)

This agrees with what conjectured in Ref. 11, but with the
important difference that the characters in (39) are c = 1/2
and do not belong to the infrared c = 1 bulk description of
the XYZ chain.31 This Ising character structure for the CTM
of the eight-vertex model was already noticed, see Ref. 32.
We acknowledge that, once the formal equivalence (30) is
understood, the content of the last page follows almost trivially,
but we decided to provide a brief derivation here for the sake of
completeness and because this result has consequences on the
structure of the entanglement entropy, a fact which is not well
known and will be discussed in the next paragraph. Finally,
we notice that, being only a formal equivalence, Eq. (30) does
not imply any underlying Virasoro algebra at work for CTM
(as far as we know) and it is thus important to recognize
that these manipulations stand on more general mathematical
concepts.
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IV. EXPANSIONS OF THE ENTANGLEMENT ENTROPY

Close to the conformal points, Eq. (23) is just a formal
series since x 	 1. However, using (36), it is straightforward
to write a series expansion for the Rényi entropy (2) in powers
of x̃ 
 1:

Sα = −1 + α

24α
ln x̃ − 1

2
ln 2

− 1

1 − α

∞∑
n=1

σ−1(n)
[
x̃

n
α − αx̃n − x̃

2n
α + αx̃2n

]
, (40)

where the coefficients

σ−1(n) ≡ 1

n

∞∑
j < k = 1
j · k = n

(j + k) +
∞∑

j = 1
j 2 = n

1

j
= σ1(n)

n
(41)

is a divisor function33 and takes into account the expansion
of the logarithm over a q product and play a role similar to
the partitions of integers in (26). It is worth noticing that the
constant term ln(2−1/2) ≡ ln(S0

1/16)—where S0
1/16 is an element

of the modular S matrix of the Ising model—is the contribution
to the entropy due to the boundary.34

The α → 1 yields the Von Neumann entropy:

Sα = − 1

12
ln x̃ − 1

2
ln 2

−
∞∑

n=1

σ−1(n)[n(x̃n − 2x̃2n) ln x̃ + x̃n − x̃2n]. (42)

We see that, contrary to what happens for α > 1, all sub-
leading terms—which are powers of x̃—acquire a logarithmic
correction, which strictly vanishes only at the critical points.
A more specific analysis of this phenomenon, together with a
quantitative study of what introduced in the next subsections,
will be the subject of a future, partly numerical, publication.

A. Scaling limit

Comparing with (5) and coherently with (32), (40), and
(42) can be identified with the expansion of a c = 1/2 theory.
However, the parameter of this expansion x̃ has meaning only
within Baxter’s parametrization of the model (8). To gain
generality, the entropy is normally measured as a function
of a universal parameter, such as the correlation length or the
mass gap.

In the scaling limit, up to a multiplicative constant, one has

x̃ ≈
(

ξ

a0

)−2

≈
(

	E

J

)2

, (43)

so that, substituting this into (40), we get (6). Relation (43)
is crucial in turning the leading coefficient in the entropy of a
c = 1/2 entropy such as (40) into that of a c = 1 theory, but it
also doubles all the exponents of the subdominant corrections.
It is reasonable to assume that this c = 1 model is some sort
of double Ising, but its operator content does not seem to
match any reasonable c = 1 model since only even exponent
states exist. Moreover, comparing (6) with (5), one would
conclude that a h = 2 operator is responsible for the first
correction. It was argued in Ref. 13 that a marginal field gives

rise to logarithmic corrections in the entropy, thus either this
correction is due to descendant of the identity (namely, the
stress-energy tensor), or we should think of it as a 2h/α, with
h = 1.

In fact, we can write the partition function of the eight-
vertex model as a bulk Ising model (i.e., quadratic in
characters). Starting from (38), we have

Z = 1√
2
x− 1

12 ξ
1
12

∞∏
k=1

(1 − ξ 1−2k)(1 + ξ 1−2k)

= x− 1
12√
2

[
χ

Ising
1,1

( i

π
ln ξ

)
+ χ

Ising
2,1

( i

π
ln ξ

)]
×

[
χ̄

Ising
1,1

( i

π
ln ξ

)
− χ̄

Ising
2,1

( i

π
ln ξ

)]

= x− 1
12√
2

[|χ0|2 − |χ1/2|2 − χ0χ̄1/2 + χ1/2χ̄0]. (44)

This formulation provides a simple explanation of the Renyi
entropy expansion (6) and its operator content. In fact, it
interprets the first correction as the Ising energy operator, and
not as a descendant of the identity.

It also means that the prefactor in front of the logarithm in
the entropy can be interpreted as c+c̄

12 with c = c̄ = 1
2 .

No fundamental reason is known for which CTM spectra
(and partition functions) of integrable models can be written
as characters in terms of the mass parameter x or x̃. This is the
case also for Eq. (44). Thus, so far, we can only bring forth
this observation while any connection with some underlying
Virasoro algebra remains to be discovered. To the contrary,
sufficiently close to a critical point, the CTM construction can
be seen as a boundary CFT and thus its character structure as
function of the size of the system is dictated by the neighboring
fix point.32

We are led to conclude that, in the scaling limit, the entropy
can be written as a function of two variables: Sα( �

a0
,

ξ

a0
).

When the inverse mass is larger that the subsystem size,
we have the usual expansion of the form (4). But when
the correlation length becomes the infrared cut-off scale,
apparently a different expansion is possible, which, unlike
(5), can contain terms with different exponents, like in (6).
Hence, while the leading universal behavior has always the
same numerical value and scales like the logarithm of the
relevant infrared scale, the exponents of the corrections might
be in principle different for terms in � and in ξ .

In the scaling limit, a0 → 0, J → ∞, and x̃ → 0 in such
a way to keep physical quantities finite. In this limit, only the
scaling relation (43) survives. However, at any finite lattice
spacing a0, there will be corrections which feed back into the
entropy and that can be relevant for numerical simulations.
To discuss these subleading terms we have to consider two
regimes separately.

B. Free excitations: 0 � μ � π
2

For 0 � μ � π
2 the lowest energy states are free, with

dispersion relation (15). To express the entropy as a function
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of the correlation length we need to invert (19). This cannot be
done in closed form. So we have to first expand (19), finding

a0

ξ
= 4x̃1/2

∞∑
n=0

σ−1(2n + 1) x̃n

= 4x̃1/2 + 16

3
x̃3/2 + 24

5
x̃5/2 + · · · (45)

and then to invert this (by hand) to the desired order:

x̃ = 1

16

a2
0

ξ 2

[
1 − 1

6

a2
0

ξ 2
+ 7

144

a4
0

ξ 4
+ O(ξ−6)

]
. (46)

We get

Sα = 1 + α

12α
ln

ξ

a0
+ 1 − 2α

6α
ln 2

+Bαξ− 2
α + Cαξ−2 1+α

α + B ′
αξ− 4

α + · · ·
−αBαξ−2 − αB ′

αξ−4 + · · · , (47)

where the coefficients only depend on α and contain the proper
power of a0 to keep each term dimensionless [for instance
Bα = 1

α−1 ( a0
4 )2/α]. We note that a new term has appeared (and

more will be seen at higher orders) and that it is not of the
forms discussed in Ref. 12.

It is worth noticing that if we express the mass gap (16)
as function of x̃, we would get a different series expansion
and thus different corrections to the entropy. These subleading
terms would have a different form, compared to (47), and even
be path dependent on how one approaches the critical point.
We prefer not to dwell into these details now, postponing the
description of this kind of path-dependent behavior with the
bound state’s correlation length to the next section.

C. Bound states: π
2 < μ < π

For μ > π/2, bound states become stable, and the lightest
excitation becomes the s = 1 state with dispersion relation
(17). Accordingly, the expression for the correlation length is
different in this region from before. Using the dual variable x̃

and the formulation of elliptic functions as infinite products,
we can write (19) as

a0

ξ
= ln

( − x̃
1+τ

2 ; x̃
)
∞

( − x̃
1−τ

2 ; x̃
)
∞(

x̃
1+τ

2 ; x̃
)
∞

(
x̃

1−τ
2 ; x̃

)
∞

= 4
∞∑

n=1

∞∑
k=1

1

2k − 1
cos

[
π2

2μ
(2k − 1)

]
x̃

(2n−1)(2k−1)
2 . (48)

The major difference in (48) compared to (45) is that the
bound state correlation length does not depend on x̃ alone, but
separately on μ and τ . This means that in inverting (48) to find
x̃ as a function of ξ , we have to first specify a relation between
μ and τ , that is, to choose a path of approach to the critical
line. We will follow three different paths, that are shown in
Fig. 4.

(1) Renormalization group flow: The first natural path is
(represented by the blue line in Fig. 4)

τ = is, μ = μ0, (49)

where s → 0 guides our approach to the gapless point. This
path, keeping μ fixed, corresponds to the RG flow. In the

FIG. 4. (Color online) Three different ways to approach the
critical line: along the μ-constant lines (blue line), which is referred
to as renormalization group flow in the text; along straight lines (red
line); and along lines that approach the criticality with zero derivative
(green line).

scaling limit, the XYZ chain is described by a sine-Gordon
model, where μ is proportional to the compactification
radius.28 Thus, assuming (49) means changing the bare mass
scale, without touching β. In the (Jz,Jy) plane this path asymp-
totically crosses the critical line with slope m = −2/ cos μ0.
Substituting this in (48) we get

a0

ξ
= 4g(μ0) x̃1/2 + 16

3
g3(μ0) x̃3/2 + O(x̃5/2), (50)

where g(μ) ≡ cos π2

2μ
. Comparing (50) with the free case (45)

we immediately conclude that the entropy retains an expansion
similar to (47), with the difference that all the coefficients now
depend on μ0 and thus change along the critical line:

Sα 	 1 + α

12α
ln ξ + Aα(μ0) + Bα(μ0)ξ− 2

α

−αBα(μ0)ξ−2 + Cα(μ0)ξ−2− 2
α + · · · . (51)

(2) Straight lines in (Jz,Jy) space: Let us now approach a
conformal critical point exactly linearly in the (Jz,Jy) plane:

Jy = 1 + m · s, Jz = s − cos μ0. (52)

This path corresponds to the following parametrization of τ

and μ (an example of which is the red line in Fig. 4):

τ =−i
π

ln(s)
+ O

(
1

ln2 s

)
, μ=μ0 + r(m,μ0) · s + O(s2),

(53)

where r(m,μ) ≡ 2+m cos μ

2 sin μ
. Thus, in the limit s → 0, the

entropy parameter x̃ vanishes like x̃ ∝ sπ/μ0 . Using (53) in
(48)

a0

ξ
	 4g(μ0)x̃

1
2 + 4r(m,μ0)g′(μ0)x̃

1
2 + μ0

π + · · · . (54)

Inverting this relation, we arrive at the following expansion of
the Rényi entropy along (52):

Sα 	 1 + α

12α
ln ξ + Aα(μ0)

+Bα(μ0)ξ−2/α + Dα(m,μ0)ξ−2μ0/π · · · . (55)
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We notice that the last term yields a new type of correction,
with a nonconstant exponent, which varies with μ. This term
is of the form ξ−(2−h), where h here is the scaling dimension
of the vertex operator eiβφ of the underlying sine-Gordon
theory. To the best of our knowledge, this is the first time
that such a correction in the Rényi entropy of gapped systems
is discussed and it also differs from those discussed in Ref. 12.
It is surprising to see the appearance of the operator content
of the underlying sine-Gordon field theory in the exponents
of the expansion of Sα on the lattice, while these operators
do not enter in the scaling limit (6). We do not have a
satisfactory understanding of this result, but we believe that
an approach similar to that of Ref. 13 might clarify the point.
Since π

2 < μ0 < π , the exponent of this new correction ranges
between 1 and 2 and always dominates over the ξ−2 term
in (51) and competes with the correction ξ−2/α for α < 2.
Notice, however, that for m0 = −2/ cos μ0, r(m0,μ0) = 0 and
thus Dα(m0,μ0) = 0: this new correction disappears. This
is precisely the slope that corresponds to the RG flow we
considered before. Also, g′(π/2) = 0 and thus the coefficient
in front of this new correction vanishes at the crossing point
between the free and the bound state. Thus, we can conclude
that this new term is turned on by the existence of a bound
state and it is a clear signature of a truly interacting theory.
Moreover, the path one chooses to approach criticality selects
a scaling limit in which irrelevant operators can be generated
and these can modify the perturbative series that defines the
correlation length, leading to something like we observed.

(3) Straight lines in (l,μ) space: Finally, as a generalization
of the first case, let us consider the straight line

τ = is, μ = μ0 + r · s, (56)

where r is the slope in the (τ,μ) plane. Interestingly, this
trajectory maps into a curve in the (Jz,Jy) plane approaching
the critical point with zero derivative, that is, with a purely
quadratic relation in a small enough neighborhood of the
conformal point (see for instance the green line in Fig. 4).
Putting (56) in (48) we have

a0

ξ
= 4g(μ0)x̃1/2 + 4r π2

μ0
g′(μ0)

x̃1/2

ln x̃

+ 16

3
g3(μ0)x̃3/2+O

(
x̃1/2

ln2 x̃
, x̃3/2

ln x̃

)
. (57)

We notice the appearance of a strange logarithmic correction in
the expansion. Inverting (57) and plugging it into the entropy
we get

Sα = 1 + α

12α
ln ξ + Aα(μ) + Eα(r,u)

ln ξ
+ · · · , (58)

This kind of logarithmic corrections were found also in Ref. 11,
but only in studying the limit α → ∞, that is, the so-called
single-copy entropy. They were also predicted in Ref. 12 as
signatures of marginal operators in a CFT, but with a different
power. From our results, it seems that this kind of very unusual
corrections may appear at finite α, by selecting a proper path
approaching the critical point. This can be due to the presence
of a marginally relevant operator in the theory, generated
when reaching the critical line through a zero-slope curve and
corresponding to a changing of the compactification radius.

We will attempt a field theoretical analysis of this kind of term
in a future work.

V. CONCLUSIONS AND OUTLOOKS

By using the example of the integrable XYZ chain, we
proved that, for a massive model, the study of the corrections
to the entanglement entropy as a function of the correlation
length requires a separate analysis from the one that yields the
entropy as function of the subsystem size.

For the bipartite Rényi entropy of the XYZ model of a
semi-infinite half-line we found, in the scaling limit and as a
function of the correlation length, the universal form (6), where
all subleading contributions are explicitly written, thanks to a
novel formulation of the reduced density matrix in terms of q

products. We argued that these corrections are best interpreted
in light of a previously unnoticed bulk Ising structure of the
CTM formulation of the model. This means that corrections
as a function of the correlation length have different exponents
compared to those depending on the length of the subsystem,
unlike what was expected from previous studies. This also
implies that the coefficient c+c̄

12 of the logarithmic leading term
has the same value both for c = c̄ = 1/2 of the bulk Ising
formulation in the mass parameter and for the c = 1, c̄ = 0 of
the critical chiral free boson model in the subsystem size.

In this respect, it is also interesting to note that the reduced
density matrix ρ̂ of (21) can be written as24,35–37

ρ̂ ∝ e−HCTM , HCTM =
∞∑

j=1

2εjη
†
j ηj , (59)

where (η†
j ,ηj ) are (Majorana) fermionic creation and annihila-

tion operators for single particle states with eigenvalue 2εj =
2jε (note that HCTM is not the Hamiltonian of the subsystem
A). This representation strongly supports the interpretation that
the c = 1 theory is constructed in terms of c = 1/2 (Majorana)
characters.

In Refs. 12 and 16 it was shown that the first correction in
the Rényi entropy of a critical XXZ chain as a function of the
subsystem size � goes like �−2K/α , where K is the Luttinger
parameter of the model. This fact has also been checked in
many other critical c = 1 quantum spin chain models via
DMRG simulations.15–17 When going to the corresponding
massive model, assuming that the operators responsible for the
corrections remain the same, the simple scaling prescription11

would give a term of the type ξ−K/α . The results presented
here would then indicate an improbable fixed value for the
Luttinger parameter K = 2. This exponent for the massive
XXZ chain was observed before (take, for instance, Ref. 11),
but its nature has not been discussed. Instead, consistently
with Ref. 16, we found in Sec. IV that the operator responsible
for this correction is the energy of the underlying bulk Ising
model. As pointed out in Ref. 13, the leading correction in �

is of the form �−2K/α in the one-interval case and �−K/α for
the half-life, whereas for two intervals, in the Ising case, the
exponent acquires an additional factor of 2, which counts the
number of twist fields at the edge of the interval.38 It would be
interesting to perform a calculation for one interval with two
boundary points in our case too, to check whether a doubling
of the exponent in the correlation length would happen in
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this case as well. We also observe that our results stem from
the study of the formally conformal structure emerging in the
Rényi entropy of the ground state. It would be of great interest
to perform a similar analysis for some excited states.

We also showed that, if one takes into account lattice
effects, there is a proliferation of new standard and unusual
corrections, which in general are path dependent, and can
assume the forms ξ−2h, ξ−2h/α , ξ−(2−h), ξ−2(1+1/α), or even
1/ ln(ξ ), where h is the scaling dimension of a relevant
operator of the critical bulk theory. We conjecture that the last
logarithmic correction is a consequence of some marginally
relevant operator in the theory. In addition each of the
previous terms appears multiplied by a point-dependent and α-
dependent coefficient that can vanish in even large parametric
regions, preventing the corresponding unusual correction from
showing up in the scaling limit of the Rényi entropy. We should
remark that the same analysis, carried out in terms of the
mass gap instead of the correlation length, would generate
even different corrections. These differences will be analyzed
elsewhere for the XYZ chain, but are a general feature of
lattice models that have to be taken into account in numerical
analysis.

In Ref. 12 it was given a list of possible subleading
contributions to the Rényi entropy for a CFT. From a naive
scaling argument, one could expect the same kind of terms
to appear in a massive theory sufficiently close to criticality.
However, some of the corrections we observed do not fit
this expectation. This could be due to strictly ultraviolet

effects that cannot be captured by a QFT or to a need to
improve the scaling argument. We believe that an analysis
similar to that carried out for critical systems in Ref. 13
could be successfully applied to a massive sine-Gordon theory
by introducing an ultraviolet cutoff (the lattice spacing) to
regularize divergent integrals and extract the corrections from
the counterterms.39 This type of check would be dual to what
we have presented here: while in our approach we started from
a lattice model to infer its universal behavior, in the other, one
would start from a field theory to understand the origin of the
correction. In conclusion, we believe that further analysis is
needed to provide a consistent field theoretical interpretation
of the corrections arising in massive models, especially for the
relevancy of such problem in numerical studies.
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