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Abstract
We propose a novel probabilistic framework to merge information from DWI tractography and
resting-state fMRI correlations. In particular, we model the interaction of latent anatomical and
functional connectivity templates between brain regions and present an intuitive extension to
population studies. We employ a mean-field approximation to fit the new model to the data. The
resulting algorithm identifies differences in latent connectivity between the groups. We
demonstrate our method on a study of normal controls and schizophrenia patients.

1 Introduction
The interaction between functional and anatomical connectivity provides a rich framework
for understanding the brain. Functional connectivity is commonly measured via temporal
correlations in resting-state fMRI data. These correlations are believed to reflect the intrinsic
functional organization of the brain [1]. Anatomical connectivity is often measured using
DWI tractography which estimates the configuration of underlying white matter fibers [2].
In this work we propose and demonstrate a novel probabilistic framework to infer the
relationship between these modalities. The model is based on latent connectivities between
brain regions and makes intuitive assumptions about the data generation process. We present
a natural extension of the model to population studies, which we use to identify widespread
connectivity changes in schizophrenia.

To date, relatively little progress has been made in fusing information between the
aforementioned anatomical and functional modalities. It has been shown that while a high
degree of structural connectivity predicts higher functional correlations, the converse does
not always hold [3,4]. For example, strong functional correlations can be found between
spatially distributed locations in the brain. However, one is more likely to identify white
matter tracts connecting nearby regions. Graph-theoretic models have previously been used
to examine the correspondence between independently estimated structural hubs and
functional networks [5,6]. In contrast, we infer a population template of connectivity using
both resting-state fMRI correlations and DWI tractography.

We demonstrate the capability of our model to learn stable patterns on a population study of
schizophrenia. Schizophrenia is a poorly-understood disorder marked by widespread
cognitive difficulties affecting intelligence, memory, and executive attention. These
impairments are not localized to a particular cortical region; rather, they reflect
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abnormalities in widely-distributed functional and anatomical networks [7,8]. In accordance
with these findings, our model identifies connectivity differences in spatially extensive
networks.

Only a few studies to date have combined resting-state fMRI and DWI tractography to
analyze schizophrenia [9,10]. Univariate statistical tests are commonly used to identify
significant population differences in temporal correlations and in mean Fractional
Anisotrophy (FA) values. The relevant connections are then compared across modalities to
draw conclusions. This approach treats functional and structural connections as a priori
independent and ignores distributed patterns of connectivity. In contrast, our model jointly
infers the entire pattern of functional and anatomical connectivity, as well as the group
differences.

2 Generative Model and Inference
Unlike voxel- and ROI-based analysis, we model the behavior of pairwise connections
between regions of the brain. Our observed variables are correlations in resting-state fMRI
and average FA values along the white matter tracts.

Latent Connectivity
Fig. 1(a) shows our model for a single population. Let N be the total number of relevant
connections in the brain. An and Fn are the latent anatomical and functional connectivity
measures between the two regions associated with the nth connection. An is a binary random

variable with parameter . It indicates the presence or absence
of a direct anatomical pathway between the regions. In contrast, Fn is a tri-state random
variable drawn from a multinomial distribution πF. These states represent little or no
functional co-activation (Fn = 0), positive functional synchrony (Fn = 1), and negative
functional synchrony (Fn = −1) between the regions. For notational convenience, we
represent Fn as a length-three indicator vector with exactly one of its elements {Fnk : k = −1,
0, 1} equal to one:

(1)

Data Likelihood

Let J be the number of subjects. The DWI measurement  for the jth subject is a noisy
observation of the anatomical connectivity An:

(2)

where δ(·) is the Dirac delta function, N(·; χ, ξ2) is a Gaussian distribution with mean χ and
variance ξ2, and ρ is the probability of failing to find a tract between two regions. The value
zero of  is arbitrarily chosen to represent “No Connection”.  is strictly positive when a
connection is present.

The BOLD fMRI correlation  for the jth subject depends on both Fn and An since direct
anatomical connections predict higher functional correlations:
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(3)

Using histograms of the data, we verified that the Gaussian distributions in Eqs. (2-3)
provide reasonable approximations for the DWI and fMRI data. Pragmatically, they greatly
simplify the learning/inference steps.

Population Differences
Fig. 1(b) depicts an extension of the model to a population study involving controls and
schizophrenia patients. We model differences between the groups within the latent
connectivities alone and share the data likelihood distributions between the two populations.

We treat the latent connectivity templates  of the schizophrenia population as
“corrupted” versions of the healthy template. In particular, with (small) probability ε, each
connection can switch its state:

(4)

(5)

For robustness, we rely on a single scalar to govern the probability of change within each
modality. Additionally, in Eq. (5) we assume that functional connectivity switches to its
other two states with equal probability.

Variational EM Solution
It is not difficult to show that the complete log-likelihood of all the random variables has
multiplicative interactions among the hidden variables. For this reason, we employ the
mean-field algorithm [11] to approximate the posterior probability distribution of the latent
variables using a fully factorized distribution.

We let  represent the posterior probability estimates for .
The variational EM algorithm alternates between updating the posterior estimates and the
model parameters to minimize the variational free energy. Due to space constraints, we
directly present the update rules.

Learning—We fix the posterior distributions and learn the model parameters. Let  be the
number of healthy subjects for which , and let  be similarly defined for
schizophrenia patients. The update rules are identical to those of the standard EM. The
probability estimates are sums of the latent posteriors:
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and the density parameters are equal to weighted statistics of the data:

The parameter updates for  are trivially obtained from these expressions

by replacing  with  and  with .

Inference—We fix the model parameters and update the variational posteriors. We use
l(·) to denote the mixture distribution in Eq. (2) and lk(·) to denote a normal distribution

with parameters {μlk, σlk} in order to obtain:

As seen, the updates can be decomposed into a prior term (for normal subjects only), a term
arising from the connectivity changes between the populations, and a data likelihood term
involving the other modality.

Model Evaluation

Based on the latent posterior probabilities , the empirical probability of
change in the anatomical or functional connectivity of the nth connection is
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(6)

respectively. We evaluate the significance and robustness of our model through non-
parametric permutation tests and cross-validataion. To construct the distributions for  and

 under the null hypothesis, we randomly permute the subject labels (NC vs. SZ) 10, 000
times. For each permutation, we fit the model and compute the relevant statistics in Eq. (6).
The significance (p-value) of each connection is equal to the proportion of permutations for
which the computed statistic is greater than or equal to the value obtained under the true
labeling.

We also quantify the model's predictive power via ten-fold cross validation. The model is fit
using the training subjects, and a likelihood ratio test is used to predict the diagnosis for the
held-out group. The data is resampled 20 times to ensure stability of the results. For
comparison, we perform the same ten-fold cross validation using support vector machine
(SVM) classifiers trained on the fMRI correlations, the DWI FA values, and the combined
fMRI and DWI data.

3 Results
Data

We demonstrate our model on a study of 18 male patients with chronic schizophrenia and 18
male healthy controls. The control participants were group matched to the patients on age,
handedness, parental socioeconomic status, and an estimated premorbid IQ. For each
subject, an anatomical scan (SPGR, TR = 7.4s, TE = 3ms, FOV = 26cm2, res = 1mm3), a
diffusion-weighted scan (EPI, TR = 17s, TE = 78ms, FOV = 24cm2, res = 1.66 × 1.66 ×
1.7mm, 51 gradient directions with b = 900s/mm2, 8 baseline scans with b = 0s/mm2) and a
resting-state functional scan (EPI-BOLD, TR = 3s, TE = 30ms, FOV = 24cm2, res = 1.875 ×
1.875 × 3mm) were acquired using a 3T GE Echospeed system.

Pre-Processing
We segmented the structural images into 77 anatomical regions with Freesurfer [12]. The
DWI data was corrected for eddy-current distortions. Two-tensor tractography was used to
estimate the white matter fibers [13]. We compute the DWI connectivity  by averaging
FA along all fibers connecting the corresponding regions. If no tracts are found,  is set to
zero.

We discarded the first five fMRI time points and performed motion correction by rigid body
alignment and slice timing correction using FSL [14]. The data was spatially smoothed
using a Gaussian filter, temporally low-pass filtered with 0.08Hz cutoff, and motion
corrected via linear regression. Finally, we regressed out global contributions to the
timecourses from the white matter, ventricles and the whole brain. We extract the fMRI
connectivity  by computing Pearson correlation coefficients between every pair of voxels
in the two regions of the nth connection, applying the Fisher-r-to-z transform to each
correlation (to enforce normality), and averaging these values. Since our anatomical regions
are large, the correlation between the mean timecourses of two regions shows poor
correspondence with the distribution of voxel-wise correlations between them. We believe
our measure is more appropriate for assessing fMRI connectivity.
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To inject prior clinical knowledge, we pre-selected 8 brain structures (corresponding to 16
regions) that are believed to play a role in schizophrenia: the superior temporal gyrus, rostral
middle frontal gyrus, hippocampus, amygdala, posterior cingulate, rostral anterior cingulate,
parahippocampal gyrus, and transverse temporal gyrus. We model only the

 unique pairwise connections between these ROIs and all other
regions in the brain.

Joint Connectivity Model
We first fit the joint model in Fig. 1(a) to each population separately as well as to the entire
dataset. Table 1 reports the parameters of the three models. We observe that {μ, σ, ρ, χ, ξ}
are largely consistent across the three models. This supports our hypothesis that group
differences appear in the latent connectivities rather than in the data likelihood parameters.

Population Study
Fig. 2 depicts the significantly different (p < 0.05, ε ̂ > 0.5) anatomical and functional
connections identified by the algorithm. Table 2 lists the corresponding regions and p-
values. Due to space limitations, we report just the 3 connections with the smallest p-values
in each modality.

As seen from Fig. 2(b), schizophrenia patients exhibit increased functional connectivity
between the parietal/posterior cingulate region and the frontal lobe and reduced functional
connectivity between the parietal/posterior cingulate region and the temporal lobe. These
results confirm the hypotheses of widespread functional connectivity changes in
schizophrenia and of functional abnormalities involving the default network.

The differences in anatomical connectivity implicate the superior temporal gyrus and
hippocampus. These regions have been cited in prior DTI studies of schizophrenia [15]. We
note that relatively few anatomical connections exhibit significant differences between the
two populations. This may stem from our choice of ROIs. In particular, we rely on
Freesurfer parcellations, which provide anatomically meaningful correspondences across
subjects. These larger regions also mitigate the effects of minor registration errors. However,
they may be too big to capture structural differences between the groups. We emphasize that
our model can be easily applied to finer scale parcelations in future studies.

Table 3 reports classification accuracies for the generative model and SVM classifiers.
Despite not being optimized for classification, our model exhibits above-chance
generalization accuracy. We note that even the SVM does not achieve high discrimination
accuracy. This underscores the well-documented challenge of finding robust functional and
anatomical changes induced by schizophrenia [15]. We stress that our main goal is to
explain differences in connectivity. Classification is only presented for validation.

4 Conclusion
We proposed a novel probabilistic framework that fuses information from resting-state fMRI
data and DWI tractography. We further extended the basic approach to model connectivity
differences between two populations. We show that our method captures changes in
functional and anatomical connectivity induced by schizophrenia. In particular, we detect
increased functional connectivity from the parietal lobe to the frontal lobe and decreased
functional connectivity from the parietal lobe to the temporal lobe. We also find significant
anatomical connectivity differences involving the superior temporal gyrus, the posterior
cingulate and the hippocampus. Finally, we demonstrate the predictive power of our model
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through cross validation. These results establish the promise of our approach for combining
multiple imaging modalities to better understand the brain.
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Fig. 1.
(a) Joint connectivity model for a single population. (b) Joint model for the effects of
schizophrenia. The pairwise connections are indexed by n = 1, …, N, the control subjects are
indexed by j = 1, …, J, and the schizophrenia patients are indexed by m = 1, …, M. Squares
indicate non-random parameters; circles indicate hidden random variables; all shaded
variables are observed.
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Fig. 2.
Significant anatomical and functional connectivity differences (p < 0.05 and ).
Blue lines indicate higher connectivity in the control group; yellow lines indicate higher
connectivity in the schizophrenia population.
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1χ0 χ1 implies that spurious DWI fibers arise due to artificially high anisotropy.
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Table 2
Top 5 significant anatomical (top) and functional (bottom) connections

Region 1 Region 2 p-value

R Superior Temporal Gyrus (R-STG) L Inferior Parietal (L-InfP) 0.0005 0.85

L Posterior Cingulate (L-PCC) L Hippocampus (L-Hipp) 0.0045 0.79

L Superior Temporal Gyrus (L-STG) L Cuneus (L-Cun) 0.011 0.93

R Pars Triangularis (R-pTri) L Posterior Cingulate (L-PCC) 0.0001 0.92

R Paracentral Gyrus (R-pC) L Transverse Temporal (L-TTG) 0.0001 0.89

L Transverse Temporal (L-TTG) L Paracentral Gyrus (L-pC) 0.0001 0.55
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Table 3
Training and testing accuracy of ten-fold cross validation for the control (NC) and
Schizophrenic (SZ) populations

Training NC Training SZ Testing NC Testing SZ

Joint fMRI/DWI Model 0.99 ± 0.005 0.88 ± 0.01 0.61 ± 0.06 0.55 ± 0.05

linear SVM fMRI 1.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.05 0.61 ± 0.05

linear SVM DWI 1.00 ± 0.00 1.00 ± 0.00 0.59 ± 0.08 0.58 ± 0.06

linear SVM fMRI/DWI 1.00 ± 0.00 1.00 ± 0.00 0.67 ± 0.04 0.60 ± 0.05
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