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Abstract – Timing jitter is one of the most significant phase-
locked loop characteristics, with high impact on performance in a 
range of applications. It is, therefore, important to develop the 
tools necessary to study and predict PLL jitter performance at 
design time. In this paper a discrete-time, linear, cyclostationary 
PLL model for jitter analysis is proposed, which accounts for the 
cyclostationary nature of noise injected into the loop at various 
PLL components. The model also predicts the aliasing of jitter 
due to the downsampling and upsampling of frequencies around 
the PLL loop. Closed-form expressions are derived for the output 
jitter spectrum and match well with results of event-driven 
simulations of a 3rd-order PLL.   
 

I. INTRODUCTION 
Timing jitter is one of the most important performance 

metrics for the steady-state operation of a phase-locked loop 
(PLL) circuit. It contributes to synchronization problems and is a 
major source of bit errors in wireless and wireline communication 
systems. It is, therefore, crucial to develop the analytical tools 
necessary to correctly study and predict the jitter performance of 
the PLL output clock.  

Jitter behavior in a PLL circuit can be studied through the 
use of stochastic differential equations [1]. This approach, 
although mathematically elegant, may be too complex for use in 
practical designs. A more conventional approach for studying 
PLL jitter is by assuming a continuous-time, linear, time-invariant 
model for the PLL circuit [2].  Even though this approximation 
yields useful results under certain conditions, it fails to capture 
two important features of PLL noise, the cyclostationary noise 
injection and aliasing. This paper presents an extension of PLL 
jitter theory, which accounts for the effects of aliasing in the PLL 
loop and also provides a general approach to incorporate the 
cyclostationary nature of PLL noise sources in the jitter analysis.  

The cyclostationary mechanism converts the supply/substrate 
and device noise of PLL components like voltage-controlled 
oscillator (VCO), charge pump and VCO output buffer into noise 
injected into the PLL loop. The mechanism, which translates the 
supply/substrate or device noise into phase noise at the output of a 
standalone VCO, has been examined in the literature [3]. 
However, limited attempts have been made to develop a PLL 
model that deals with the cyclostationary nature of the noise 
injected into the PLL loop [4]. Using the circuit-independent 
description of cyclostationary phase noise introduced in [3], in 
this paper we present a more general study of the effects of 
cyclostationarity on PLL jitter. 

Noise aliasing is a second issue that is not captured with the 
customary continuous-time, linear, time-invariant PLL model. 
When the frequency multiplication factor N in a PLL is different 

than unity, the divide-by-N circuit essentially acts as a 
downsampling block. If PLL jitter is modeled as a discrete-time 
signal at clock edges, it is downsampled and upsampled as it 
propagates around the PLL loop, and may get aliased. To capture 
this effect, a discrete-time model for the PLL is needed. The 
existing discrete-time PLL models do not capture this effect, 
since they either consider only PLLs with a frequency 
multiplication factor N equal to one [5],[6] or model the divide-
by-N circuit simply as a 1/N phase divider [7].  

The next section develops the discrete-time, linear, 
cyclostationary jitter model for the 3rd-order PLL. This is 
accomplished in three stages: First, the discrete-time equations, 
which describe the individual PLL components, are presented in 
Section II.A. Then, the cyclostationary mechanism, which 
converts supply or device noise to loop-injected noise, is 
described for the VCO and other components, and the spectral 
characteristics of the resulting noise sources are derived in 
Section II.B. To complete the model, the transfer functions from 
the various noise nodes to the output jitter are calculated for the 
discrete-time PLL model in Section II.C. Finally, in Section III, 
the theoretical results are verified using behavioral simulations of 
3rd-order PLL circuits in various noise scenarios. 

 
II. DISCRETE-TIME, CYCLOSTATIONARY PLL MODEL 

This section develops the discrete-time, linear, 
cyclostationary model for a 3rd-order PLL. Fig. 1 shows the 
discrete-time model of the 3rd-order PLL used in the subsequent 
analysis. The divide-by-N component is modeled as a 
downsampling-by-N block.  

The upsampling block introduces N-1 zeros between 
successive pulses of charge pump current. This corresponds to the 
physical reality that the charge pump is activated only once every 
N PLL clock cycles, in order to adjust the VCO control voltage, 
while it remains off during the rest of the time.  
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Fig. 1: Discrete-time model of 3rd-order PLL with noise sources. 

637

IEEE 2009 Custom Intergrated Circuits Conference (CICC)

978-1-4244-4072-6/09/$25.00 ©2009 IEEE 20-5-1



 
A. Discrete-Time Equations for PLL Components 

This subsection derives the discrete-time transfer functions 
for the various PLL components in  Fig. 1. It should be noted that 
the Fourier transforms shown in the following are periodic 
functions with period equal to 2π. 

The output spectrum Y(Ω) of the downsampling-by-N block 
is related to its input spectrum X(Ω) through the following 
equation [8]: 
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The output spectrum of the upsampling-by-N block is related 
to its input spectrum as follows [8]: 

( ) ( )NXY ⋅= ΩΩ                                   (2) 
Fig. 2 graphically depicts the relationship between the input 

and output spectra for the downsampling and upsampling blocks. 
The conversion gain of the combination of the phase-

frequency detector (PFD) and the charge pump is given by: 
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The discrete-time transfer function of the combination of the 
loop filter and VCO is obtained through the impulse-invariant 
transformation technique [5] and can be shown to be equal to [9]: 
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where the coefficients are given by the following equations: 
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In the above expressions, KV is the frequency gain of the 
VCO and T is the period of the PLL output clock. 

 
B. Cyclostationary Behavior of PLL Noise Sources 

The cyclostationary mapping of supply and/or device noise 
from various PLL components into noise injected in the PLL loop 
can be described by the “Impulse Sensitivity Function” (ISF) [3].  

Fig. 3 explains this concept in the case of device noise 
injected into a standalone VCO. Assuming that the injected noise 
is a current impulse, it will produce a step response in the VCO 
phase, because the momentary phase disturbance produced by the 
current impulse circulates around the VCO stages ad infinitum. 
The magnitude of this step response is dependent on the time 
instant within a VCO oscillation period, at which the current 
impulse is applied. A similar response is produced by a voltage 
impulse on the VCO supply. 

The phase impulse response of a standalone VCO to either 
supply or device noise is given by the following expression: 

( ) ( ) ( )ττΓτφ −⋅= tu,th VCO,pVCO,n
                     (5) 

where τ is the time instant, at which the noise impulse is applied, 
u(t) is the step function, and Γp,VCO(τ) is a periodic function with 
period equal to that of the VCO oscillation, and whose value at τ 
is the magnitude of the phase step produced by the noise impulse. 
The function Γp,VCO(τ) is the ISF of the VCO and can be written 
as: 
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where ΓVCO(τ) denotes one period of the ISF. The phase response 
of the VCO to an arbitrary noise disturbance is given by the 
following superposition integral (taking into account the 
periodicity of the ISF): 
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where i(τ) denotes the supply or device noise waveform. Fig. 4 
shows one period of the ISFs that correspond to supply and 
device noise of a VCO designed in 0.13 μm CMOS. The ISFs 
were extracted using transistor-level simulations for a VCO 
comprised of 4 differential stages and operating at 2 GHz by 
measuring the magnitudes of the phase steps when applying 
impulses on the VCO supply or internal nodes at different 
instances during the VCO period. 

A similar approach using the generalized ISF concept can 
give the current noise at the output of the charge pump or the 
phase noise at the output of the VCO buffer [9]. The main 
difference with the VCO case is that the noise accumulates over a 
finite period of time.  

Using the above equations, it is possible to derive the 
spectrum of the noise injected into the PLL loop for some 
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Fig. 2: Signal spectra in a) downsampling-by-N and b) upsampling-by-N 

blocks. 
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Fig. 3: ISF mechanism for VCO device noise: (a) Current impulse injected 
into a VCO node, (b) Phase step response of the VCO to the injected current 

impulse, (c) Current impulses injected at different time instants produce 
different phase step magnitudes. 
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important types of supply or device noise, such as impulse, 
sinusoidal or white [9].  

a) Let the supply or device noise i(τ) be a deterministic 
impulse function given by i(τ)=A·δ(τ-τ'0) where τ'0=(k0-1)T+τ0 
with 0≤τ0<T and k0 integer. Then, from (7), the output phase is 
φn,VCO[k]=A·ΓVCO(τ0)·u[k-k0] where u[·] the step function. Hence, 
the discrete-time Fourier transform (DTFT) of the injected phase 
noise to the PLL loop at the output of the VCO is: 
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b) Let the supply or device noise i(τ) be a deterministic 
sinusoidal function given by ( ) ( )111 θωτ +′⋅= tcosAi . From 
equation (7) we have:  
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The quantity in brackets is the DTFT of the sequence 
[ ] ( )( )Tkiki 1τ −+≡ . This can be calculated and used in (9) to get 

the DTFT of the VCO noise injected into the loop: 
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Also π2    ωω 11 modTT ′= .  
A similar approach gives the noise spectrum injected at the 

VCO output when i(τ) is white. Also, similar analysis can be used 
to derive the noise spectra at the charge pump and VCO buffer 
outputs for impulsive, sinusoidal and white supply or device 
noise. The details of the analysis are presented in [9]. 

 
C. Closed Loop Noise Transfer Functions 

In order to complete the PLL jitter model, it is necessary to 
calculate the closed-loop transfer functions from the various noise 
sources to the PLL output. In the case when the noise source is 
the reference clock jitter, then the spectrum of the PLL output 
jitter is given by the following expression [9]: 
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where H(Ω)=KP·HLF,VCO(Ω) with KP, HLF,VCO(Ω) as defined in 
section II.A. The quantity XREF(Ω) is the reference clock jitter 
spectrum. The above equation indicates that spectral images will 
be present at the output jitter spectrum due to upsampling of the 
input noise, as shown by the term XREF(N·Ω). 

In the case of VCO noise, the output jitter is given by the 
following expression [9]: 
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where H(Ω) as defined above and XVCO(Ω) the VCO noise 
spectrum. In this case the jitter aliasing is apparent due to the 
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kX  term. Similar analysis can give the discrete-

time PLL loop dynamics when the noise is injected at the charge 
pump or VCO output buffer [9]. Since the PLL model is linear, 
superposition applies when more than one noise types are present. 

 
III. SIMULATION RESULTS 

This section presents results from event-driven simulations 
using Verilog-A by Cadence [10], which are compared to the 
theoretical expressions derived in the previous section. The phase 
of the VCO is computed as the sum of two terms. The first is the 
integral of the simulation time and corresponds to the case of a 
noiseless VCO. The second term is the integral of the VCO noise 
waveform weighted by the ISF. When the total phase reaches 
multiples of π, a transition of the VCO voltage waveform occurs. 
In the following, the VCO ISF is modeled as a sinusoidal function 
with a small DC component after the extracted ISF of Fig. 4(a). 

In order to verify the PLL model developed in the previous 
sections, we first apply impulse noise on the VCO supply at two 
different time instances as shown in  Fig. 5. The simulation plot is 
obtained from the FFT of the impulse response, while the 
theoretical plot is calculated from (12) with XVCO(Ω) given in (8).  
Fig. 5 shows the spectra of the PLL output jitter in the two cases 
when a VCO supply noise impulse is applied at the maximum and 
40% of the maximum of the VCO ISF. Comparing the plots of  
Fig. 5(a) and  Fig. 5(b) shows a change in the magnitude of the 
jitter spectrum as a result of the cyclostationary nature of the 
VCO noise. Such a behavior cannot be predicted by a time-
invariant PLL jitter model, yet is critical to capture in digital 
applications where most of the noise events are synchronized to a 
clock and are not time-invariant. 

In order to study the aliasing effects of jitter, sinusoidal 
voltage noise at 190 MHz is applied on the VCO supply at a PLL 
operating frequency of fPLL=1 GHz and divide ratio N=5. The loop 
bandwidth of the PLL is 10 MHz. Fig. 6 shows the PLL output 
jitter spectrum normalized to the amplitude of the input noise. 
The theoretical plot is obtained by using (10) for the input noise 
spectrum and (12) for the PLL loop behavior. The various spurs 
that appear in the spectrum can be justified as follows: The PLL 
jitter spectrum is periodic with a period equal to 1 GHz and it is 
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ISF for VCO Supply Voltage Noise (2 GHz)

Time Instant of Impulse Noise (ps)
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ISF for VCO Device Current Noise (2 GHz)

(a) (b)

VCO

Fig. 4: VCO impulse sensitivity functions: (a) Supply noise, (b) Device noise 
in one VCO node. The VCO is comprised of four differential stages. 
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also symmetric around DC. Therefore, the spectrum is fully 
characterized by its content in the frequency range from DC to 
500 MHz as shown in Fig. 6. From (12) it can be seen that there 
are N-1=4 spurs that are predicted by the theory in addition to the 
spur at the input noise frequency of f0=190 MHz. From (12) and 
taking again the periodicity and symmetry of the spectrum into 
account, these spurs appear at the following frequencies:  

=×+=
N

fkff PLL
k 0 390, 410, 210, 10 MHz for k=1,…,4. 

These frequencies are denoted in Fig. 6. It should be noted 
here that the jitter spectrum in Fig. 6(a), which is obtained 
through simulation, exhibits a harmonic spur at 2·f0=380 MHz. 
This harmonic is due to nonlinearities in the simulation process 
and cannot be predicted by the PLL model, since it is linear. The 
agreement in the magnitudes of the main spurs (10 MHz and 190 
MHz) between simulation and theory is within 1%. The 
agreement in the magnitudes of the secondary spurs is within 
15%. Fig. 6 shows that even when the VCO supply noise 
frequency is out-of-band (as is the case with wideband supply 
noise), one of the resulting frequencies can fall in-band, thus 
potentially affecting the system performance. This effect cannot 
be predicted by a continuous-time model. 

Fig. 7 shows the PLL output jitter spectrum when sinusoidal 
jitter of frequency 190 MHz is applied on the PLL reference 
clock. The PLL clock frequency is 1 GHz and the divide ratio is 
N=5, so that the reference clock frequency is fREF=200 MHz. The 
reference clock jitter at 190 MHz is sampled at the reference 
clock frequency of 200 MHz and therefore it is aliased back to a 
spur at f0=10 MHz. According to (11), the reference clock 
spectrum is upsampled by a factor of N=5, in order to produce the 
PLL output spectrum.  

Therefore, the following spurs appear in addition to f0, as 
predicted by (11) and shown in Fig. 7:  

=⋅= 0ffkf REF,k ∓∓ 190, 210, 390, 410 MHz for k=1,2. 
 

IV. CONCLUSION 
An extended discrete-time, linear, cyclostationary PLL 

model for jitter analysis is proposed. It accounts for the 
cyclostationary nature of noise injected into the PLL loop due to 
supply or device noise at the various components, and also 
captures the aliasing of jitter due to downsampling and 
upsampling of frequencies around the PLL loop, when the divide 
ratio N is greater than unity. Expressions were derived for the 
noise spectra injected into the loop by generalizing the mapping 
concept of Impulse Sensitivity Function. Capturing these 
cyclostationary and aliasing effects is critical in highly integrated 
digital applications where most noise sources (supply, substrate) 
are time-variant with spurious frequency content. Behavioral 
simulations of a 3rd-order PLL verify the theoretical results in the 
cases of VCO supply noise and reference clock jitter.  
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