MIT OpenCourseWare
http://ocw.mit.edu

6.096 Introduction to C++
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Massachusetts Institute of Technology
6.096
Lecture 10
A Case Study — Modeling MIT Students

Overview:

Code has been posted for the simple program demonstration shown in dass. The basic
idea of the project wasto model a set of MIT students, and to dsplay their activities
throughout the day. There are obviously different types of MIT student personalities, so
we dedlt with just afew for the sake of example.

The goal of this case study is not to be a complete or even accurate simulation; it is
merely ademonstration of how the concepts we' ve discussed in the class can betied
together into one large program.

Some of the assumptions and amplifications that were made in developing the model are
asfollows:

e Any MIT student has afirst and last name

e MIT students' most prominently fluctuating features tend to ke exhaustion and
happiness

e Every student is currently studying calculus, physics, chemistry, biology, and
humanities (students don’t know how to distinguish humanities subjects), and has
acertain level of confidence in his or her understanding of each

e At any point, astudent is in aparticular state represented by two things: a current
activity (which can be sleeping, working, studying, or socializing, aswell as
playing and practicing asport for athletes), and acurrent status message (rather
like Facebook status messages)

e Most of astudent’s study time is spent either on the subject that was just being
studied or on the student’ s least comfortable subject

Class structure:

Two types of students were coded —NerdyStudents and AthleticStudents. Obviously
these are not a representative sample of the spectrum of MIT students, but the two dasses
are good enough examples for an incomplete simulation such as this one.

In addition to gudent classes, aSimulation class was created. Thisis a popular
technique: if you need to store abunch of datarelevant to the current game or simulation
being run, you can create aSimulation or Game classto gore that data and actually run
the game or simulation. One Simulation object is created per run of the simulation, and
the step() method iscalled each time another step of the simulation isto be performed.
All step() actualy doesin this implementation istell each of the student objects to
move on to the next activity.

How to use this example:

Most of the code should be self -explanatory, or should be documented with descriptive
comments. Look over the code and make sure you understand what it’ s doing. Make
sure you understand why some things are declared const and ahers are not; why
sometimes things are passed by reference and sometimes not; why things are public or
protected; when and why pointers, references, and regular variables are used; and 0 on.
If you understand all this, you should be well-prepared for your final project.

The STL

So far the only way we' ve seen to get a collection of items of the same type is using
arrays. However, the C++ Standard Template Library has severd classes that make
manipulating groups of objects far easier. Thiswill amost certainly be useful in final
projects.

STL isalargetopic, and we could spend weeks just on using the STL, so don’'t expect to
get used toit all at once.

Before you start learning STL, make sure you remember how templates work with
functions. (We covered thisin Lab 3)

Templatized classes:

Just as we can declare function templates, we can also declare class templates. For
instance, we could teke the Array class developed & the end of Lab 6 and make it generic
—we could make an Array class for use with any type, not just integers:

<template class Type>
class Array {
public:
Type *internalArray; // Stores a pointer to a dynamically
// allocated array (set in constructor)
Type &getValue(const int n) { return internalArray[n]; }
// And so on

3

To declare an Array object using this class, we need to goecify atype for the Type
parameter to take on in the template. We do this as follows:

Array<int> nums; // Creates a new Array of integers

STL container types:

The STL provides several kinds of classes for storing groups of data—*“container”
classes. Thevector class, from include file <vector>, stores elementsinternally in an
array, and can be accessed like an array. deque (from <deque>) is similar, though

implemented dightly more efficiently for some applications, and 1ist (from <list>)
implementsa“linked list” — adata structure in which dements are not located together in
one block of memory.

Thefull list can befound on ane of the many sites offering STL documentation.

Using STL containers:

To declare anew vector to gore integers, we could say:

vector<int> nums = {1,2,3};
(The vector class has anumber of constructors, one of which takes a C-style array.)

We can then use subscripts with this vector as we would with an aray:

v[2] = 4; // Sets the 3rd element to 4

However, we can dso perform dynamic operations on this vector:

v.push_back(4); // Adds the number 4 to the end of the vector
v.insert(v.begin(), 4); // Inserts 4 as the 1st element of the vector

For most purposes you'll be using them for in your project, deque and vector are
probably the only two containers you'd want to use. Using deque will likely be
somewhat more efficient.

STL iterators:

For many of the data structuresin the STL, plain old pointers won’'t work properly —we
can’'t navigate to the next element in alinked list by saying elementPtr++, because we
don’t know where in memory the next element is. The solution isiterators, which ae
essentiall y intelligent pointers, implemented as classes. An iterator knows how to find
the next element in any kind of STL class, for instance.

Just as we can loop through an array with subscripts, we can loop through avector or
another STL container with iterators:

for(vector<int>::iterator iter = nums.begin();
iter '= nums.end(); v++) {
*iter = 0; // Dereference operator works like with pointers

}

Thebegin() and end() functions return iterators pointing to the beginning of the
vector and one past its end, respectively. The mess before the word iterator just
indicates what type of container this is an iterator for — in this case, avector of ints.

A const_iterator is the same thing but without the ability to change the values it points
to. In ather words, aregular iterator (in our example above) islikean int *, whilea

const_iteratorislikeaconst int *. Itisdeclared exactly the same way asaregular
iterator, but instead o : - iterator, put : :const_iterator.

There are many STL functions that take iterators as arguments. For instance, the
insert() member function of vector and deque takes an iterator argument indicating
where to insert the new element.

It is strongly recommended that you use STL classesinstead of arrays. If you do this,
though, you will probably need to look up some of the documentation for these classes
online. Use the resources listed on the course website.

