
��January (IAP) 2009

MIT OpenCourseWare
http://ocw.mit.edu

6.096 Introduction to C++
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Massachusetts Institute of Technology
6.096

Lecture 10

A Case Study – Modeling MIT Students

Overview:

Code has been posted for the simple program demonstration shown in class. The basic
idea of the project was to model a set of MIT students, and to display their activities
throughout the day. There are obviously different types of MIT student personali ties, so
we dealt with just a few for the sake of example.

The goal of this case study is not to be a complete or even accurate simulation; it is
merely a demonstration of how the concepts we’ve discussed in the class can be tied
together into one large program.

Some of the assumptions and simpli fications that were made in developing the model are
as follows:

•	 Any MIT student has a first and last name
•	 MIT students’ most prominently fluctuating features tend to be exhaustion and

happiness
•	 Every student is currently studying calculus, physics, chemistry, biology, and

humanities (students don’ t know how to distinguish humanities subjects), and has
a certain level of confidence in his or her understanding of each

•	 At any point, a student is in a particular state represented by two things: a current
activity (which can be sleeping, working, studying, or socializing, as well as
playing and practicing a sport for athletes), and a current status message (rather
li ke Facebook status messages)

•	 Most of a student’s study time is spent either on the subject that was just being
studied or on the student’s least comfortable subject

Class structure:

Two types of students were coded – NerdyStudents and AthleticStudents. Obviously
these are not a representative sample of the spectrum of MIT students, but the two classes
are good enough examples for an incomplete simulation such as this one.

In addition to student classes, a Simulation class was created. This is a popular
technique: if you need to store a bunch of data relevant to the current game or simulation
being run, you can create a Simulation or Game class to store that data and actually run
the game or simulation. One Simulation object is created per run of the simulation, and
the step() method is called each time another step of the simulation is to be performed.
All step() actuall y does in this implementation is tell each of the student objects to
move on to the next activity.

How to use this example:

Most of the code should be self -explanatory, or should be documented with descriptive
comments. Look over the code and make sure you understand what it’ s doing. Make
sure you understand why some things are declared const and others are not; why
sometimes things are passed by reference and sometimes not; why things are public or
protected; when and why pointers, references, and regular variables are used; and so on.
If you understand all this, you should be well-prepared for your final project.

The STL

So far the only way we’ve seen to get a collection of items of the same type is using
arrays. However, the C++ Standard Template Library has several classes that make
manipulating groups of objects far easier. This will almost certainly be useful in final
projects.

STL is a large topic, and we could spend weeks just on using the STL, so don’ t expect to
get used to it all at once.

Before you start learning STL, make sure you remember how templates work with
functions. (We covered this in Lab 3.)

Templatized classes:

Just as we can declare function templates, we can also declare class templates. For
instance, we could take the Array class developed at the end of Lab 6 and make it generic
– we could make an Array class for use with any type, not just integers:

<template class Type>

class Array {

public:

Type *internalArray; // Stores a pointer to a dynamically

// allocated array (set in constructor)

Type &getValue(const int n) { return internalArray[n]; }

// And so on

};

To declare an Array object using this class, we need to specif y a type for the Type
parameter to take on in the template. We do this as follows:

Array<int> nums; // Creates a new Array of integers

STL container types:

The STL provides several kinds of classes for storing groups of data – “container”
classes. The vector class, from include file <vector>, stores elements internall y in an
array, and can be accessed li ke an array. deque (from <deque>) is similar, though

implemented slightly more efficiently for some appli cations, and list (from <list>)
implements a “ linked list” – a data structure in which elements are not located together in
one block of memory.

The full li st can be found on one of the many sites offering STL documentation.

Using STL containers:

To declare a new vector to store integers, we could say:

vector<int> nums = {1,2,3};

(The vector class has a number of constructors, one of which takes a C-style array.)

We can then use subscripts with this vector as we would with an array:

v[2] = 4; // Sets the 3rd element to 4

However, we can also perform dynamic operations on this vector:

v.push_back(4); // Adds the number 4 to the end of the vector

v.insert(v.begin(), 4); // Inserts 4 as the 1st element of the vector

For most purposes you’ ll be using them for in your project, deque and vector are
probably the only two containers you’d want to use. Using deque will li kely be
somewhat more efficient.

STL iterators:

For many of the data structures in the STL, plain old pointers won’ t work properly – we
can’ t navigate to the next element in a linked list by saying elementPtr++, because we
don’ t know where in memory the next element is. The solution is iterators, which are
essentiall y intell igent pointers, implemented as classes. An iterator knows how to find
the next element in any kind of STL class, for instance.

Just as we can loop through an array with subscripts, we can loop through a vector or
another STL container with iterators:

for(vector<int>::iterator iter = nums.begin();

iter != nums.end(); v++) {

*iter = 0; // Dereference operator works like with pointers

}

The begin() and end() functions return iterators pointing to the beginning of the
vector and one past its end, respectively. The mess before the word iterator just
indicates what type of container this is an iterator for – in this case, a vector of ints.

A const_iterator is the same thing but without the ability to change the values it points
to. In other words, a regular iterator (in our example above) is li ke an int *, while a

const_iterator is like a const int *. It is declared exactly the same way as a regular
iterator, but instead of ::iterator, put ::const_iterator.

There are many STL functions that take iterators as arguments. For instance, the
insert() member function of vector and deque takes an iterator argument indicating
where to insert the new element.

It is strongly recommended that you use STL classes instead of arrays. If you do this,
though, you wil l probably need to look up some of the documentation for these classes
online. Use the resources listed on the course website.

