
MIT OpenCourseWare
http://ocw.mit.edu

6.096 Introduction to C++
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Welcome to 6.096

Lecture 7
January 21, 2009

Ob ects need initialization to avoid the

Constructors

� Objects need initialization to avoid thej
assignment of junk values.

� Constructor: just a member function.

� Initializes global variables.

� Called whenever a new object of this class is
created.

� .

ever ec are a cons ruc or as v r ua or s a c, cons ,

Rules for making a constructor
� A constructor must have the same name as the class.

No return type; not even void � No return type; not even void.

� No return statement.

� Never call a constructor manually. The execution process
takes care of that.

N d l t t i t l t ti t� Never declare a constructor as virtual or static, const,
volatile, or const volatile.

� References and pointers cannot be used on constructors
and destructors because their addresses cannot be taken.

Rectangle::Rectangle() // constructor

Example

class Rectangle
{{

int height;
int width;

public:
Rectangle(); // with a constructor

void printAns();
};

Rectangle::Rectangle() // constructor
{

height = 6;
width = 6;

}

�

constructor w t no arguments.

Default constructors

A default constructor is a constructor that either � A default constructor is a constructor that either
has no parameters, or if it has parameters, all the
parameters have default values.

� No explicit constructor declaration => the
compiler assumes the class to have a default

i h constructor with no arguments.

class iOffice
{

Example

{
int a;
float b;
iOffice();
};

iOffice :: iOffice() //default constructor iOffice :: iOffice() //default constructor
{
a = 100;
b = 5.5;
}

constructor

class Xamol {
public:

// default constructor, no arguments
Xamol();

// constructor //
Xamol(int, int , int = 0);

// copy constructor
Xomal(const X&);

};

class Yamol {
public:

// default constructor with one default argument
Yamol(int = 0);

// default argument copy constructor
Yamol(const Y&, int = 0);

};

se :

Copy constructor
� Used to copy an object to a newly created
object.

� Different from assignment.

� If a copy constructor is not defined in a class,
the compiler itself defines one.

U d� Used:
� – When an object is created from another object of the
same type.
� – When an object is passed by value as a parameter to a
function.
� – When an object is returned from a function.

char *name;

Example
class MIT
{

private:
char *name;

public:
MIT()
{
name = new char[20];
}

MIT(const MIT &b) //Copy constructor
{
name = new char[20];
strcpy(name, b.name);
}

};

a e or a ass o ect w en t at o ect passes out o scope

Destructors
� Used to deallocate memory and do other cleanup for a class
object and its class members when the object is destroyed

� C ll d f cl bj h h bj fCalled for a class object when that object passes out of scope
or is explicitly deleted.

� A destructor is a member function with the same name as its
class prefixed by a ~ (tilde).

� Takes no arguments and has no return type.

� Its address cannot be taken.

� Cannot be declared const, volatile, const volatile or static.

� A destructor can be declared virtual or pure virtual.

Example
class Wheat
{

int spoon;
char fork;

public:
Wheat(int, char); // Constructor for class Wheat

~Wheat(); // Default destructor for class Wheat

};

Wheat:: Wheat(int x, char y)Wheat:: Wheat(int x, char y)
{

spoon = x;
fork = y;

}

Wheat:: ~Wheat()
{ }

The code for the actual construction or destruction of an
object is added on by the compiler and you do not see it

Constructor Destructor

MyClass *MyobjPtr = new MyClass (); delete MyobjPtr;

Figure by MIT OpenCourseWare.

Inheritance

� New classes called derived classes are created from existing
classes called base classes

� When a class is inherited all the functions and data member are
inherited, although not all of them will be accessible by the
member functions of the derived class.

� Exceptions:
� – The constructor and destructor of a base class are not

inheritedinherited
� – the assignment operator is not inherited
� – the friend functions and friend classes of the base class

are also not inherited.

en ey are acce e y mem ers o e same ass on y an

Access specifiers

� Private: If a member or variables defined in a class is private,
th th ssibl b b f th cl l dthen they are accessible by members of the same class only and
cannot be accessed from outside the class.

� Public members and variables are accessible from outside the
class.

� Protected access specifier is a stage between private and
public. If a member functions or variables defined in a class arepublic. If a member functions or variables defined in a class are
protected, then they cannot be accessed from outside the class
but can be accessed from the derived class.

Access public protected Private

members of the
same class yes yes yes

members of
derived classes yes yes no

not members yes no no

ase_c assname

� class Dau hter : ublic Mother

Implementing inheritance

� class <derived_classname> : <access specifier>
<b l ><base_classname>
� {

� …
� };

� class Daughter : public Motherg p
� {
....
};

' '

o .ou pu
ublic:

class MIT
{
public:

MIT() { x=0; }
void func(int n1) { x = n1*5; }
void output() { cout << x << '\n'; }

void output()
{

MIT::output();
cout << s1 << '\n';

}
void output() { cout << x << \n ; }

private:
int x;

};

class IAP : public MIT
{

public:

private:
int s1;

};

int main()
{
IAP obj;
obj.func(10);
bj t t();

p
IAP() { s1=0; }

void func1(int n1)
{

s1=n1*10;
}

obj.output();
obj.func1(20);
obj.output();
}

0 50
50 200

Multiple inheritance

� Inheriting from more than one class

� Separate the different base classes with
commas in the derived class declaration

� class Daughter: public Mother, public Father;

A B C

X

Figure by MIT OpenCourseWare.

