MIT OpenCourseWare
[nttp://ocw.mit.edu

6.096 Introduction to C++
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

Welcome to 6.096

Lecture 7
January 21, 2009



Constructors

« Objects need Iinitialization to avoid the
assignment of junk values.

» Constructor: just a member function.
. Initializes global variables.

. Called whenever a new object of this class Is
created.



Rules for making a constructor

. A constructor must have the same name as the class.
« NO return type; not even void.
o NO return statement.

« Never call a constructor manually. The execution process
takes care of that.

« Never declare a constructor as virtual or static, const,
volatile, or const volatile.

« References and pointers cannot be used on constructors
and destructors because their addresses cannot be taken.



Example

class Rectangle

{
Int height;
Int width;
public:
Rectangle(); /[ with a constructor
void printAns();

}

Rectangle::Rectangle() // constructor
{

height = 6;

width = 6;
}



Default constructors

- A default constructor Is a constructor that either
has no parameters, or If it has parameters, all the
parameters have default values.

« No explicit constructor declaration => the
compiler assumes the class to have a default
constructor with no arguments.



Example

class 10ffice
{

INt a;

float b;
10ffice();

%

I0ffice :: 10ffice() //default constructor

{
a=100:;
b=5.5;

}



class Xamol {
public:

/[ default constructor, no arguments
Xamol();

/I constructor
Xamol(int, int , int = 0);

/[ copy constructor
Xomal(const X&);

I§

class Yamol {
public:

/[ default constructor with one default argument
Yamol( int = 0);

/[ default argument copy constructor
Yamol(const Y&, int = 0);

I§



Copy constructor

» Used to copy an object to a newly created
object.

« Different from assignment.

. If @ copy constructor is not defined in a class,
the compiler itself defines one.

. Used:

e —When an object is created from another object of the
same type.

« —When an object is passed by value as a parameter to a
function.

« —When an object is returned from a function.



Example

class MIT
{
private:
char *name;
public:
MIT()

{

name = new char[20];

}

MIT(const MIT &b) //[Copy constructor
{

name = new char[20];
strcpy(name, b.name);

}



Destructors

« Used to deallocate memory and do other cleanup for a class
object and its class members when the object is destroyed

. Called for a class object when that object passes out of scope
or is explicitly deleted.

« A destructor iIs a member function with the same name as Its
class prefixed by a ~ (tilde).

« Takes no arguments and has no return type.
o Its address cannot be taken.
. Cannot be declared const, volatile, const volatile or static.

« A destructor can be declared virtual or pure virtual.



Example

class Wheat

{
Int spoon;
char fork;

public:
Wheat(int, char); // Constructor for class Wheat

~Wheat(); // Default destructor for class Wheat

%

Wheat:: Wheat(int x, char y)
{

spoon = X;
fork =y;

}

Wheat:: ~Wheat()
{}



Constructor Destructor

=D L a0

MyClass *MyobjPtr = new MyClass (); delete MyobjPtr;

Figure by MIT OpenCourseWare.

The code for the actual construction or destruction of an
object is added on by the compiler and you do not see it



Inheritance

« New classes called derived classes are created from existing
classes called base classes

« When a class is inherited all the functions and data member are
iInherited, although not all of them will be accessible by the
member functions of the derived class.

« Exceptions:
« — The constructor and destructor of a base class are not
Inherited
. —the assignment operator is not inherited

. —the friend functions and friend classes of the base class
are also not inherited.



Access specifiers

. Private: If a member or variables defined in a class is private,
then they are accessible by members of the same class only and
cannot be accessed from outside the class.

« Public members and variables are accessible from outside the
class.

 Protected access specifier is a stage between private and
public. If a member functions or variables defined in a class are
protected, then they cannot be accessed from outside the class
but can be accessed from the derived class.







Implementing inheritance

. Class <derived_classname> : <access specifier>
<base classname>

o {
-};“

« class Daughter : public Mother

{
¥



class MIT void output()

{ {
public: MIT::output();
MIT() { x=0; } cout << sl << '\n}
void func(int n1) { x = n1*5; } }
void output() { cout << x << \n'; }
| private:
private: Int s1;
Int X; }: |
)
int main()
class IAP : public MIT {
{ IAP obj;
oublic: ggj..func(lo).;
o j.output();
IAP() { s1=0; } obj.func1(20):
obj.output();
void funcl(int nl) }
{
s1=n1*10; )oY

50 200
}



Multiple inheritance

. Inheriting from more than one class

_
A T

&

Figure by MIT OpenCourseWare.

« Separate the different base classes with
commas in the derived class declaration

« class Daughter: public Mother, public Father;





