18.712 Introduction to Representation Theory Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

2 General results of representation theory

2.1 Subrepresentations in semisimple representations

Let A be an algebra.

Definition 2.1. A semisimple (or completely reducible) representation of A is a direct sum of irreducible representations.

Example. Let V be an irreducible representation of A of dimension n. Then $Y = \text{End}(V)$, with action of A by left multiplication, is a semisimple representation of A, isomorphic to nV (the direct sum of n copies of V). Indeed, any basis $v_1, ..., v_n$ of V gives rise to an isomorphism of representations $End(V) \to nV$, given by $x \to (xv_1, ..., xv_n)$.

Remark. Note that by Schur's lemma, any semisimple representation V of \hat{A} is canonically identified with $\oplus_X \text{Hom}_A(X, V) \otimes X$, where X runs over all irreducible representations of A. Indeed, we have a natural map $f : \bigoplus_X \text{Hom}(X, V) \otimes X \to V$, given by $g \otimes x \to g(x)$, $x \in X$, $g \in \text{Hom}(X, V)$, and it is easy to verify that this map is an isomorphism.

We'll see now how Schur's lemma allows us to classify subrepresentations in finite dimensional semisimple representations.

Proposition 2.2. Let V_i , $1 \leq i \leq m$ be irreducible finite dimensional pairwise nonisomorphic representations of A, and W be a subrepresentation of $V = \bigoplus_{i=1}^{m} n_i V_i$. Then W is isomorphic to $\bigoplus_{i=1}^m r_iV_i$, $r_i \leq n_i$, and the inclusion $\phi: W \to V$ is a direct sum of inclusions $\phi_i: r_iV_i \to n_iV_i$ given by multiplication of a row vector of elements of V_i (of length r_i) by a certain r_i -by- n_i matrix X_i with linearly independent rows: $\phi(v_1, ..., v_{r_i}) = (v_1, ..., v_{r_i})X_i$.

Proof. The proof is by induction in $n := \sum_{i=1}^{m} n_i$. The base of induction $(n = 1)$ is clear. To perform the induction step, let us assume that W is nonzero, and fix an irreducible subrepresentation $P \subset W$. Such P exists (Problem 1.20). ² Now, by Schur's lemma, P is isomorphic to V_i for some i, and the inclusion $\phi|_P : P \to V$ factors through n_iV_i , and upon identification of P with V_i is given by the formula $v \mapsto (vq_1, ..., vq_{n_i})$, where $q_l \in k$ are not all zero.

Now note that the group $G_i = GL_{n_i}(k)$ of invertible n_i -by- n_i matrices over k acts on n_iV_i by $(v_1, ..., v_{n_i}) \rightarrow (v_1, ..., v_{n_i})g_i$ (and by the identity on n_jV_j , $j \neq i$), and therefore acts on the set of subrepresentations of V , preserving the property we need to establish: namely, under the action of g_i , the matrix X_i goes to $X_i g_i$, while $X_j, j \neq i$ don't change. Take $g_i \in G_i$ such that $(q_1, ..., q_{n_i})g_i = (1, 0, ..., 0)$. Then Wg_i contains the first summand V_i of n_iV_i (namely, it is Pg_i), hence $Wg_i = V_i \oplus W'$, where $W' \subset n_1V_1 \oplus ... \oplus (n_i-1)V_i \oplus n_mV_m$ is the kernel of the projection of Wg_i to the first summand V_i . Thus the required statement follows from the induction assumption. \Box

Remark 2.3. In Proposition 2.2, it is not important that k is algebraically closed, nor it matters that V is finite dimensional. If these assumptions are dropped, the only change needed is that the entries of the matrix X_i are no longer in k but in $D_i = \text{End}_A(V_i)$, which is, as we know, a division algebra. The proof of this generalized version of Proposition 2.2 is the same as before (check it!).

2.2 The density theorem

Let A be an algebra over a field k .

Corollary 2.4. Let V be an irreducible finite dimensional representation of A, and $v_1, ..., v_n \in V$ be any linearly independent vectors. Then for any $w_1, ..., w_n \in V$ there exists an element $a \in A$ such that $av_i = w_i$.

Proof. Assume the contrary. Then the image of the map $A \to nV$ given by $a \to (av_1, ..., av_n)$ is a proper subrepresentation, so by Proposition 2.2 it corresponds to an r-by-n matrix X, $r <$ n. Thus there exist vectors $u_1, ..., u_r \in V$ such that $(u_1, ..., u_r)X = (v_1, ..., v_n)$. Let $(q_1, ..., q_n)$ be a nonzero vector such that $X(q_1,...,q_n)^T = 0$ (it exists because $r < n$). Then $\sum q_i v_i =$ $(u_1, ..., u_r)X(q_1, ..., q_n)^T = 0$, i.e. $\sum q_i v_i = 0$ - a contradiction with the linear independence of v_i . \Box

Theorem 2.5. (the Density Theorem). (i) Let V be an irreducible finite dimensional representation of A. Then the map $\rho : A \to \text{End} V$ is surjective.

(ii) Let $V = V_1 \oplus ... \oplus V_r$, where V_i are irreducible pairwise nonisomorphic finite dimensional representations of A. Then the map $\bigoplus_{i=1}^{r} \rho_i : A \to \bigoplus_{i=1}^{r} \text{End}(V_i)$ is surjective.

Let $w_j = \sum v_i c_{ij}$. By Corollary 2.4, there exists $a \in A$ such that $a v_i = w_i$. Then a maps to c, so *Proof.* (i) Let B be the image of A in End(V). Then $B \subset End(V)$. We want to show that $B = \text{End}(V)$. Let $c \in \text{End}(V)$, $v_1, ..., v_n$ be a basis of V, and (c_{ij}) the matrix of c in this basis. $c \in B$, and we are done.

(ii) Let B_i be the image of A in End(V_i), and B be the image of A in $\oplus_{i=1}^r$ End(V_i). Recall that as a representation of A , $\bigoplus_{i=1}^r \text{End}(V_i)$ is semisimple: it is isomorphic to $\bigoplus_{i=1}^r d_iV_i$, where $d_i = \dim V_i$. Then by Proposition 2.2, $B = \bigoplus_i B_i$. On the other hand, (i) implies that $B_i = \text{End}(V_i)$. Thus (ii) follows. \Box

²Another proof of the existence of P, which does not use the finite dimensionality of V, is by induction in n. Namely, if W itself is not irreducible, let K be the kernel of the projection of W to the first summand V_1 . Then K is a subrepresentation of $(n_1 - 1)V_1 \oplus ... \oplus n_mV_m$, which is nonzero since W is not irreducible, so K contains an irreducible subrepresentation by the induction assumption.

2.3 Representations of direct sums of matrix algebras

In this section we consider representations of algebras $A = \bigoplus_i \text{Mat}_{d_i}(k)$ for any field k.

Theorem 2.6. Let $A = \bigoplus_{i=1}^{r} \text{Mat}_{d_i}(k)$. Then the irreducible representations of A are $V_1 =$ $k^{d_1}, \ldots, V_r = k^{d_r}$, and any finite dimensional representation of A is a direct sum of copies of V_1, \ldots, V_r .

In order to prove Theorem 2.6, we shall need the notion of a dual representation.

Definition 2.7. (Dual representation) Let V be a representation of any algebra A . Then the dual representation V^* is the representation of the opposite algebra A^{op} (or, equivalently, right A-module) with the action

$$
(f \cdot a)(v) := f(av).
$$

Proof of Theorem 2.6. First, the given representations are clearly irreducible, as for any $v \neq 0, w \in \mathbb{R}$ V_i , there exists $a \in A$ such that $av = w$. Next, let X be an *n*-dimensional representation of A. Then, X^* is an n-dimensional representation of A^{op} . But $(Mat_{d_i}(k))^{op} \cong \text{Mat}_{d_i}(k)$ with isomorphism $\varphi(X) = X^T$, as $(BC)^T = C^T B^T$. Thus, $A \cong A^{op}$ and X^* may be viewed as an n-dimensional representation of A. Define

$$
\phi: \underbrace{A \oplus \cdots \oplus A}_{n \text{ copies}} \longrightarrow X^*
$$

by

$$
\phi(a_1,\ldots,a_n)=a_1y_1+\cdots+a_ny_n
$$

where $\{y_i\}$ is a basis of X^* . ϕ is clearly surjective, as $k \subset A$. Thus, the dual map $\phi^* : X \longrightarrow A^{n*}$ is injective. But $A^{n*} \cong A^n$ as representations of A (check it!). Hence, Im $\phi^* \cong X$ is a subrepresentation of A^n . Next, $\text{Mat}_{d_i}(k) = d_i V_i$, so $A = \bigoplus_{i=1}^r d_i V_i$, $A^n = \bigoplus_{i=1}^r nd_i V_i$, as a representation of A. Hence by Proposition 2.2, $X = \bigoplus_{i=1}^{r} m_i V_i$, as desired. \Box

2.4 Filtrations

Let A be an algebra. Let V be a representation of A. A (finite) filtration of V is a sequence of subrepresentations $0 = V_0 \subset V_1 \subset \ldots \subset V_n = V$.

Lemma 2.8. Any finite dimensional representation V of an algebra A admits a finite filtration $0 = V_0 \subset V_1 \subset \ldots \subset V_n = V$ such that the successive quotients V_i/V_{i-1} are irreducible.

Proof. The proof is by induction in $dim(V)$. The base is clear, and only the induction step needs to be justified. Pick an irreducible subrepresentation $V_1 \subset V$, and consider the representation $U = V/V_1$. Then by the induction assumption U has a filtration $0 = U_0 \subset U_1 \subset ... \subset U_{n-1} = U$ such that U_i/U_{i-1} are irreducible. Define V_i for $i \geq 2$ to be the preimages of U_{i-1} under the tautological projection $V \to V/V_1 = U$. Then $0 = V_0 \subset V_1 \subset V_2 \subset ... \subset V_n = V$ is a filtration of V with the desired property. \Box

2.5 Finite dimensional algebras

Definition 2.9. The **radical** of a finite dimensional algebra A is the set of all elements of A which act by 0 in all irreducible representations of A. It is denoted $Rad(A)$.

Proposition 2.10. $Rad(A)$ is a two-sided ideal.

Proof. Easy.

Proposition 2.11. Let A be a finite dimensional algebra.

(i) Let I be a nilpotent two-sided ideal in A, i.e. $I^n = 0$ for some n. Then $I \subset Rad(A)$.

(ii) $Rad(A)$ is a nilpotent ideal. Thus, $Rad(A)$ is the largest nilpotent two-sided ideal in A.

Proof. (i) Let V be an irreducible representation of A. Let $v \in V$. Then $Iv \subset V$ is a subrepresentation. If $Iv \neq 0$ then $Iv = V$ so there is $x \in I$ such that $xv = v$. Then $x^n \neq 0$, a contradiction. Thus $Iv = 0$, so I acts by 0 in V and hence $I \subset \text{Rad}(A)$.

(ii) Let $0 = A_0 \subset A_1 \subset ... \subset A_n = A$ be a filtration of the regular representation of A by subrepresentations such that A_{i+1}/A_i are irreducible. It exists by Lemma 2.8. Let $x \in Rad(A)$. Then x acts on A_{i+1}/A_i by zero, so x maps A_{i+1} to A_i . This implies that $Rad(A)^n = 0$, as desired. \Box

Theorem 2.12. A finite dimensional algebra A has only finitely many irreducible representations V_i up to isomorphism, these representations are finite dimensional, and

$$
A/Rad(A) \cong \bigoplus_i \text{End } V_i.
$$

� *Proof.* First, for any irreducible representation V of A, and for any nonzero $v \in V$, $Av \subseteq V$ is a finite dimensional subrepresentation of V. (It is finite dimensional as A is finite dimensional.) As V is irreducible and $Av \neq 0$, $V = Av$ and V is finite dimensional.

Next, suppose we have non-isomorphic irreducible representations V_1, V_2, \ldots, V_r . By Theorem 2.5, the homomorphism

$$
\bigoplus_i \rho_i : A \longrightarrow \bigoplus_i \text{End } V_i
$$

is surjective. So $r \leq \sum_i \dim \text{End } V_i \leq \dim A$. Thus, A has only finitely many non-isomorphic irreducible representations (at most dim A).

Now, let V_1, V_2, \ldots, V_r be all non-isomorphic irreducible finite dimensional representations of A. By Theorem 2.5, the homomorphism

$$
\bigoplus_i \rho_i : A \longrightarrow \bigoplus_i \operatorname{End} V_i
$$

is surjective. The kernel of this map, by definition, is exactly $Rad(A)$.

Corollary 2.13. $\sum_i (\dim V_i)^2 \leq \dim A$, where the V_i's are the irreducible representations of A.

Proof. As dim End $V_i = (\dim V_i)^2$, Theorem 2.12 implies that dim A-dim Rad(A) = Σ $\sum_i (\dim V_i)^2$. As dim Rad $(A) \geq 0$, \sum $_i$ dim End $V_i =$ $\sum_i (\dim V_i)^2$. As dim Rad $(A) \ge 0$, $\sum_i (\dim V_i)^2 \le \dim A$.

 \Box

 \Box

Example 2.14. 1. Let $A = k[x]/(x^n)$. This algebra has a unique irreducible representation, which is a 1-dimensional space k, in which x acts by zero. So the radical Rad(A) is the ideal (x) .

2. Let A be the algebra of upper triangular n by n matrices. It is easy to check that the irreducible representations of A are V_i , $i = 1, ..., n$, which are 1-dimensional, and any matrix x acts by x_{ii} . So the radical Rad(A) is the ideal of strictly upper triangular matrices (as it is a nilpotent ideal and contains the radical). A similar result holds for block-triangular matrices.

Definition 2.15. A finite dimensional algebra A is said to be **semisimple** if $Rad(A) = 0$.

Proposition 2.16. For a finite dimensional algebra A, the following are equivalent:

- 1. A is semisimple.
- 2. $\sum_i (\dim V_i)^2 = \dim A$, where the V_i's are the irreducible representations of A.
- 3. $A \cong \bigoplus_i \text{Mat}_{d_i}(k)$ for some d_i .
- 4. Any finite dimensional representation of A is completely reducible (that is, isomorphic to a direct sum of irreducible representations).
- 5. A is a completely reducible representation of A.

Proof. As dim $A-\dim \text{Rad}(A) = \sum_i (\dim V_i)^2$, clearly $\dim A = \sum_i (\dim V_i)^2$ if and only if $\text{Rad}(A) =$ 0. Thus, $(1) \Leftrightarrow (2)$.

Next, by Theorem 2.12, if $Rad(A) = 0$, then clearly $A \cong \bigoplus_i Mat_{d_i}(k)$ for $d_i = \dim V_i$. Thus, (1) ⇒ (3) . Conversely, if $A \cong \bigoplus_i \text{Mat}_{d_i}(k)$, then by Theorem 2.6, Rad $(A) = 0$, so A is semisimple. Thus $(3) \Rightarrow (1)$.

Next, (3) \Rightarrow (4) by Theorem 2.6. Clearly (4) \Rightarrow (5). To see that (5) \Rightarrow (3), let $A = \bigoplus_i n_iV_i$. Schur, End_A (V_i) = k. Thus, End_A(A) ≅ $\bigoplus_i \text{Mat}_{n_i}(k)$. But End_A(A) ≅ A^{op} by Problem 1.22, so $A^{\text{op}} \cong \bigoplus_i \text{Mat}_{n_i}(k)$. Thus, $A \cong (\bigoplus_i \text{Mat}_{n_i}(k))^{\text{op}} = \bigoplus_i \text{Mat}_{n_i}(k)$, as desired. Consider End_A(A) (endomorphisms of A as a representation of A). As the V_i 's are pairwise nonisomorphic, by Schur's lemma, no copy of V_i in A can be mapped to a distinct V_i . Also, by $A^{op} \cong \bigoplus_i \text{Mat}_{n_i}(k)$. Thus, $A \cong (\bigoplus_i \text{Mat}_{n_i}(k))^{op} = \bigoplus_i \text{Mat}_{n_i}(k)$, as desired.

2.6 Characters of representations

Let A be an algebra and V a finite-dimensional representation of A with action ρ . Then the *character* of V is the linear function $\chi_V : A \to k$ given by

$$
\chi_V(a) = \text{tr}|_V(\rho(a)).
$$

If $[A, A]$ is the span of commutators $[x, y] := xy - yx$ over all $x, y \in A$, then $[A, A] \subseteq \text{ker } \chi_V$. Thus, we may view the character as a mapping $\chi_V : A/[A, A] \to k$.

Exercise. Show that if $W \subset V$ are finite dimensional representations of A, then $\chi_V = \chi_W + \chi_W$ $\chi_{V/W}$.

Theorem 2.17. (1) Characters of (distinct) irreducible finite-dimensional representations of A are linearly independent.

(2) If A is a finite-dimensional semisimple algebra, then these characters form a basis of $(A/[A, A])^*$.

Proof. (1) If V_1, \ldots, V_r are nonisomorphic irreducible finite-dimensional representations of A, then $\rho_{V_1} \oplus \cdots \oplus \rho_{V_r} : A \to \text{End } V_1 \oplus \cdots \oplus \text{End } V_r$ is surjective by the density theorem, so $\chi_{V_1}, \ldots, \chi_{V_r}$ are linearly independent. (Indeed, if $\sum \lambda_i \chi_{V_i}(a) = 0$ for all $a \in A$, then $\sum \lambda_i \text{Tr}(M_i) = 0$ for all $M_i \in$ End_kV_i. But each $tr(M_i)$ can range independently over k, so it must be that $\lambda_1 = \cdots = \lambda_r = 0$.)

(2) First we prove that $[\text{Mat}_d(k), \text{Mat}_d(k)] = sl_d(k)$, the set of all matrices with trace 0. It is clear that $[\text{Mat}_d(k), \text{Mat}_d(k)] \subseteq sl_d(k)$. If we denote by E_{ij} the matrix with 1 in the *i*th row of the jth column and 0's everywhere else, we have $[E_{ij}, E_{jm}] = E_{im}$ for $i \neq m$, and $[E_{i,i+1}, E_{i+1,i}] = E_{ii}$ $E_{i+1,i+1}$. Now $\{E_{im}\}\cup\{E_{ii}-E_{i+1,i+1}\}$ forms a basis in $sl_d(k)$, so indeed $[\text{Mat}_d(k), \text{Mat}_d(k)] = sl_d(k)$, as claimed.

By semisimplicity, we can write $A = Mat_{d_1}(k) \oplus \cdots \oplus Mat_{d_r}(k)$. Then $[A, A] = sl_{d_1}(k) \oplus \cdots \oplus$ $sl_{d_r}(k)$, and $A/[A,A] \cong k^r$. By Theorem 2.6, there are exactly r irreducible representations of A (isomorphic to k^{d_1}, \ldots, k^{d_r} , respectively), and therefore r linearly independent characters on the r-dimensional vector space $A/[A, A]$. Thus, the characters form a basis. \Box

2.7 The Jordan-Hölder theorem

We will now state and prove two important theorems about representations of finite dimensional algebras - the Jordan-Hölder theorem and the Krull-Schmidt theorem.

Theorem 2.18. (Jordan-Hölder theorem). Let V be a finite dimensional representation of A , and $0 = V_0 \subset V_1 \subset ... \subset V_n = V$, $0 = V'_0 \subset ... \subset V'_m = V$ be filtrations of V, such that the representations $W_i := V_i/V_{i-1}$ and $W'_i := V'_i/V'_{i-1}$ are irreducible for all i. Then $n = m$, and there exists a permutation σ of 1, ..., n such that $W_{\sigma(i)}$ is isomorphic to W_i' .

Proof. First proof (for k of characteristic zero). The character of V obviously equals the sum of characters of W_i , and also the sum of characters of W'_i . But by Theorem 2.17, the characters of irreducible representations are linearly independent, so the multiplicity of every irreducible representation W of A among W_i and among W'_i are the same. This implies the theorem.³

Second proof (general). The proof is by induction on $\dim V$. The base of induction is clear, so let us prove the induction step. If $W_1 = W'_1$ (as subspaces), we are done, since by the induction assumption the theorem holds for V/W_1 . So assume $W_1 \neq W'_1$. In this case $W_1 \cap W'_1 = 0$ (as W_1, W'_1 are irreducible), so we have an embedding $f: W_1 \oplus W'_1 \to V$. Let $U = V/(W_1 \oplus W'_1)$, and $0 = U_0 \subset U_1 \subset \ldots \subset U_p = U$ be a filtration of U with simple quotients $Z_i = U_i/U_{i-1}$ (it exists by Lemma 2.8). Then we see that:

1) V/W_1 has a filtration with successive quotients $W'_1, Z_1, ..., Z_p$, and another filtration with successive quotients W_2, \ldots, W_n .

2) V/W'_1 has a filtration with successive quotients $W_1, Z_1, ..., Z_p$, and another filtration with successive quotients W'_2, \ldots, W'_n .

By the induction assumption, this means that the collection of irreducible representations with multiplicities $W_1, W'_1, Z_1, ..., Z_p$ coincides on one hand with $W_1, ..., W_n$, and on the other hand, with W'_1, \ldots, W'_m . We are done. \Box

The Jordan-Hölder theorem shows that the number n of terms in a filtration of V with irreducible successive quotients does not depend on the choice of a filtration, and depends only on

³This proof does not work in characteristic p because it only implies that the multiplicities of W_i and W'_i are the same modulo p, which is not sufficient. In fact, the character of the representation pV , where V is any representation, is zero.

V. This number is called the *length* of V. It is easy to see that n is also the maximal length of a filtration of V in which all the inclusions are strict.

2.8 The Krull-Schmidt theorem

Theorem 2.19. (Krull-Schmidt theorem) Any finite dimensional representation of A can be uniquely (up to order of summands) decomposed into a direct sum of indecomposable representations.

 \sum *Proof.* It is clear that a decomposition of V into a direct sum of indecomposable representations exists, so we just need to prove uniqueness. We will prove it by induction on dim V. Let $V =$ $V_1 \oplus ... \oplus V_m = V'_1 \oplus ... \oplus V'_n$. Let $i_s : V_s \to V, i'_s : V'_s \to V, p_s : V \to V_s, p'_s : V \to V'_s$ be the natural maps associated to these decompositions. Let $\theta_s = p_1 i'_s p'_s i_1 : V_1 \to V_1$. We have $\sum_{s=1}^n \theta_s = 1$. Now we need the following lemma.

Lemma 2.20. Let W be a finite dimensional indecomposable representation of A. Then

- (i) Any homomorphism $\theta : W \to W$ is either an isomorphism or nilpotent:
- (ii) If $\theta_s : W \to W$, $s = 1, ..., n$ are nilpotent homomorphisms, then so is $\theta := \theta_1 + ... + \theta_n$.

Proof. (i) Generalized eigenspaces of θ are subrepresentations of W, and W is their direct sum. Thus, θ can have only one eigenvalue λ . If λ is zero, θ is nilpotent, otherwise it is an isomorphism.

(ii) The proof is by induction in n. The base is clear. To make the induction step $(n-1 \text{ to } n)$, assume that θ is not nilpotent. Then by (i) θ is an isomorphism, so $\sum_{i=1}^{n} \theta^{-1} \theta_i = 1$. The morphisms $\theta^{-1}\theta_i$ are not isomorphisms, so they are nilpotent. Thus $1 - \theta^{-1}\overline{\theta_n} = \theta^{-1}\theta_1 + ... + \theta^{-1}\theta_{n-1}$ is an isomorphism, which is a contradiction with the induction assumption. \Box

By the lemma, we find that for some s, θ_s must be an isomorphism; we may assume that $s = 1$. In this case, $V_1' = \text{Im}(p_1'i_1) \oplus \text{Ker}(p_1i_1'),$ so since V_1' is indecomposable, we get that $f := p'_1 i_1 : V_1 \to V'_1$ and $g := p_1 i'_1 : V'_1 \to V_1$ are isomorphisms.

Let $B = \bigoplus_{j>1} V_j$, $B' = \bigoplus_{j>1} V'_j$; then we have $V = V_1 \oplus B = V'_1 \oplus B'$. Consider the map $h : B \to B'$ defined as a composition of the natural maps $B \to V \to B'$ attached to these decompositions. We claim that h is an isomorphism. To show this, it suffices to show that $Ker h = 0$ (as h is a map between spaces of the same dimension). Assume that $v \in \text{Ker} h \subset B$. Then $v \in V'_1$. On the other hand, the projection of v to V_1 is zero, so $gv = 0$. Since g is an isomorphism, we get $v = 0$, as desired.

Now by the induction assumption, $m = n$, and $V_j = V'_{\sigma(j)}$ for some permutation σ of $2, ..., n$. The theorem is proved. □

2.9 Problems

Problem 2.21. Extensions of representations. Let A be an algebra, and V, W be a pair of representations of A. We would like to classify representations U of A such that V is a subrepresentation of U, and $U/V = W$. Of course, there is an obvious example $U = V \oplus W$, but are there any others?

Suppose we have a representation U as above. As a vector space, it can be (non-uniquely) identified with $V \oplus W$, so that for any $a \in A$ the corresponding operator $\rho_U(a)$ has block triangular form

$$
\rho_U(a) = \begin{pmatrix} \rho_V(a) & f(a) \\ 0 & \rho_W(a) \end{pmatrix},
$$

where $f: A \to \text{Hom}_k(W, V)$ is a linear map.

(a) What is the necessary and sufficient condition on $f(a)$ under which $\rho_U(a)$ is a representation? Maps f satisfying this condition are called $(1-)$ cocycles (of A with coefficients in $\text{Hom}_k(W, V)$. They form a vector space denoted $Z^1(W, V)$.

(b) Let $X: W \to V$ be a linear map. The coboundary of X, dX, is defined to be the function $A \to \text{Hom}_k(W, V)$ given by $dX(a) = \rho_V(a)X - X\rho_W(a)$. Show that dX is a cocycle, which vanishes iff X is a homomorphism of representations. Thus coboundaries form a subspace $B^1(W, V) \subset$ $Z^1(W, V)$, which is isomorphic to $\text{Hom}_k(W, V) / \text{Hom}_A(W, V)$. The quotient $Z^1(W, V) / B^1(W, V)$ is denoted $Ext¹(W, V)$.

(c) Show that if $f, f' \in Z^1(W, V)$ and $f - f' \in B^1(W, V)$ then the corresponding extensions U, U' are isomorphic representations of A. Conversely, if $\phi : U \to U'$ is an isomorphism such that

$$
\phi(a) = \begin{pmatrix} 1_V & * \\ 0 & 1_W \end{pmatrix}
$$

then $f - f' \in B^1(V, W)$. Thus, the space $Ext^1(W, V)$ "classifies" extensions of W by V.

(d) Assume that W, V are finite dimensional irreducible representations of A. For any $f \in$ $Ext^1(W, V)$, let U_f be the corresponding extension. Show that U_f is isomorphic to $U_{f'}$ as representations if and only if f and f' are proportional. Thus isomorphism classes (as representations) of nontrivial extensions of W by V (i.e., those not isomorphic to $W \oplus V$) are parametrized by the projective space $\mathbb{P}Ext^1(W, V)$. In particular, every extension is trivial iff $Ext^1(W, V) = 0$.

Problem 2.22. (a) Let $A = \mathbb{C}[x_1, ..., x_n]$, and V_a, V_b be one-dimensional representations in which x_i act by a_i and b_i , respectively $(a_i, b_i \in \mathbf{C})$. Find $\text{Ext}^1(V_a, V_b)$ and classify 2-dimensional representations of A.

(b) Let B be the algebra over C generated by $x_1, ..., x_n$ with the defining relations $x_ix_j = 0$ for all i, j. Show that for $n > 1$ the algebra B has infinitely many non-isomorphic indecomposable representations.

Problem 2.23. Let Q be a quiver without oriented cycles, and P_Q the path algebra of Q . Find irreducible representations of P_Q and compute $Ext¹$ between them. Classify 2-dimensional representations of PQ.

Problem 2.24. Let A be an algebra, and V a representation of A. Let $\rho: A \to \text{End}V$. A formal deformation of V is a formal series

$$
\tilde{\rho} = \rho_0 + t\rho_1 + \dots + t^n \rho_n + \dots,
$$

where $\rho_i : A \to \text{End}(V)$ are linear maps, $\rho_0 = \rho$, and $\tilde{\rho}(ab) = \tilde{\rho}(a)\tilde{\rho}(b)$.

If $b(t) = 1 + b_1 t + b_2 t^2 + \dots$, where $b_i \in \text{End}(V)$, and $\tilde{\rho}$ is a formal deformation of ρ , then $b\tilde{\rho}b^{-1}$ is also a deformation of ρ , which is said to be isomorphic to $\tilde{\rho}$.

- (a) Show that if $Ext^1(V, V) = 0$, then any deformation of ρ is trivial, i.e. isomorphic to ρ .
- (b) Is the converse to (a) true? (consider the algebra of dual numbers $A = k[x]/x^2$).

Problem 2.25. The Clifford algebra. Let V be a finite dimensional complex vector space equipped with a symmetric bilinear form $($, $)$. The Clifford algebra $Cl(V)$ is the quotient of the tensor algebra TV by the ideal generated by the elements $v \otimes v - (v, v)$, $v \in V$. More explicitly, if $x_i, 1 \leq i \leq N$ is a basis of V and $(x_i, x_j) = a_{ij}$ then $Cl(V)$ is generated by x_i with defining relations

$$
x_i x_j + x_j x_i = 2a_{ij}, x_i^2 = a_{ii}.
$$

Thus, if $(,) = 0$, $Cl(V) = \wedge V$.

(i) Show that if $\binom{n}{k}$ is nondegenerate then $Cl(V)$ semisimple, and has one irreducible representation of dimension 2^n if $\dim V = 2n$ (so in this case $Cl(V)$ is a matrix algebra), and two such representations if $\dim(V) = 2n + 1$ (i.e. in this case Cl(V) is a direct sum of two matrix algebras).

Hint. In the even case, pick a basis $a_1, ..., a_n, b_1, ..., b_n$ of V in which $(a_i, a_j) = (b_i, b_j) = 0$, $(a_i, b_j) = \delta_{ij}/2$, and construct a representation of Cl(V) on $S := \wedge(a_1, ..., a_n)$ in which b_i acts as "differentiation" with respect to a_i . Show that S is irreducible. In the odd case the situation is similar, except there should be an additional basis vector c such that $(c, a_i) = (c, b_i) = 0$, $(c, c) =$ 1, and the action of c on S may be defined either by $(-1)^{\text{degree}}$ or by $(-1)^{\text{degree}+1}$, giving two representations S_+, S_- (why are they non-isomorphic?). Show that there is no other irreducible representations by finding a spanning set of $Cl(V)$ with $2^{\dim V}$ elements.

(ii) Show that $Cl(V)$ is semisimple if and only if (,) is nondegenerate. If (,) is degenerate, what is $Cl(V)/Rad(Cl(V))$?

2.10 Representations of tensor products

Let A, B be algebras. Then $A \otimes B$ is also an algebra, with multiplication $(a_1 \otimes b_1)(a_2 \otimes b_2) =$ $a_1a_2\otimes b_1b_2$. The following theorem describes irreducible finite dimensional representations of $A\otimes B$ in terms of irreducible finite dimensional representations of A and those of B.

Theorem 2.26. (i) Let V be an irreducible finite dimensional representation of A and W an irreducible finite dimensional representation of B. Then $V \otimes W$ is an irreducible representation of $A \otimes B$.

(ii) Any irreducible finite dimensional representation M of $A \otimes B$ has the form (i) for unique V and W.

Remark 2.27. Part (ii) of the theorem typically fails for infinite dimensional representations; e.g. it fails when A is the Weyl algebra in characteristic zero. Part (i) also may fail. E.g. let $A = B = V = W = \mathbb{C}(x)$. Then (i) fails, as $A \otimes B$ is not a field.

Proof. (i) By the density theorem, the maps $A \to \text{End } V$ and $B \to \text{End } W$ are surjective. Therefore, the map $A \otimes B \to \text{End } V \otimes \text{End } W = \text{End}(V \otimes W)$ is surjective. Thus, $V \otimes W$ is irreducible.

(ii) First we show the existence of V and W. Let A', B' be the images of A, B in End M. Then A', B' are finite dimensional algebras, and M is a representation of $A' \otimes B'$, so we may assume without loss of generality that A and B are finite dimensional.

In this case, we claim that $\text{Rad}(A \otimes B) = \text{Rad}(A) \otimes B + A \otimes \text{Rad}(B)$. Indeed, denote the latter by J. Then J is a nilpotent ideal in $A \otimes B$, as Rad(A) and Rad(B) are nilpotent. On the other hand, $(A \otimes B)/J = A/Rad(A) \otimes B/RadB$, which is a product of two semisimple algebras, hence semisimple. This implies $J \supset \text{Rad}(A \otimes B)$. Altogether, by Proposition 2.11, we see that $J = \text{Rad}(A \otimes B)$, proving the claim.

Thus, we see that

$$
(A \otimes B)/\text{Rad}(A \otimes B) = A/\text{Rad}(A) \otimes B/\text{Rad}(B).
$$

Now, M is an irreducible representation of $(A \otimes B)/\text{Rad}(A \otimes B)$, so it is clearly of the form $M = V \otimes W$, where V is an irreducible representation of $A/Rad(A)$ and W is an irreducible representation of $B/Rad(B)$, and V, W are uniquely determined by M (as all of the algebras involved are direct sums of matrix algebras). \Box