
MIT OpenCourseWare 
http://ocw.mit.edu

18.712 Introduction to Representation Theory
Fall 2008

  For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.  
 

http://ocw.mit.edu
http://ocw.mit.edu/terms


4 Representations of finite groups: further results 

4.1 Frobenius-Schur indicator 

Suppose that G is a finite group and V is an irreducible representation of G over C. We say that 
V is 

- of complex type, if V � V ∗, 

- of real type, if V has a nondegenerate symmetric form invariant under G, 

- of quaternionic type, if V has a nondegenerate skew form invariant under G. 

Problem 4.1. (a) Show that EndR[G] V is C for V of complex type, Mat2(R) for V of real type, 
and H for V of quaternionic type, which motivates the names above. 

Hint. Show that the complexification VC of V decomposes as V ⊕ V ∗. Use this to compute the 
dimension of End [G] V in all three cases. Using the fact that End  is a division algebra, prove R R[G] V
the result in the complex case. In the remaining two cases, let B be the invariant bilinear form on V , 
and (, ) the invariant positive Hermitian form (they are defined up to a nonzero complex scalar and 
a positive real scalar, respectively), and define the operator j : V → V such that B(v, w) = (v, jw).
Show that j is complex antilinear (ji = −ij), and j2 = λ · Id, where λ is a real number, positive in 
the real case and negative in the quaternionic case (if B is renormalized, j multiplies by a nonzero 
complex number  and 2 by ,̄ as  is antilinear). Thus  can be normalized so that 2 z j zz j j j = 1 for 
the real case, and j2 = −1 in the quaternionic case. Deduce the claim from this. 

(b) Show that V is of real type if and only if V is the complexification of a representation VR 

over the field of real numbers. 
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Example 4.2. For Z/nZ all irreducible representations are of complex type, except the trivial 
one and, if n is even, the “sign” representation, m → (−1)m, which are or real type. For S3 

all three irreducible representations C+, C−, C2 are or real type. For S4 there are five irreducible 
representations C+, C−, C2

+, C3 Similarly, all five irreducible ,	 C3 
−, which are all or real type. 

+, −,representations of A5 – C, C3 C3 C4 , C5 are or real type. As for Q8, its one-dimensional 
representations are or real type, and the two-dimensional one is of quaternionic type. 

Definition 4.3. The Frobenius-Schur indicator FS(V ) of an irreducible representation V is 0 if it 
is of complex type, 1 if it is of real type, and −1 if it is of quaternionic type. 

Theorem 4.4. (Frobenius-Schur) The number of involutions (=elements of order ≤ 2) in G is 
equal to V dim(V )FS(V ), i.e. the sum of dimensions of all representations of G of real type 
minus the sum of dimensions of its representations of quaternionic type. 

Proof. Let A : V V have eigenvalues λ1, λ2, . . . , λn. We have → 

Tr|S2V (A ⊗ A) = λiλj 

i≤j 

Tr Λ2V (A ⊗ A) = λiλj|
i<j 

Thus, �

Tr|S2V (A ⊗ A) − Tr|Λ2V (A ⊗ A) = λ2 = Tr(A2).
i 

1≤i≤n 

Thus for g ∈ G we have

χV (g 2) = χS2V (g) − χΛ2V (g)


Therefore, ⎧ � ⎨ 1, if V is of real type 
G −1χV ( g 2) = χS2V (P )−χ∧2V (P ) = dim(S2V )G−dim(∧2V )G = if V is of quaternionic type | |

g∈G 
⎩ 
−1

0
,
, if V is of complex type 

Finally, the number of involutions in G equals 

1 � � � � 
dim V χV ( g 2) = dim V − dim V. 

|G| 
V g∈G real V quat V 

Corollary 4.5. Assume that all representations of a finite group G are defined over real numbers 
(i.e. all complex representations of G are obtained by complexifying real representations). Then 
the sum of dimensions of irreducible representations of G equals the number of involutions in G. 
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4.2 Frobenius determinant 

Enumerate the elements of a finite group G as follows: g1, g2, . . . , gn. Introduce n variables indexed 
with the elements of G : 

xg1 , xg2 , . . . , xgn . 

Definition 4.6. Consider the matrix XG with entries aij = xgigj . The determinant of XG is some 
polynomial of degree n of xg1 , xg2 , . . . , xgn that is called the Frobenius determinant. 

The following theorem, discovered by Dedekind and proved by Frobenius, became the starting 
point for creation of representation theory. 

Theorem 4.7. 
r

det XG = Pj (x)deg Pj 

j=1 

for some pairwise non-proportional irreducible polynomials Pj (x), where r is the number of conju
gacy classes of G. 

We will need the following simple lemma. 

Lemma 4.8. Let Y be an n × n matrix with entries yij . Then det Y is an irreducible polynomial 
of {yij }. 

Proof. Let det Y = q1q2 . . . qk, be the factorization of det Y into irreducible polynomials (it is 
defined uniquely up to scaling and permutation of factors). Since det Y has degree 1 with respect 
to each row and each column of Y , by uniqueness of factorization all qi must be homogeneous 
with respect to each row and each column, of degree either 0 or 1. Now consider the factor q1. 
It is homogeneous of degree 1 in some row. This means that it depends on all columns, so is 
homogeneous of degree 1 in all columns. Thus q1 = det Y , as desired. 

Now we are ready to proceed to the proof of Theorem 4.7. 

Proof. Let V = C[G] be the regular representation of G. Consider the operator-valued polynomial 

L(x) = xgρ(g), 
g∈G 

where ρ(g) ∈ EndV is induced by g. The action of L(x) on an element h ∈ G is 

L(x)h = xgρ(g)h = xggh = xzh−1 z 
g∈G g∈G z∈G 

So the matrix of the linear operator L(x) in the basis g1, g2, . . . , gn is XG with permuted columns 
and hence has the same determinant up to sign. 

Further, by Maschke’s theorem, we have 

r

detV L(x) = (detVi L(x))dim Vi , 
i=1 
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where Vi are the irreducible representations of G. We set Pi = detVi L(x). Let {eim} be bases of Vi 

and Ei,jk ∈ End Vi be the matrix units in these bases. Then {Ei,jk} is a basis of C[G] and 

L(x)|Vi = yi,jkEi,jk, 
j,k 

where yi,jk are new coordinates on C[G] related to xg by a linear transformation. Then 

Pi(x) = det |Vi L(x) = det(yi,jk) 

Hence, Pi are irreducible (by Lemma 4.8) and not proportional to each other (as they depend on 
different collections of variables yi,jk). The theorem is proved. 

4.3 Algebraic numbers and algebraic integers 

We are now passing to deeper results in representation theory of finite groups. These results require 
the theory of algebraic numbers, which we will now briefly review. 

Definition 4.9. z ∈ C is an algebraic number (respectively, an algebraic integer), if z is a 
root of a monic polynomial with rational (respectively, integer) coefficients. 

Definition 4.10. z ∈ C is an algebraic number, (respectively an algebraic integer), if z is an 
eigenvalue of a matrix with rational (respectively, integer) entries. 

Proposition 4.11. Definitions (4.9) and (4.10) are equivalent. 

Proof. To show (4.10) (4.9), notice that z is a root of the characteristic polynomial of the matrix ⇒
(a monic polynomial with rational, respectively integer, coefficients). 
To show (4.9) (4.10), suppose z is a root of ⇒ 

p(x) = x n + a1x n−1 + . . . + an−1x + an. 

Then the characteristic polynomial of the following matrix (called the companion matrix) is 
p(x): 

⎞⎛ ⎜⎜⎜⎜⎜⎝


0 0 0 . . . 0 −an 

1 0 0 . . . 0 −an−1 

0 1 0 . . . 0 −an−1 
. . . 

0 0 0 . . . 1 −a1 

⎟⎟⎟⎟⎟⎠

.


Since z is a root of the characteristic polynomial of this matrix, it is an eigenvalue of this matrix. 

The set of algebraic numbers is denoted by Q, and the set of algebraic integers by A. 

Proposition 4.12. (i) A is a ring. 

(ii) Q is a field. Namely, it is an algebraic closure of the field of rational numbers. 
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Proof. We will be using definition (4.10). Let α be an eigenvalue of 

A ∈ Matn(C) 

with eigenvector v, let β be an eigenvalue of 

B ∈ Matm(C) 

with eigenvector w. Then α ± β is an eigenvalue of 

A⊗ Idm ± Idn ⊗ B, 

and αβ is an eigenvalue of 
A⊗ B. 

The corresponding eigenvector is in both cases v ⊗ w. This shows that both A and Q are rings. 
To show that the latter is a field, it suffices to note that if α = 0 is a root of a polynomial � p(x) of 
degree d, then α−1 is a root of xdp(1/x). The last statement is easy, since a number α is algebraic 
if and only if it defines a finite extension of Q. 

Proposition 4.13. A ∩ Q = Z. 

Proof. We will be using definition (4.9). Let z be a root of 

p(x) = x n + a1x n−1 + . . . + an−1x + an, 

and suppose 
z = 

p

q 
∈ Q, gcd(p, q) = 1. 

nNotice that the leading term of p(x) will have q in the denominator, whereas all the other terms 
will have a lower power of q there. Thus, if q =� ±1, then p(z) ∈/ Z, a contradiction. Thus, 
z ∈ A ∩ Q ⇒ z ∈ Z. The reverse inclusion follows because n ∈ Z is a root of x − n. 

Every algebraic number α has a minimal polynomial p(x), which is the monic polynomial 
with rational coefficients of the smallest degree such that p(α) = 0. Any other polynomial q(x) with 
rational coefficients such that q(α) = 0 is divisible by p(x). Roots of p(x) are called the algebraic 
conjugates of α; they are roots of any polynomial q with rational coefficients such that q(α) = 0. 

Note that any algebraic conjugate of an algebraic integer is obviously also an algebraic inte
ger. Therefore, by the Vieta theorem, the minimal polynomial of an algebraic integer has integer 
coefficients. 

Below we will need the following lemma: 

Lemma 4.14. If α1, ..., αm are algebraic numbers, then all algebraic conjugates to α1 + ... + αm 

are of the form α� + ... + α� , where α�i are some algebraic conjugates of αi.1 m

Proof. It suffices to prove this for two summands. If αi are eigenvalues of rational matrices Ai of 
smallest size (i.e. their characteristic polynomials are the minimal polynomials of αi), then α1 + α2 

is an eigenvalue of A := A1 ⊗ Id + Id ⊗ A2. Therefore, so is any algebraic conjugate to α1 + α2. 
But all eigenvalues of A are of the form α�1 + α�2, so we are done. 
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Problem 4.15. Show that if V is an irreducible complex representation of a finite group G of 
dimension > 1 then there exists g ∈ G such that χV (g) = 0. 

Hint. Assume the contrary. Use orthonormality of characters to show that the arithmetic mean 
of the numbers |χV (g)|2 for g =� 1 is < 1. Deduce that their product β satisfies 0 < β < 1. 
Show that all conjugates of β satisfy the same inequalities (consider the Galois conjugates of the 
representation V ). Then derive a contradiction. 

4.4 Frobenius divisibility 

Theorem 4.16. Let G be a finite group, and let V be an irreducible representation of G over C. 
Then 

dim V divides |G|. 

Proof. Let C1, C2, . . . , Cn be the conjugacy classes of G. Set 

λi = χV (gCi ) 
|Ci| 

,
dim V 

where gCi is a representative of Ci. 

Proposition 4.17. The numbers λi are algebraic integers for all i. 

Proof. Let C be a conjugacy class in G, and P = h∈C h. Then P is a central element of Z[G], so it 
acts on V by some scalar λ, which is an algebraic integer (indeed, since Z[G] is a finitely generated 
Z-module, any element of Z[G] is integral over Z, i.e. satisfies a monic polynomial equation with 
integer coefficients). On the other hand, taking the trace of P in V , we get |C χV (g) = λ dim V , 

|C|χV (g) 
|

g ∈ C, so λ = .dim V 

Now, consider � 
λiχV (gCi ). 

i 

This is an algebraic integer, since: 

(1) λi are algebraic integers by Proposition 4.17, 

(2) χV (gCi ) is a sum of roots of unity (it is the sum of eigenvalues of the matrix of ρ(gCi ), and 

since gC
|G

i

| = e in G, the eigenvalues of ρ(gCi ) are roots of unity), and 

(3) A is a ring (Proposition 4.12). 

On the other hand, from the definition of λi, 

λiχV (gCi ) = 
Ci| χV (gCi| )χV (gCi 

dim V 
) 
. 

Ci i 

Recalling that χV is a class function, this is equal to 

� χV (g)χV (g) = 
|G|(χV , χV ) 

.
dim V dim V 

g∈G 
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Since V is an irreducible representation, (χV , χV ) = 1, so 

λiχV (gCi ) = 
|G| 

.
dim V 

Ci 

Since |G| ∈ Q and 
� 

λiχV (gCi ) ∈ A, by Proposition 4.13 |G| ∈ Z.dim V Ci dim V 

4.5 Burnside’s Theorem 

Definition 4.18. A group G is called solvable if there exists a series of nested normal subgroups 

{e} = G1 � G2 � . . . � Gn = G 

where Gi+1/Gi is abelian for all 1 ≤ i ≤ n − 1. 

Remark 4.19. Such groups are called solvable because they first arose as Galois groups of poly
nomial equations which are solvable in radicals. 

aTheorem 4.20 (Burnside). Any group G of order p qb, where p and q are prime and a, b ≥ 0, is 
solvable. 

This famous result in group theory was proved by the British mathematician William Burnside 
in the late 19th century. Here is a proof of his theorem using Representation Theory. 

Before proving Burnside’s theorem we will prove several other results which may be of indepen
dent interest. 

Theorem 4.21. Let V be an irreducible representation of a finite group G and let C be a conjugacy 
class of G with gcd(|C|, dim(V )) = 1. Then for any g ∈ C, either χV (g) = 0 or g acts as a scalar 
on V . 

The proof will be based on the following lemma.


1

Lemma 4.22. If ε1, ε2 . . . εn are roots of unity such that (ε1 + ε2 + . . . + εn) is an algebraic 

n 
integer, then either ε1 = . . . = εn or ε1 + . . . + εn = 0. 

Proof. Let a = 1 (ε1 + . . . + εn). If not all εi are equal, then |a| < 1. Moreover, since any algebraic n 
conjugate of a root of unity is also a root of unity, |a�| ≤ 1 for any algebraic conjugate a� of a. But 
the product of all algebraic conjugates of a is an integer. Since it has absolute value < 1, it must 
equal zero. Therefore, a = 0. 

Proof of theorem 4.21. 

Let dim V = n. Let ε1, ε2, . . . εn be the eigenvalues of ρV (g). They are roots of unity, so 
χV (g) is an algebraic integer. Also, by Proposition 4.17, 1 |C|χV (g) is an algebraic integer. Since n 
gcd(n, |C|) = 1, this implies that 

χV (g) 1 
= (ε1 + . . . + εn). 

n n 

is an algebraic integer. Thus, by Lemma 4.22, we get that either ε1 = . . . = εn or ε1 + . . . + εn = 
χV (g) = 0. In the first case, since ρV (g) is diagonalizable, it must be scalar. In the second case, 
χV (g) = 0. The theorem is proved. 
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Theorem 4.23. Let G be a finite group, and let C be a conjugacy class in G of order pk where p 
is prime and k > 0. Then G has a proper nontrivial normal subgroup. 

Proof. Choose an element g ∈ C. Since g =� e, by orthogonality of columns of the character table, 

dim V χV (g) = 0. (3) 
V ∈IrrG 

We can divide IrrG into three parts: 

1. the trivial representation, 

2. S, the set of irreducible representations whose dimension is divisible by p, and 

3. T , the set of non-trivial irreducible representations whose dimension is not divisible by p. 

Lemma 4.24. There exists V ∈ T such that χV (g) = 0� . 

Proof. If V ∈ S, the number 1 dim(V )χV (g) is an algebraic integer, so p � 1 
a = dim(V )χV (g) 

p
V ∈S 

is an algebraic integer. 

Now, by (3), we have 

0 = χC(g) + dim V χV (g) + dim V χV (g) = 1 + pa + dim V χV (g). 
V ∈S V ∈T V ∈T 

This means that the last summand is nonzero. 

Now pick V ∈ T such that χV (g) = 0; it exists by Lemma 4.24. Theorem 4.21 implies that � g 
(and hence any element of C) acts by a scalar in V . Now let H be the subgroup of G generated 
by elements ab−1 , a, b ∈ C. It is normal and acts trivially in V , so H =� G, as V is nontrivial. Also 
H = 1, since � |C| > 1. 

Proof of Burnside’s theorem. 

Assume Burnside’s theorem is false. Then there exists a nonabelian simple group G of order 
paqb . Then by Theorem 4.23, this group cannot have a conjugacy class of order pk or qk , k ≥ 1. So 
the order of any conjugacy class in G is either 1 or is divisible by pq. Adding the orders of conjugacy 

aclasses and equating the sum to p qb, we see that there has to be more than one conjugacy class 
consisting just of one element. So G has a nontrivial center, which gives a contradiction. 

4.6 Representations of products 

Theorem 4.25. Let G,H be finite groups, {Vi} be the irreducible representations of G over a 
field k (of any characteristic), and {Wj } be the irreducible representations of H over k. Then the 
irreducible representations of G × H over k are {Vi ⊗ Wj }. 

Proof. This follows from Theorem 2.26. 
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4.7 Virtual representations 

Definition 4.26. A virtual representation of a finite group G is an integer linear combination of 
irreducible representations of G, V = niVi, ni ∈ Z (i.e., ni are not assumed to be nonnegative). 
The character of V is χV := niχVi . 

The following lemma is often very useful (and will be used several times below). 

Lemma 4.27. Let V be a virtual representation with character χV . If (χV , χV ) = 1 and χV (1) > 0 
then χV is a character of an irreducible representation of G. 

Proof. Let V1, V2, . . . , Vm be the irreducible representations of G, and V = niVi. Then by 
orthonormality of characters, (χV , χV ) = 2 So 2 = 1, meaning that ni = ±1 for exactly i ni . i ni 
one i, and nj = 0 for j =� i. But χV (1) > 0, so ni = +1 and we are done. 

4.8 Induced Representations 

Given a representation V of a group G and a subgroup H ⊂ G, there is a natural way to construct 
a representation of H. The restricted representation of V to H, ResG 

H V is the representation given 
by the vector space V and the action ρResG V = ρV |H . 

H 

There is also a natural, but more complicated way to construct a representation of a group G 
given a representation V of its subgroup H. 

Definition 4.28. If G is a group, H ⊂ G, and V is a representation of H, then the induced 
representation IndG V is the representation of G withH 

IndG = {f : G → |f(hx) = ρV (h)f(x)∀x ∈ G, h ∈ H}H V V 

and the action g(f)(x) = f(xg)∀g ∈ G. 

Remark 4.29. In fact, IndG is naturally isomorphic to HomH (k[G], V ).H V 

Let us check that IndG is indeed a representation: H V 

g(f)(hx) = f(hxg) = ρV (h)f(xg) = ρV (h)g(f)(x), and g(g�(f))(x) = g�(f)(xg) = f(xgg�) = 
(gg�)(f)(x) for any g, g�, x ∈ G and h ∈ H. 

Remark 4.30. Notice that if we choose a representative xσ from every left H-coset σ of G, then 
any f ∈ IndG is uniquely determined by {f(xσ)}.H V 

Because of this, 

dim(IndG
H V ) = dimV 

|G| 
.·

|H| 

Problem 4.31. Check that if K ⊂ H ⊂ G are groups and V a representation of K then IndG IndH 
H K V 

is isomorphic to IndG 
K V . 

4.9 The Mackey formula 

Let us now compute the character χ of IndG 
H V . 
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Theorem 4.32. (The Mackey formula) One has 

1 � 
χ(g) = χV (xgx−1)

|H| 
x∈G,xgx−1∈H 

Proof. For a left H-coset σ of G, let us define 

Vσ = {f ∈ IndG |f(g) = 0 ∀g �∈H V σ}. 

Then one has � 
IndG = Vσ,H V 

σ 

and so � 
χ(g) = χσ(g), 

σ 

where χσ(g) is the trace of the diagonal block of ρ(g) corresponding to Vσ. 

Since g(σ) = σg is a left H-coset for any left H-coset σ, χσ(g) = 0 if σ =� σg. 

Now assume that σ = σg. Choose xσ ∈ σ. Then xσg = hxσ where h = xσgxσ
−1 ∈ H. Consider 

the vector space homomorphism α : Vσ → V with α(f) = f(xσ). Since f ∈ Vσ is uniquely 
determined by f(xσ), α is an isomorphism. We have 

α(gf) = g(f)(xσ) = f(xσg) = f(hxσ) = ρV (h)f(xσ) = hα(f), 

and gf = α−1hα(f). This means that χσ(g) = χV (h). Therefore 

χ(g) = χV (xσgx
−
σ 

1). 
σ∈H\G,σg=σ 

Since it does not matter which representative xσ of σ we choose, this expression can be written as 
in the statement of the theorem. 

4.10 Frobenius reciprocity 

A very important result about induced representations is the Frobenius Reciprocity Theorem which 
connects the operations Ind and Res. 

Theorem 4.33. (Frobenius Reciprocity) 

Let H ⊂ G be groups, V be a representation of G and W a representation of H. Then 
HomG(V, IndG

H V,W ).H W ) is naturally isomorphic to HomH (ResG 

Proof. Let E = HomG(V, IndG
H V,W ). Define F : EH W ) and E� = HomH (ResG → E� and F � : E� →

E as follows: F (α)v = (αv)(e) for any α ∈ E and (F �(β)v)(x) = β(xv) for any β ∈ E�. 

In order to check that F and F � are well defined and inverse to each other, we need to check 
the following five statements. 

Let α ∈ E, β ∈ E�, v ∈ V , and x, g ∈ G. 

(a) F (α) is an H-homomorphism, i.e. F (α)hv = hF (α)v. 
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Indeed, F (α)hv = (αhv)(e) = (hαv)(e) = (αv)(he) = (αv)(eh) = h (αv)(e) = hF (α)v.· 

(b) F �(β)v ∈ IndG 
H W , i.e. (F �(β)v)(hx) = h(F �(β)v)(x).


Indeed, (F �(β)v)(hx) = β(hxv) = hβ(xv) = h(F �(β)v)(x).


(c) F �(β) is a G-homomorphism, i.e. F �(β)gv = g(F �(β)v).


Indeed, (F �(β)gv)(x) = β(xgv) = (F �(β)v)(xg) = (g(F �(β)v))(x).


(d) F F � = IdE� .◦ 

This holds since F (F �(β))v = (F �(β)v)(e) = β(v). 

(e) F � ◦ F = IdE , i.e. (F �(F (α))v)(x) = (αv)(x).


Indeed, (F �(F (α))v)(x) = F (αxv) = (αxv)(e) = (xαv)(e) = (αv)(x), and we are done.


4.11 Examples 

Here are some examples of induced representations (we use the notation for representations from 
the character tables). 

1. Let G = S3, H = Z2. Using the Frobenius reciprocity, we obtain: IndG C+ = C2 
H ⊕ C+, 

IndG C = C2 
H − ⊕ C−. 

2. Let G = S3, H = Z3. Then we obtain IndG C+ = C+ ⊕ C , IndG C� = IndG C�2 = C2 .H − H H 

3. Let G = S4, H = S3. Then IndG C+ = C+⊕C3 , IndG C = C , IndG C2 = C2⊕C3
+.H − H − −⊕C+

3 
H −⊕C3 

Problem 4.34. Compute the decomposition into irreducibles of all the irreducible representations 
of A5 induced from 

(a) Z2 

(b) Z3 

(c) Z5 

(d) A4 

(e) Z2 × Z2 

4.12 Representations of Sn 

In this subsection we give a description of the representations of the symmetric group Sn for any 
n. 

Definition 4.35. A partition λ of n is a representation of n in the form n = λ1 + λ2 + ... + λp, 
where λi are positive integers, and λi ≥ λi+1. 

To such λ we will attach a Young diagram Yλ, which is the union of rectangles −i ≤ y ≤ −i+1, 
0 ≤ x ≤ λi in the coordinate plane, for i = 1, ..., p. Clearly, Yλ is a collection of n unit squares. A 
Young tableau corresponding to Yλ is the result of filling the numbers 1, ..., n into the squares of 
Yλ in some way (without repetitions). For example, we will consider the Young tableau Tλ obtained 
by filling in the numbers in the increasing order, left to right, top to bottom. 
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We can define two subgroups of Sn corresponding to Tλ: 

1. The row subgroup Pλ: the subgroup which maps every element of {1, ..., n} into an element 
standing in the same row in Tλ. 

2. The column subgroup Qλ: the subgroup which maps every element of {1, ..., n} into an 
element standing in the same column in Tλ. 

Clearly, Pλ ∩ Qλ = {1}.


Define the Young projectors:

1 � 

aλ := g, 
|Pλ| 

g∈Pλ 

1 � 
bλ := (−1)gg, 

|Qλ| 
g∈Qλ 

where (−1)g denotes the sign of the permutation g. Set cλ = aλbλ. Since Pλ ∩ Qλ = {1}, this 
element is nonzero. 

The irreducible representations of Sn are described by the following theorem. 

Theorem 4.36. The subspace Vλ := C[Sn]cλ of C[Sn] is an irreducible representation of Sn under 
left multiplication. Every irreducible representation of Sn is isomorphic to Vλ for a unique λ. 

The modules Vλ are called the Specht modules. 

The proof of this theorem is given in the next subsection. 

Example 4.37. 

For the partition λ = (n), Pλ = Sn, Qλ = {1}, so cλ is the symmetrizer, and hence Vλ is the trivial 
representation. 

For the partition λ = (1, ..., 1), Qλ = Sn, Pλ = {1}, so cλ is the antisymmetrizer, and hence Vλ is 
the sign representation. 

n = 3. For λ = (2, 1), Vλ = C2 . 

n = 4. For λ = (2, 2), Vλ = C2; for λ = (3, 1), Vλ = C3 ; for λ = (2, 1, 1), Vλ = C+
3 .−

Corollary 4.38. All irreducible representations of Sn can be given by matrices with rational entries. 

Problem 4.39. Find the sum of dimensions of all irreducible representations of the symmetric 
group Sn. 

Hint. Show that all irreducible representations of Sn are real, i.e. admit a nondegenerate 
invariant symmetric form. Then use the Frobenius-Schur theorem. 

4.13 Proof of Theorem 4.36 

Lemma 4.40. Let x ∈ C[Sn]. Then aλxbλ = �λ(x)cλ, where �λ is a certain linear function. 

Proof. If g ∈ PλQλ, then g has a unique representation as pq, p ∈ Pλ, q ∈ Qλ, so aλgbλ = (−1)qcλ. 
Thus, to prove the required statement, we need to show that if g /∈ PλQλ then aλgbλ = 0. 
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To show this, it is sufficient to find a transposition t such that t ∈ Pλ and g−1tg ∈ Qλ; then 

aλgbλ = aλtgbλ = aλg(g−1tg)bλ = −aλgbλ, 

so aλgbλ = 0. In other words, we have to find two elements i, j standing in the same row in the 
tableau T = Tλ, and in the same column in the tableau T � = gT . Thus, it suffices to show that if 
such a pair does not exist, then g ∈ PλQλ, i.e. there exists p ∈ Pλ, q� ∈ Q�λ := gQλg

−1 such that 
pT = q�T � (so that g = pq, q = g−1q�g ∈ Qλ). 

Any two elements in the first row of T must be in different columns of T �, so there exist q1
� ∈ Q�λ 

which moves all these elements to the first row. So there is p1 ∈ Pλ such that p1T and q1
� T � have 

the same first row. Now do the same procedure with the second row, finding elements p2, q2
� such 

that p2p1T and q2
� q1
� T � have the same first two rows. Continuing so, we will construct the desired 

elements p, q�. The lemma is proved. 

Let us introduce the lexicographic ordering on partitions: λ > µ if the first nonvanishing 
λi − µi is positive. 

Lemma 4.41. If λ > µ then aλC[Sn]bµ = 0. 

Proof. Similarly to the previous lemma, it suffices to show that for any g ∈ Sn there exists a 
transposition t ∈ Pλ such that g−1tg ∈ Qµ. Let T = Tλ and T � = gTµ. We claim that there are 
two integers which are in the same row of T and the same column of T �. Indeed, if λ1 > µ1, this is 
clear by the pigeonhole principle (already for the first row). Otherwise, if λ1 = µ1, like in the proof 
of the previous lemma, we can find elements p1 ∈ Pλ, q1

� ∈ gQµg
−1 such that p1T and q1

� T � have the 
same first row, and repeat the argument for the second row, and so on. Eventually, having done 
i − 1 such steps, we’ll have λi > µi, which means that some two elements of the i-th row of the first 
tableau are in the same column of the second tableau, completing the proof. 

Lemma 4.42. cλ is proportional to an idempotent. Namely, c2 
λ = dim 

n! 
Vλ 
cλ. 

Proof. Lemma 4.40 implies that c2 
λ is proportional to cλ. Also, it is easy to see that the trace of 

cλ in the regular representation is n! (as the coefficient of the identity element in cλ is 1). This 
implies the statement. 

Lemma 4.43. Let A be an algebra and e be an idempotent in A. Then for any left A-module M , 
one has HomA(Ae,M) = eM (acting by right multiplication). 

Proof. Note that 1 − e is also idempotents in A. Thus the statement immediately follows from the 
fact that HomA(A,M) = M and the decomposition A = Ae ⊕ A(1 − e). 

Now we are ready to prove Theorem 4.36. Let λ ≥ µ. Then by Lemmas 4.42, 4.43 

HomSn (Vλ, Vµ) = HomSn (C[Sn]cλ, C[Sn]cµ) = cλC[Sn]cµ. 

The latter space is zero for λ > µ by Lemma 4.41, and 1-dimensional if λ = µ by Lemmas 4.40 
and 4.42. Therefore, Vλ are irreducible, and Vλ is not isomorphic to Vµ if λ =� µ. Since the number 
of partitions equals the number of conjugacy classes in Sn, the representations Vλ exhaust all the 
irreducible representations of Sn. The theorem is proved. 
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4.14 Induced representations for Sn 

Denote by Uλ the representation IndSn C. It is easy to see that Uλ can be alternatively defined as Pλ 

Uλ = C[Sn]aλ. 

Proposition 4.44. Hom(Uλ, Vµ) = 0 for µ < λ, and dim Hom(Uλ, Vλ) = 1. Thus, Uλ = 
⊕µ≥λKµλVµ, where Kµλ are nonnegative integers and Kλλ = 1. 

Definition 4.45. The integers Kµλ are called the Kostka numbers. 

Proof. By Lemmas 4.42 and 4.43, 

Hom(Uλ, Vµ) = Hom(C[Sn]aλ, C[Sn]aµbµ) = aλC[Sn]aµbµ, 

and the result follows from Lemmas 4.40 and 4.41. 

Now let us compute the character of Uλ. Let Ci be the conjugacy class in Sn having il cycles 
of length l for all l ≥ 1. Also let x1, ..., xN be variables, and let 

(x) = x mHm i 
i 

be the power sum polynomials. 

Theorem 4.46. Let N ≥ p (where p is the number of parts of λ). Then χUλ (Ci) is the coefficient6 

of xλ := 
� 
x 

λ
j 

j in the polynomial � 
Hm(x)im . 

m≥1 

Proof. The proof is obtained easily from the Mackey formula. Namely, χUλ (Ci) is the number of 
elements x ∈ Sn such that xgx−1 ∈ Pλ (for a representative g ∈ Ci), divided by |Pλ|. Thus, 

n! 
χUλ (Ci) = � 

λj !
|Ci ∩ Pλ . |Ci| j 

|

Now, it is easy to see that 
n! � 

= m im im! 
m

|Ci| 

(it is the order of the centralizer Zg of g), so we get 

mim im! mχUλ (Ci) = � 
λj ! 

|Ci ∩ Pλ|. 
j 

Now, since Pλ = j Sλj , we have � � λj ! |Ci ∩ Pλ| = � 
m≥1 m

rjm rjm!
, 

r j≥1 

where r = (rjm) runs over all collections of nonnegative integers such that 

mrjm = λj , rjm = im. 
m j 

If j > p, we define λj to be zero. 
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Thus we get � � im! 
χUλ (Ci) = � 

j rjm! 
r m 

But this is exactly the coefficient of xλ in 

(x m + ... + x m)im 
1 N 

m≥1 

m(rjm is the number of times we take xj ). 

4.15 The Frobenius character formula 

Let Δ(x) = 1≤i<j≤N (xi − xj ). Let ρ = (N − 1, N − 2, ..., 0) ∈ CN . The following theorem, due 
to Frobenius, gives a character formula for the Specht modules Vλ. 

Theorem 4.47. Let N ≥ p. Then χVλ (Ci) is the coefficient of xλ+ρ := 
� 
x 

λj +N−j in the polynoj 
mial	 � 

Δ(x) Hm(x)im . 
m≥1 

Proof. Denote χVλ shortly by χλ. Let us denote the class function defined in the theorem by θλ. It 
follows from Theorem 4.46 that this function has the property θλ = µ≥λ Lµλχµ, where Lµλ are 
integers and Lλλ = 1. Therefore, to show that θλ = χλ, by Lemma 4.27, it suffices to show that 
(θλ, θλ) = 1. 

We have 
1	 � 

(θλ, θλ) = 
n! 

|Ci|θλ(Ci)2 , 
i 

which is the coefficient of xλ+ρyλ+ρ in the series R(x, y) = Δ(x)Δ(y)S(x, y), where 

S(x, y) = 
� 

i 

� 

m 

( j,k x
m 
j y

m 
k /m)im 

im! 
. 

Summing over i and m, we get � � � � 
m mS(x, y) = exp( xj yk /m) = exp(− log(1 − xj yk)) = (1 − xjyk)−1 

m j,k j,k j,k 

Thus, � 
(xi − xj )(yi − yj ) 

R(x, y) = i<j� .
(1 − xiyj )i,j 

Now we need the following lemma. 

Lemma 4.48.	 � 
(zj − zi)(yi − yj ) 1i<j�	 = det( ). 

i,j (zi − yj ) zi − yj 

Proof. Multiply both sides by (zi−yj ). Then the right hand side must vanish on the hyperplanes i,j

xi = xj and yi = yj (i.e. be divisible by Δ(x)Δ(y)), and is a homogeneous polynomial of degree 
N(N − 1). This implies that the right hand side and the left hand side are proportional. The 
proportionality coefficient (which is equal to 1) is found by induction by multiplying both sides by 
xN − yN and then setting xN = yN . 

56 



Now setting in the lemma zi = 1/xi, we get 

Corollary 4.49. (Cauchy identity) 

1 
R(x, y) = det( ).

1 − xiyj 

Corollary 4.49 easily implies that the coefficient of xλ+ρyλ+ρ is 1. Indeed, if σ = 1 is a permu-�
tation in SN , the coefficient of this monomial in Q

(1−x
1 
j yσ(j)) is obviously zero. 

4.16 Problems 

In the following problems, we do not make a distinction between Young diagrams and partitions. 

Problem 4.50. For a Young diagram µ, let A(µ) be the set of Young diagrams obtained by adding 
a square to µ, and R(µ) be the set of Young diagrams obtained by removing a square from µ. 

(a) Show that IndSn 
Sn−1 

Vµ = ⊕λ∈A(µ)Vλ. 

(b) Show that ResSn Vµ = ⊕λ∈R(µ)Vλ.Sn−1 

Problem 4.51. The content c(λ) of a Young diagram λ is the sum 
� �λj (i − j). Let C = �	 j i=1

(ij) ∈ C[Sn] be the sum of all transpositions. Show that C acts on the Specht module Vλ byi<j 
multiplication by c(λ). 

Problem 4.52. Show that the element (12) + ... + (1n) acts on Vλ by a scalar if and only if λ is a 
rectangular Young diagram, and compute this scalar. 

4.17 The hook length formula 

Let us use the Frobenius character formula to compute the dimension of Vλ. According to the 
character formula, dim Vλ is the coefficient of xλ+ρ in Δ(x)(x1 + ... + xN )n . Let lj = λj + N − j. 
Then, we get � n! n! � � 
dim Vλ = 

s∈SN :lj ≥N−s(j) 

(−1)s � 
j (lj − N + s(j))! 

= 
l1!...lN ! 

s∈Sn 

(−1)s

j 

lj (lj −1)...(lj −N+s(j)+1) = 

n! �	 det(lj (lj − 1)...(lj − N + i + 1)). 
j lj ! 

Using column reduction and the Vandermonde determinant formula, we see from this expression 
that 

n!	 n! � 
dim Vλ = � det(lN−i) = � (li − lj ) (4) 

j lj ! j
j lj ! 

1≤i<j≤N 

(where N ≥ p). 

In this formula, there are many cancelations. After making some of these cancelations, we 
obtain the hook length formula. Namely, for a square (i, j) in a Young diagram λ (i, j ≥ 1, i ≤ λj ), 
define the hook of (i, j) to be the set of all squares (i�, j�) in λ with i� ≥ i, j� = j or i� = i, j� ≥ j. 
Let h(i, j) be the length of the hook of i, j, i.e. the number of squares in it. 
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Theorem 4.53. (The hook length formula) One has


n!
dim Vλ = � . 

i≤λj 
h(i, j)

Proof. The formula follows from formula (4). Namely, note that 

l1! � � = k. 
1<j≤N (l1 − lj ) 

1≤k≤l1,k=l1−lj 

It is easy to see that the factors in this product are exactly the hooklengths h(i, 1). Now delete the 
first row of the diagram and proceed by induction. 

4.18 Schur-Weyl duality 

We start with a simple result which is called the Double Centralizer Theorem. 

Theorem 4.54. Let A, B be two subalgebras of the algebra End E of endomorphisms of a finite 
dimensional vector space E, such that A is semisimple, and B = EndA E. Then: 

(i) A = EndB E (i.e., the centralizer of the centralizer of A is A); 

(ii) B is semisimple; 

(iii) as a representation of A ⊗ B, E decomposes as E = ⊕i∈I Vi ⊗ Wi, where Vi are all the 
irreducible representations of A, and Wi are all the irreducible representations of B. In particular, 
we have a natural bijection between irreducible representations of A and B. 

Proof. Since A is semisimple, we have a natural decomposition E = ⊕i∈I Vi ⊗ Wi, where Wi := 
HomA(Vi, E), and A = ⊕i End Vi. Therefore, by Schur’s lemma, B = EndA(E) is naturally identi
fied with ⊕i End(Wi). This implies all the statements of the theorem. 

We will now apply it to the following situation: E = V ⊗n, where V is a finite dimensional 
vector space over a field of characteristic zero, and A is the image of C[Sn] in End E. Let us now 
characterize the algebra B. Let gl(V ) be End V regarded as a Lie algebra with operation ab − ba. 

Theorem 4.55. The algebra B = EndA E is the image of the universal enveloping algebra U(gl(V )) 
under its natural action on E. In other words, B is generated by elements of the form 

Δn(b) := b ⊗ 1 ⊗ ... ⊗ 1 + 1 ⊗ b ⊗ ... ⊗ 1 + ... + 1 ⊗ 1 ⊗ ... ⊗ b, 

b ∈ gl(V ). 

Proof. Clearly, the image of U(gl(V )) is contained in B, so we just need to show that any element 
of B is contained in the image of U(gl(V )). By definition, B = Sn End V , so the result follows 
from part (ii) of the following lemma. 

Lemma 4.56. Let k be a field of characteristic zero. 

(i) For any finite dimensional vector space U over k, the space SnU is spanned by elements of 
the form u ⊗ ... ⊗ u, u ∈ U . 

(ii) For any algebra A over k, the algebra SnA is generated by elements Δn(a), a ∈ A. 
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Proof. (i) The space SnU is an irreducible representation of GL(U) (Problem 3.19). The subspace 
spanned by u ⊗ ... ⊗ u is a nonzero subrepresentation, so it must be everything. 

(ii) By the fundamental theorem on symmetric functions, there exists a polynomial P with 
rational coefficients such that P (H1(x), ...,Hn(x)) = x1...xn (where x = (x1, ..., xn)). Then 

P (Δn(a), Δn(a 2), ..., Δn(a n)) = a ⊗ ... ⊗ a. 

The rest follows from (i). 

Now, the algebra A is semisimple by Maschke’s theorem, so the double centralizer theorem 
applies, and we get the following result, which goes under the name “Schur-Weyl duality”. 

Theorem 4.57. (i) The image A of C[Sn] and the image B of U(gl(V )) in End(V ⊗n) are central
izers of each other. 

(ii) Both A and B are semisimple. In particular, V ⊗n is a semisimple gl(V )-module. 

(iii) We have a decomposition of A ⊗ B-modules V ⊗n = ⊕λVλ ⊗ Lλ, where the summation 
is taken over partitions of n, Vλ are Specht modules for Sn, and Lλ are some distinct irreducible 
representations of gl(V ) (or zero). 

4.19 Schur-Weyl duality for GL(V ) 

The Schur-Weyl duality for the Lie algebra gl(V ) implies a similar statement for the group GL(V ). 

Proposition 4.58. The image of GL(V ) in End(V ⊗n) spans B. 

Proof. Denote the span of g⊗n , g ∈ GL(V ), by B�. Let b ∈ End V be any element. 

We claim that B� contains b⊗n. Indeed, for all values of t but finitely many, t Id+b is invertible, ·
so (t Id + b)⊗n belongs to B�. This implies that this is true for all t, in particular for t = 0, since · 
(t Id + b)⊗n is a polynomial in t.· 

The rest follows from Lemma 4.56. 

Corollary 4.59. As a representation of Sn × GL(V ), V ⊗n decomposes as ⊕λVλ ⊗ Lλ, where 
Lλ = HomSn (Vλ, V ⊗n) are distinct irreducible representations of GL(V ) or zero. 

Example 4.60. If λ = (n) then Vλ = SnV , and if λ = (1n) (n copies of 1) then Vλ = ∧nV . It was 
shown in Problem 3.19 that these representations are indeed irreducible (except that ∧nV is zero 
if n > dim V ). 

4.20 Schur polynomials 

Let λ = (λ1, ..., λp) be a partition of n, and N ≥ p. Let 

N

Dλ(x) = (−1)s x 
λ

s(
j 

j

+

) 
N−j = det(x 

λ
i 

j +N−j ). 
s∈SN j=1 
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Define the polynomials 
Dλ(x)

Sλ(x) := 
D0(x) 

(clearly D0(x) is just Δ(x)). It is easy to see that these are indeed polynomials, as Dλ is an
tisymmetric and therefore must be divisible by Δ. The polynomials Sλ are called the Schur 
polynomials. 

Proposition 4.61. � � 
m m(x1 + ... + xN )

im = χλ(Ci)Sλ(x). 
m λ:p≤N 

Proof. The identity follows from the Frobenius character formula and the antisymmetry of 

m m)imΔ(x) (x1 + ... + xN . 
m 

Certain special values of Schur polynomials are of importance. Namely, we have 

Proposition 4.62. 
z

Sλ(1, z, z 2 , ..., z N−1) = 
� λi−i − zλj −j 

z−i − z−j 
1≤i<j≤N 

Therefore, 

Sλ(1, ..., 1) = 
� λi − λj + j − i 

1≤i<j≤N 
j − i 

Proof. The first identity is obtained from the definition using the Vandermonde determinant. The 
second identity follows from the first one by setting z = 1. 

4.21 The characters of Lλ 

Proposition 4.61 allows us to calculate the characters of the representations Lλ. 

Namely, let dim V = N , g ∈ GL(V ), and x1, ..., xN be the eigenvalues of g on V . To compute 
the character χLλ (g), let us calculate TrV ⊗n (g⊗ns), where s ∈ Sn. If s ∈ Ci, we easily get that this 
trace equals � � 

Tr(g m)im = Hm(x)im . 
m m 

On the other hand, by the Schur-Weyl duality 

TrV ⊗n (g⊗n s) = χλ(Ci)TrLλ (g). 
λ 

Comparing this to Proposition 4.61 and using linear independence of columns of the character table 
of Sn, we obtain 

Theorem 4.63. (Weyl character formula) The representation Lλ is zero if and only if N < p, 
where p is the number of parts of λ. If N ≥ p, the character of Lλ is the Schur polynomial Sλ(x). 
Therefore, the dimension of Lλ is given by the formula 

dim Lλ = 
� λi − λj + j − i 

j − i 
i<j 
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This shows that irreducible representations of GL(V ) which occur in V ⊗n for some n are labeled 
by Young diagrams with any number of squares but at most N = dim V rows. 

Proposition 4.64. The representation Lλ+1N (where 1N = (1, 1, ..., 1) ∈ ZN ) is isomorphic to 
Lλ ⊗ ∧N V . 

Proof. Indeed, Lλ ⊗∧N V ⊂ V ⊗n ⊗∧N V ⊂ V n+N , and the only component of V ⊗n+N that has the 
same character as Lλ ⊗ ∧N V is Lλ+1N . This implies the statement. 

4.22 Polynomial representations of GL(V ) 

Definition 4.65. We say that a finite dimensional representation Y of GL(V ) is polynomial (or 
algebraic) if its matrix elements are polynomial functions of the entries of g, g−1 , g ∈ GL(V ) (i.e. 
belong to k[gij ][1/ det(g)]). 

For example, V ⊗n and hence all Lλ are polynomial. Also define Lλ−r 1N := Lλ ⊗ (∧N V ∗)⊗r 
·

(this definition is independent on the choice of N by Proposition 4.64). This is also a polyno
mial representation. Thus we have attached a unique irreducible polynomial representation Lλ 

of GL(V ) = GLN to any sequence (λ1, ..., λN ) of integers (not necessarily positive) such that 
λ1 ≥ ... ≥ λN . This sequence is called the highest weight of Lλ. 

Theorem 4.66. Every finite dimensional polynomial representation of GL(V ) is completely re
ducible, and decomposes into summands of the form Lλ (which are pairwise non-isomorphic). 

Proof. Let Y be a polynomial representation of GL(V ). Denoting the ring of polynomial functions 
on GL(V ) by R, we get an embedding ξ : Y → Y ⊗ R given by (u, ξ(v))(g) := u(gv). It is easy to 
see that ξ is a homomorphism of representations (where the action of GL(V ) on the first component 
of Y ⊗ R is trivial). Thus, it suffices to prove the theorem for a subrepresentation Y ⊂ Rm . Now, 
every element of R is a polynomial of gij times a nonpositive power of det(g). Thus, R is a quotient 
of a direct sum of representations of the form Sr(V ⊗V ∗)⊗(∧N V ∗)⊗s . So we may assume that Y is 
contained in a quotient of a (finite) direct sum of such representations. As V ∗ = ∧N−1V ⊗∧N V ∗, Y 
is contained in a direct sum of representations of the form V ⊗n ⊗ (∧N V ∗)⊗s, and we are done. 

Remark 4.67. Since the scalars in GL(V ) and gl(V ) act by scalars in the representations Lλ, 
the above results extend in a straightforward manner to representations of the Lie algebra sl(V ) of 
traceless operators on V and the group SL(V ) of operators with determinant 1. The only difference 
is that in this case the representations Lλ and Lλ+1m are isomorphic, so the representations are 
parametrized by integer sequences λ1 ≥ ... ≥ λN up to a simultaneous shift by a constant. 

On can show that any finite dimensional representation of sl(V ) is completely reducible, and 
any irreducible one is of the form Lλ. In particular, for dim V = 2 one recovers the representation 
theory of sl(2) studied in Problem 1.55. 

4.23 Problems 

Problem 4.68. (a) Show that the Sn-representation Vλ
� := C[Sn]bλaλ is isomorphic to Vλ. 

Hint. Calculate HomSn (Vµ, V λ
�). 

(b) Let φ : C[Sn] → C[Sn] be the automorphism sending s to (−1)ss for any permutation s. 
Show that φ maps any representation V of Sn to V ⊗ C−. Show also that φ(C[Sn]a) = C[Sn]φ(a), 

61




for a ∈ C[Sn]. Use (a) to deduce that Vλ ⊗ C− = Vλ∗ , where λ∗ is the conjugate partition to λ, 
obtained by reflecting the Young diagram of λ. 

Problem 4.69. Let Rk,N be the algebra of polynomials on the space of k-tuples of complex N by N 
matrices X1, ..., Xk, invariant under simultaneous conjugation. An example of an element of Rk,N 

is the function Tw := Tr(w(X1, ..., Xk)), where w is any finite word on a k-letter alphabet. Show 
that Rk,N is generated by the elements Tw. 

Hint. Use Schur-Weyl duality. 

4.24 Representations of GL2(Fq) 

4.24.1 Conjugacy classes in GL2(Fq) 

Let Fq be a finite field of size q of characteristic other than 2. Then 

|GL2(Fq)| = (q 2 − 1)(q 2 − q), 

since the first column of an invertible 2 by 2 matrix must be non-zero and the second column may 
not be a multiple of the first one. Factoring, 

|GL2(Fq)| = q(q + 1)(q − 1)2 . 

The goal of this section is to describe the irreducible representations of GL2(Fq). 
To begin, let us find the conjugacy classes in GL2(Fq). 

Representatives Number of elements in a conjugacy 
class 

Number of classes 

Scalar 
� 

x 0 
0 x 

� 
1 (this is a central element) 

q −1 (one for every non
zero x) 

Parabolic 
� 

x 1 
0 x 

� q2 − 1 (elements that commute with 
this one are of the form 

� 
t u 
0 t 

� 
, t �= 

0) 

q −1 (one for every non
zero x) 

Hyperbolic 
� 

x 0 
0 y 

� 
, y �= x 

q2 + q (elements that commute with 
this one are of the form 

� 
t 0 
0 u 

� 
, t, u �= 

0) 

1 
2 (q − 1)(q − 2) (x, y �= 0 
and x �= y) 

Elliptic 
� x �y 

y x 
� 
, x ∈ Fq, y ∈

F×q , � ∈ Fq \ F2 
q (characteris

tic polynomial over Fq is irre
ducible) 

q2 − q (the reason will be described 
below) 

1 
2 q(q −1) (matrices with 
y and −y are conjugate) 

More on the conjugacy class of elliptic matrices: these are the matrices whose characteristic 
polynomial is irreducible over Fq and which therefore don’t have eigenvalues in Fq. Let A be such 
a matrix, and consider a quadratic extension of Fq, 

Fq(
√
�), � ∈ Fq \ Fq 

2 . 

Over this field, A will have eigenvalues 

α = α1 + 
√
�α2 
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� � 

� � 

� � � � � � 

� � 

and

α = α1 −

√
�α2, 

with corresponding eigenvectors 

v, v (Av = αv, Av = αv). 

Choose a basis 
{e1 = v + v, e2 = 

√
�(v − v)}. 

In this basis, the matrix A will have the form 

α1 �α2 

α2 α1 
, 

justifying the description of representative elements of this conjugacy class. 
In the basis {v, v}, matrices that commute with A will have the form 

λ 0 
0 λ

, 

for all 
λ ∈ F×2 ,q

so the number of such matrices is q2 − 1. 

4.24.2 Representations of GL2(Fq) 

In this section, G will denote the group GL2(Fq). 

4.24.3 1-dimensional representations 

First, we describe the 1-dimensional representations of G. 

Proposition 4.70. [G,G] = SL2(Fq). 

Proof. Clearly, 
det(xyx−1 y−1) = 1, 

so 
[G,G] ⊆ SL2(Fq). 

To show the converse, it suffices to show that the matrices 

1 1 a 0 1 0 
0 1 

, 
0 a−1 , 

1 1 

are commutators (as such matrices generate SL2(Fq).) Clearly, by using transposition, it suffices 
to show that only the first two matrices are commutators. But it is easy to see that the matrix 

1 1 
0 1 
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� � � � 

� � 

� � 

� � 

is the commutator of the matrices


1 0 1 1/2 
A = , B = ,

0 −1 0 1 

while the matrix � � 
a 0 
0 a−1 

is the commutator of the matrices 

a 0 0 1 
A = , B = .

0 1 1 0 

This completes the proof. 

Therefore,

G/[G,G] ∼= F×q via g det(g).
→ 

The one-dimensional representations of G thus have the form 

ρ(g) = ξ det(g) , 

where ξ is a homomorphism 
ξ : F×q C×;→ 

so there are q − 1 such representations, denoted Cξ. 

4.24.4 Principal series representations 

Let � � 

B ⊂ G, B = { ∗ ∗ 
0 ∗ } 

(the set of upper triangular matrices); then 

|B| = (q − 1)2 q, 

[B,B] = U = { 
0
1 ∗ 

1 
}, 

and 
B/[B,B] ∼ q × F×q = F×

(the isomorphism maps an element of B/[B,B] to its two eigenvalues). 
Let 

λ : B C×→ 

be a homomorphism defined by 

a b 
λ = λ1(a)λ2(c),for some pair of homomorphisms λ1, λ2 : F× C×.

0 c q → 

Define 
Vλ1,λ2 = IndG 

B Cλ, 

where Cλ is the 1-dimensional representation of B in which B acts by λ. We have 

dim(Vλ1,λ2 ) = 
|G| 

= q + 1. 
|B| 
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Theorem 4.71. 1. λ1 �= λ2 ⇒ Vλ1,λ2 is irreducible. 

2. λ1 = λ2 = µ ⇒ Vλ1,λ2 = Cµ ⊕ Wµ, where Wµ is a q-dimensional irreducible representation of 
G. 

3. Wµ 
∼ iff µ = ν; Vλ1,λ2 

∼
1,λ�2 

iff {λ1, λ2} = {λ� 2} (in the second case, λ1 � =�= Wν = Vλ� 1, λ
� 

= λ2, λ
� 
1 

λ
� 
2). 

Proof. From the Mackey formula, we have 

1 � 
trVλ1,λ2 

(g) = λ(aga−1). 
|B| 

a∈G, aga−1∈B 

If � � 
x 0 

g = ,
0 x 

the expression on the right evaluates to 

λ(x) 
|G| 

= λ1(x)λ2(x) 
� 
q + 1 

� 
. 

|B| 

If � � 
x 1 

g = ,
0 x 

the expression evaluates to 
λ(x) 1,· 

since here 
aga−1 ∈ B ⇒ a ∈ B. 

If � � 
x 0 

g = ,
0 y 

the expression evaluates to � � 
λ1(x)λ2(y) + λ1(y)λ2(x) 1,· 

since here 

aga−1 ∈ B ⇒ a ∈ B or a is an element of B multiplied by the transposition matrix. 

If � � 
x εy

g = 
y x

, x =� y 

the expression on the right evaluates to 0 because matrices of this type don’t have eigenvalues over 
Fq (and thus cannot be conjugated into B). From the definition, λi(x)(i = 1, 2) is a root of unity, 
so 

|G|�χVλ1,λ2 
, χVλ1,λ2 

� = (q + 1)2(q − 1) + (q 2 − 1)(q − 1) 

+ 2(q 2 + q)
(q − 1)(q − 2) 

+ (q 2 + q) 
� 

λ1(x)λ2(y)λ1(y)λ2(x).2 
x=y 
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The last two summands come from the expansion 

|a + b|2 = |a|2 + |b|2 + ab + ab. 

If 
λ1 = λ2 = µ, 

the last term is equal to 
(q 2 + q)(q − 2)(q − 1), 

and the total in this case is 

(q + 1)(q − 1)[(q + 1) + (q − 1) − 2q(q − 2)] = (q + 1)(q − 1)2q(q − 1) = 2|G|, 

so 
�χVλ1,λ2 

, χVλ1,λ2 
� = 2. 

Clearly, 
Cµ ⊆ IndGCµ,µ,B

since 
HomG(Cµ, IndGCµ,µ) = HomB(Cµ, Cµ) = C (Theorem 4.33). B

Therefore, IndG ; Wµ is irreducible; and the character of Wµ is different for distinct BCµ,µ = Cµ ⊕ Wµ

values of µ, proving that Wµ are distinct. 

If λ1 =� λ2, let z = xy−1 , then the last term of the summation is 

(q 2 + q) 
� 

λ1(z)λ2(z) = (q 2 + q) 
� λ1 (z) = (q 2 + q)(q − 1) 

� λ1 (z). 
λ2 λ2 

x=y x;z=1 z=1 

Since � λ1 (z) = 0,
λ2 

z∈F×q 

because the sum of all roots of unity of a given order m > 1 is zero, the last term becomes 

−(q 2 + q)(q − 1) 
� λ1 (1) = −(q 2 + q)(q − 1). 

λ2 
z=1 

The difference between this case and the case of λ1 = λ2 is equal to 

−(q 2 + q)[(q − 2)(q − 1) + (q − 1)] = |G|, 

so this is an irreducible representation by Lemma 4.27. 

To prove the third assertion of the theorem, we look at the characters on hyperbolic elements 
and note that the function 

λ1(x)λ2(y) + λ1(y)λ2(x) 

determines λ1, λ2 up to permutation. 
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4.24.5 Complementary series representations 

Let F ⊃ Fq be a quadratic extension Fq(
√
ε), ε ∈ Fq \ F2 . We regard this as a 2-dimensional vector q2 q 

space over Fq; then GL2(Fq) is the group of linear transformations of F 2 over Fq. Let K ⊂ GL2(Fq)q

be the cyclic group of multiplications by elements of F× 
q2 , 

K 
x εy 

K = q 2 − 1.= { 
y x 

}, | | 

For ν : K C× a homomorphism, let → 
Yν = IndG 

K ν. 

This representation, of course, is very reducible. Let us compute its character, using the Mackey 
formula. We get � � 

x 0 
χ 

0 x 
= q(q − 1)ν(x); 

χ(A) = 0 for A parabolic or hyperbolic; � � � � � �q 
x εy x εy x εy

χ = ν + ν . 
y x y x y x 

The last assertion holds because if we regard the matrix as an element of Fq2 , conjugation is an 
automorphism of Fq2 over Fq, but the only nontrivial automorphism of Fq2 over Fq is the qth power 
map. 

We thus have

IndG

K ν
K ν
q = IndG 

because they have the same character. Therefore, for νq =� ν we get 1 q(q − 1) representations. 2 

Next, we look at the following tensor product: 

Wε ⊗ Vα,ε, 

where ε is the trivial character and Wε is defined as in the previous section. The character of this 
representation is � � 

x 0 
χ = q(q + 1)α(x);

0 x 

χ(A) = 0 for A parabolic or elliptic; 

x 0 
χ 

0 y 
= α(x) + α(y). 

Thus the ”virtual representation” 

K νWε ⊗ Vα,ε, − Vα,ε − IndG 

where α is the restriction of ν to scalars has character 

x 0 
χ 

0 x 
= (q − 1)α(x); 

x 1 
χ 

0 x 
= −α(x); 
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�

� 

� � 

� � 

x 0 
χ = 0; 

0 y 

χ 
x �y 

= −ν 
x �y − νq x �y 

. 
y x y x y x 

In all that follows, we will have νq = ν. 

The following two lemmas will establish that the inner product of this character with itself is 
equal to 1, that its value at 1 is positive. As we know from Lemma 4.27, these two properties imply 
that it is the character of an irreducible representation of G. 

Lemma 4.72. Let χ be the character of the ”virtual representation” defined above. Then 

�χ, χ� = 1 

and 
χ(1) > 0. 

Proof. 
χ(1) = q(q + 1) − (q + 1) − q(q − 1) = q − 1 > 0. 

We now compute the inner product �χ, χ�. Since α is a root of unity, this will be equal to 

2 

(q − 1)2
1 
q(q + 1) 

� 
(q−1)·(q−1)2 ·1+(q−1)·1·(q −1)+ 

q(q 
2
− 1) · 

� 
(ν(ζ)+νq(ζ))(ν(ζ) + νq(ζ)) 

� 

ζ elliptic 

Because ν is also a root of unity, the last term of the expression evaluates to 

2 + νq−1(ζ) + ν1−q(ζ). 
ζ elliptic 

Let’s evaluate the last summand. 

Since F× 
q2 is cyclic and νq =� ν, 

νq−1(ζ) = ν1−q(ζ) = 0. 
× 
q

× 
q2 2 

Therefore, 

(νq−1(ζ) + ν1−q(ζ)) = 0 − (νq−1(ζ) + ν1−q(ζ)) = 0 − 2(q − 1) = −2(q − 1) 

ζ∈F ζ∈F

ζ elliptic ζ∈F

since F×q 

×
q 

is cyclic of order q − 1. Therefore,


2 2�χ, χ� =
(q − 1)2

1 
q(q + 1) 

� 
(q −1)·(q −1)2 ·1+(q−1)·1·(q −1)+ 

q(q 
2
− 1) ·(2(q −q)−2(q −1)) 

� 
= 1. 

We have now shown that for any ν with νq =� ν the representation Yν with the same character 
as 

K νWε ⊗ Vα,ε, − Vα,ε − IndG 
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exists and is irreducible. These characters are distinct for distinct pairs (α, ν) (up to switch 
ν νq), so there are q(q−1) such representations, each of dimension q − 1.→	 2 

We have thus found q − 1 1-dimensional representations of G, q(q−1) principal series repre2 
2sentations, and q(q−1) complementary series representations, for a total of q − 1 representations, 2 

i.e. the number of conjugacy classes in G. This implies that we have in fact found all irreducible 
representations of GL2(Fq). 

4.25 Artin’s theorem 

Theorem 4.73. Let X be a conjugation-invariant system of subgroups of a finite group G. Then 
two conditions are equivalent: 

(i) Any element of G belongs to a subgroup H ∈ X. 

(ii) The character of any irreducible representation of G belongs to the Q-span of characters of 
induced representations IndG is an irreducible representation of H.H V , where H ∈ X and V 

Proof. Proof that (ii) implies (i). Assume that g ∈ G does not belong to any of the subgroups 
H ∈ X. Then, since X is conjugation invariant, it cannot be conjugated into such a subgroup. 
Hence by the Mackey formula, χInd (g) = 0 for all H ∈ X and V . So by (ii), for any irreducible (V )

representation W of G, χW (g) = 0. But irreducible characters span the space of class functions, so 
G
H

any class function vanishes on g, which is a contradiction.


Proof that (i) implies (ii). Let U be a virtual representation of G (i.e. a linear combination

of irreducible representations with nonzero integer coefficients) such that (χU , χIndG

H
) = 0 for all V 

H,V . So by Frobenius reciprocity, (χU |H 
, χV ) = 0. This means that χU vanishes on H for any 

H ∈ X. Hence by (i), χU is identically zero. This implies (ii). 

Corollary 4.74. Any irreducible character of a finite group is a rational linear combination of 
induced characters from its cyclic subgroups. 

4.26 Representations of semidirect products 

Let G,A be finite groups and φ : G → Aut(A) be a homomorphism. For a ∈ A, denote φ(g)a by 
g(a). The semidirect product G � A is defined to be the product A × G with multiplication law 

(a1, g1)(a2, g2) = (a1g1(a2), g1g2). 

Clearly, G and A are subgroups of G � A in a natural way. 

We would like to study irreducible complex representations of G � A. For simplicity, let us do 
it when A is abelian. 

In this case, irreducible representations of A are 1-dimensional and form the character group 
A∨, which carries an action of G. Let O be an orbit of this action, x ∈ O a chosen element, 
and Gx the stabilizer of x in G. Let U be an irreducible representation of Gx. Then we define a 
representation V(O,U) of G � A as follows. 

As a representation of G, we set 

V(O,x,U) = IndG U = {f : G → U |f(hg) = hf(g), h ∈ Gx}.Gx 
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Next, we introduce an additional action of A on this space by (a f)(g) = (x, g(a))f(g). Then◦
it’s easy to check that these two actions combine into an action of G � A. Also, it is clear that 
this representation does not really depend on the choice of x, in the following sense. Let x, y ∈ O, 
and g ∈ G be such that gxg−1 = y, and let g(U) be the representation of Gy obtained from the 
representation U of Gx by the action of g. Then V(O,x,U) is (naturally) isomorphic to V(O,y,U �). 
Thus we will denote V(O,x,U) by V(O,U). 

Theorem 4.75. (i) The representations V(O,U) is irreducible. 

(ii) They are pairwise nonisomorphic. 

(iii) They form a complete set of irreducible representations of G � A. 

(iv) The character of V = V(U,O) is given by the Mackey-type formula 

1 � 
χV (a, g) = x(h(a))χU (hgh−1). 

|Gx| 
h∈G:hgh−1∈GX 

Proof. (i) Let us decompose V = V(O,U) as an A-module. Then we get 

V = ⊕y∈OVy, 

where Vy = {v ∈ V(O,U)|av = (y, a)v, a ∈ A}. So if W ⊂ V is a subrepresentation, then W = 
⊕y∈OWy, where Wy ⊂ Vy. Now, Vy is a representation of Gy, which goes to U under any isomor
phism Gy → Gx determined by g ∈ G conjugating x to y. Hence, Vy is irreducible over Gy, so 
Wy = 0 or Wy = Vy for each y. Also, if hyh−1 = z then hWy = Wz, so either Wy = 0 for all y or 
Wy = Vy for all y, as desired. 

(ii) The orbit O is determined by the A-module structure of V , and the representation U by 
the structure of Vx as a Gx-module. 

(iii) We have � � 
dim V(

2 
U,O) = |O|2(dim U)2 = 

U,O U,O 

|O|2|Gx| = |O||G/Gx||Gx| = |G| |O| = |G||A∨| = |G � A|. 
O O O 

(iv) The proof is essentially the same as that of the Mackey formula. 
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