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6 Introduction to categories 

6.1 The definition of a category 

We have now seen many examples of representation theories and of operations with representations 
(direct sum, tensor product, induction, restriction, reflection functors, etc.) A context in which one 
can systematically talk about this is provided by Category Theory. 

Category theory was founded by Saunders MacLane and Samuel Eilenberg around 1940. It is a 
fairly abstract theory which seemingly has no content, for which reason it was christened “abstract 
nonsense”. Nevertheless, it is a very flexible and powerful language, which has become totally 
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indispensable in many areas of mathematics, such as algebraic geometry, topology, representation 
theory, and many others. 

We will now give a very short introduction to Category theory, highlighting its relevance to the 
topics in representation theory we have discussed. For a serious acquaintance with category theory, 
the reader should use the classical book [McL]. 

Definition 6.1. A category C is the following data: 

(i) a class of objects Ob(C); 

(ii) for every objects X,Y ∈ Ob(C), the class HomC (X,Y ) = Hom(X,Y ) of morphisms (or 
arrows) from X,Y (for f ∈ Hom(X,Y ), one may write a : X → Y ); 

(iii) For any objects X,Y, Z ∈ Ob(C), a composition map Hom(Y, Z)×Hom(X,Y ) → Hom(X,Z), 
(f, g) f g,→ ◦ 

which satisfy the following axioms: 

1. The composition is associative, i.e. (f g) h = f (g h);◦ ◦ ◦ ◦ 

2. For each X ∈ Ob(C), there is a morphism 1X ∈ Hom(X,X), called the unit morphism, such 
that 1X ◦ f = f and g ◦ 1X = g for any f, g for which compositions make sense. 

Remark. We will sometimes write X ∈ C instead of X ∈ Ob(C). 

Example 6.2. 1. The category Sets of sets (morphisms are arbitrary maps). 

2. The categories Groups, Rings (morphisms are homomorphisms). 

3. The category Vectk of vector spaces over a field k (morphisms are linear maps). 

4. The category Rep(A) of representations of an algebra A (morphisms are homomorphisms of 
representations). 

5. The category of topological spaces (morphisms are continuous maps). 

6. The homotopy category of topological spaces (morphisms are homotopy classes of continuous 
maps). 

Important remark. Unfortunately, one cannot simplify this definition by replacing the word 
“class” by the much more familiar word “set”. Indeed, this would rule out the important Example 1, 
as it is well known that there is no set of all sets, and working with such a set leads to contradictions. 
The precise definition of a class and the precise distinction between a class and a set is the subject 
of set theory, and cannot be discussed here. Luckily, for most practical purposes (in particular, in 
these notes), this distinction is not essential. 

We also mention that in many examples, including examples 1-6, the word “class” in (ii) can 
be replaced by “set”. Categories with this property (that Hom(X,Y ) is a set for any X,Y ) are 
called locally small; many categories that we encounter are of this kind. 

Definition 6.3. A full subcategory of a category C is a category C� whose objects are a subclass 
of objects of C, and HomC� (X,Y ) = HomC (X,Y ). 

Example. The category AbelianGroups is a full subcategory of the category Groups. 
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6.2 Functors 

We would like to define arrows between categories. Such arrows are called functors. 

Definition 6.4. A functor F : C → D between categories C and D is 

(i) a map F : Ob(C) → Ob(D); 

(ii) for each X,Y ∈ C, a map (also denoted by F ) Hom(X,Y ) → Hom(F (X), F (Y )) which 
preserves compositions and identity morphisms. 

Note that functors can be composed in an obvious way. Also, any category has the identity 
functor. 

Example 6.5. 1. A (locally small) category C with one object X is the same thing as a monoid. 
A functor between such categories is a homomorphism of monoids. 

2. Forgetful functors Groups Sets, Rings AbelianGroups.→ → 

3. The opposite category of a given category is the same category with the order of arrows and 
compositions reversed. Then V → V ∗ is a functor Vectk → kVectop. 

4. The Hom functors: If C is a locally small category then we have the functor C → Sets given 
by Y �→ Hom(X,Y ) and Cop → Sets given by Y → Hom(Y,X). 

5. The assignment X Fun(X, Z) is a functor Sets Ringsop.→ → 

6. Let Q be a quiver. Consider the category C(Q) whose objects are the vertices and morphisms 
are oriented paths between them. Then functors from C(Q) to Vectk are representations of Q over 
k. 

7. Let K ⊂ G be groups. Then we have the induction functor IndG : Rep(K) Rep(G), and 
ResG : Rep(G) → Rep(K). 

K → 

K 

8. We have an obvious notion of the Cartesian product of categories (obtained by taking the 
Cartesian products of the classes of objects and morphisms of the factors). The functors of direct 
sum and tensor product are then functors Vectk ×Vectk → Vectk. Also the operations V �→ V ⊗n , 
V �→ SnV , V �→ ∧nV are functors on Vectk. More generally, if π is a representation of Sn, we 
have functors V HomSn (π, V ⊗n). Such functors (for irreducible π) are called the Schur functors. →
They are labeled by Young diagrams. 

9. The reflection functors Fi
± : Rep(Q) Rep( Q̄ 

i) are functors between representation cate→
gories of quivers. 

6.3 Morphisms of functors 

One of the important features of functors between categories which distinguishes them from usual 
maps or functions is that the functors between two given categories themselves form a category, 
i.e. one can define a nontrivial notion of a morphism between two functors. 

Definition 6.6. Let C, D be categories and F,G : C → D be functors between them. A morphism 
a : F G (also called a natural transformation or a functorial morphism) is a collection of →
morphisms aX : F (X) → G(X) labeled by the objects X of C, which is functorial in X, i.e., for 
any morphism f : X → Y (for X,Y ∈ C) one has aY ◦ F (f) = G(f) ◦ aX . 
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A morphism a : F G is an isomorphism if there is another morphism a−1 : G F such that → → 
a a−1 and a−1 a are the identities. The set of morphisms from F to G is denoted by Hom(F,G).◦ ◦ 

Example 6.7. 1. Let FVectk be the category of finite dimensional vector spaces over k. Then the 
functors id and ∗∗ on this category are isomorphic. The isomorphism is defined by the standard 
maps aV : V → V ∗∗ given by aV (u)(f) = f(u), u ∈ V , f ∈ V ∗. But these two functors are not 
isomorphic on the category of all vector spaces Vectk, since for an infinite dimensional vector space 
V , V is not isomorphic to V ∗∗. 

2. Let FVect�k be the category of finite dimensional k-vector spaces, where the morphisms 
are the isomorphisms. We have a functor F from this category to itself sending any space V to 
V ∗ and any morphism a to (a∗)−1 . This functor satisfies the property that V is isomorphic to 
F (V ) for any V , but it is not isomorphic to the identity functor. This is because the isomorphism 
V F (V ) = V ∗ cannot be chosen to be compatible with Hom(V, V ) = GL(V ), as V is not →
isomorphic to V ∗ as a representation of GL(V ). 

3. Let A be an algebra over a field k, and F : A − mod → Vectk be the forgetful functor. 
Then as follows from Problem 1.22, EndF = Hom(F, F ) = A. 

4. The set of endomorphisms of the identity functor on the category A − mod is the center of 
A (check it!). 

6.4 Equivalence of categories 

When two algebraic or geometric objects are isomorphic, it is usually not a good idea to say that 
they are equal (i.e. literally the same). The reason is that such objects are usually equal in many 
different ways, i.e. there are many ways to pick an isomorphism, but by saying that the objects are 
equal we are misleading the reader or listener into thinking that we are providing a certain choice 
of the identification, which we actually do not do. A vivid example of this is a finite dimensional 
vector space V and its dual space V ∗. 

For this reason in category theory, one most of the time tries to avoid saying that two objects 
or two functors are equal. In particular, this applies to the definition of isomorphism of categories. 

Namely, the naive notion of isomorphism of categories is defined in the obvious way: a functor 
F : C → D is an isomorphism if there exists F −1 : D → C such that F ◦ F −1 and F −1 ◦ F are equal 
to the identity functors. But this definition is not very useful. We might suspect so since we have 
used the word “equal” for objects of a category (namely, functors) which we are not supposed to 
do. And in fact here is an example of two categories which are “the same for all practical purposes” 
but are not isomorphic; it demonstrates the deficiency of our definition. 

Namely, let C1 be the simplest possible category: Ob(C1) consists of one object X, with 
Hom(X,X) = {1X }. Also, let C2 have two objects X,Y and 4 morphisms: 1X , 1Y , a : X Y→
and b : Y X. So we must have a b = 1Y , b a = 1X .→ ◦ ◦ 

It is easy to check that for any category D, there is a natural bijection between the collections 
of isomorphism classes of functors C1 → D and C2 → D (both are identified with the collection of 
isomorphism classes of objects of D). This is what we mean by saying that C1 and C2 are “the same 
for all practical purposes”. Nevertheless they are not isomorphic, since C1 has one object, and C2 

has two objects (even though these two objects are isomorphic to each other). 

This shows that we should adopt a more flexible and less restrictive notion of isomorphism of 
categories. This is accomplished by the definition of an equivalence of categories. 
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Definition 6.8. A functor F : C → D is an equivalence of categories if there exists F � : D → C 
such that F ◦ F � and F � ◦ F are isomorphic to the identity functors. 

In this situation, F � is said to be a quasi-inverse to F . 

In particular, the above categories C1 and C2 are equivalent (check it!). 

Also, the category FSet of finite sets is equivalent to the category whose objects are nonneg
ative integers, and morphisms are given by Hom(m,n) = Maps({1, ...,m}, {1, ..., n}). Are these 
categories isomorphic? The answer to this question depends on whether you believe that there 
is only one finite set with a given number of elements, or that there are many of those. It seems 
better to think that there are many (without asking “how many”), so that isomorphic sets need not 
be literally equal, but this is really a matter of choice. In any case, this is not really a reasonable 
question; the answer to this question is irrelevant for any practical purpose, and thinking about it 
will give you nothing but a headache. 

6.5 Representable functors 

A fundamental notion in category theory is that of a representable functor. Namely, let C be a 
(locally small) category, and F : C → Sets be a functor. We say that F is representable if there 
exists an object X ∈ C such that F is isomorphic to the functor Hom(X, ?). 

In a similar way, one can talk about representable functors from Cop to Sets. Namely, one calls 
such a functor representable if it is of the form Hom(?, X) for some object X ∈ C. 

Not every functor is representable, but if a representing object X exists, then it is unique. 
Namely, we have the following lemma. 

Lemma 6.9. (The Yoneda Lemma) If X exists, then it is unique up to a unique isomorphism. 
I.e., if X,Y are two objects in C, then for any isomorphism of functors φ : Hom(X, ?) → Hom(Y, ?) 
there is a unique isomorphism aφ : X Y inducing φ.→ 

Proof. (Sketch) One sets aφ = φ−Y 
1(1Y ), and shows that it is invertible by constructing the inverse, 

which is a−φ 
1 = φX (1X ). It remains to show that the composition both ways is the identity, which 

we will omit here. This establishes the existence of aφ. Its uniqueness is verified in a straightforward 
manner. 

Example 6.10. Let A be an algebra. Then the forgetful functor on the category of left A-
modules is representable, and the representing object is the free rank 1 module (=the regular 
representation) M = A. But if A is infinite dimensional, and we restrict attention to the category 
of finite dimensional modules, then the forgetful functor, in general, is not representable (this is so, 
for example, if A is the algebra of complex functions on Z with finitely many nonzero values). 

6.6 Adjoint functors 

Another fundamental notion in category theory is the notion of adjoint functors. 

Definition 6.11. Functors F : C → D and G : D → C are said to be a pair of adjoint functors if for 
any X ∈ C, Y ∈ D we are given an isomorphism ξXY : HomC (F (X), Y ) → HomD(X,G(Y )) which is 
functorial in X and Y ; in other words, if we are given an isomorphism of functors Hom(F (?), ?) →
Hom(?, G(?)) (C × D → Sets). In this situation, we say that F is left adjoint to G and G is right 
adjoint to F . 
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Remark 6.12. This terminology is motivated by the analogy between categories and inner product 
spaces. Namely, the “inner product” on a category is the assignment X,Y Hom(X,Y ) (so it →
takes values in the category Sets). Yoneda’s lemma may be interpreted as nondegeneracy of the 
inner product (and the representability property is analogous to the property of a linear functional 
to be the inner product with a vector, which is not always the case in an infinite dimensional space, 
even if the inner product is nondegenerate). With this analogy in mind, the above definition is 
parallel to the definition of adjoint operators: F : V W and G : W V are a pair of adjoint → →
operators if (Fv,w) = (v,Gw) for all v, w. Note that if the inner products are not symmetric, 
then the left and right adjoint of an operator don’t necessarily coincide; the same applies to adjoint 
functors. 

Not every functor has a left or right adjoint, but if it does, it is unique and can be constructed 
canonically (i.e. if we somehow found two such functors, then there is a canonical isomorphism 
between them). This follows easily from the Yoneda lemma, as if F,G are a pair of adjoint functors 
then F (X) represents the functor Y Hom(X,G(Y )), and G(Y ) represents the functor X→ →
Hom(F (X), Y ). 

Example 6.13. 1. Let V be a finite dimensional representation of a group G. Then the left and 
right adjoint to the functor V ⊗ on the category of representations of G is the functor V ∗⊗. 

2. The functor ResG is left adjoint to IndG This is nothing but the statement of Frobenius K K . 
reciprocity. 

3. Let Assock be the category of associative unital algebras, and Liek the category of Lie 
algebras over some field k. We have a functor L : Assock → Liek, which attaches to an associative 
algebra the same space regarded as a Lie algebra, with bracket [a, b] = ab − ba. Then the functor L 
has a left adjoint, which is the functor U of taking the universal enveloping algebra of a Lie algebra. 

4. We have the functor GL1 : Assock → Groups, given by A �→ GL1(A) = A×. This functor 
has a left adjoint, which is the functor G �→ k[G], the group algebra of G. 

5. The left adjoint to the forgetful functor Assock Vectk is the functor of tensor algebra: →
V �→ TV . Also, if we denote by Commk the category of commutative algebras, then the left adjoint 
to the forgetful functor Commk → Vectk is the functor of the symmetric algebra: V �→ SV . 

One can give many more examples, spanning many fields. These examples show that adjoint 
functors are ubiquitous in mathematics. 

6.7 Abelian categories 

The type of categories that most often appears in representation theory is abelian categories. 
The standard definition of an abelian category is rather long, so we will not give it here; rather, we 
will use as the definition what is really the statement of the Freyd-Mitchell theorem: 

Definition 6.14. An abelian category is a full subcategory C of the category of A-mod of left 
modules over a ring A, which is closed under

Example 6.15. The category of modules over an algebra A and the category of finite dimensional 
modules over A are abelian categories. 

We see from this definition that in an abelian category, Hom(X,Y ) is an abelian group for each 
X,Y , compositions are group homomorphisms with respect to each argument, there is the zero ob
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taking finite direct sums, as well as kernels, cokernels, and

 images of homomorphisms.



ject, the notion of an injective morphism (monomorphism) and surjective morphism (epimorphism), 
and every morphism has a kernel and a cokernel. 

Remark 6.16. The good thing about Definition 6.14 is that it allows us to visualize objects, 
morphisms, kernels, and cokernels in terms of classical algebra. But the definition also has a big 
drawback, which is that even if C is the whole category A-mod, the ring A is not determined by C. 
In particular, two different rings can have equivalent categories of modules (such rings are called 
Morita equivalent). Actually, it is worse than that: for many important abelian categories there 
is no natural (or even manageable) ring A at all. This is why people prefer to use the standard 
definition, which is free from this drawback, even though it is more abstract. 

We say that an abelian category C is k-linear if the groups HomC (X,Y ) are equipped with 
a structure of a vector space over k, and composition maps are k-linear in each argument. In 
particular, the categories in Example 6.15 are k-linear. 

6.8 Exact functors 

Definition 6.17. A sequence of objects and morphisms 

X0 → X1 → ... Xn+1→ 

in an abelian category is said to be a complex if the composition of any two consecutive arrows 
is zero. The cohomology of this complex is H i = Ker (di)/Im(di−1), where di : Xi → Xi+1 (thus 
the cohomology is defined for 1 ≤ i ≤ n). The complex is said to be exact in the i-th term if 
H i = 0, and is said to be an exact sequence if it is exact in all terms. A short exact sequence 
is an exact sequence of the form 

0 X Y Z 0.→ → → → 

Clearly, 0 X Y Z 0 is a short exact sequence iff X Y is injective, Y Z is→ → → → → →
surjective, and the induced map Y/X Z is an isomorphism. → 

Definition 6.18. A functor F between two abelian categories is additive if it induces homomor
phisms on Hom groups. Also, for k-linear categories one says that F is k-linear if it induces k-linear 
maps between Hom spaces. 

It is easy to show that if F is an additive functor, then F (X ⊕ Y ) is canonically isomorphic to 
F (X) ⊕ F (Y ). 

Example 6.19. The functors IndG , ResG , HomG(V, ?) in the theory of group representations over K K 
a field k are additive and k-linear. 

Definition 6.20. An additive functor F : C → D between abelian categories is left exact if for 
any exact sequence 

0 X Y Z, → → → 

the sequence 
0 F (X) F (Y ) F (Z)→ → → 

is exact. F is right exact for any exact sequence 

X Y Z 0,→ → → 

the sequence 
F (X) F (Y ) F (Z) 0→ → → 

is exact. F is exact if it is both left and right exact. 
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Definition 6.21. An abelian category C is semisimple if any short exact sequence in this category 
splits, i.e. is isomorphic to a sequence 

0 X Y 0→ → X ⊕ Y → → 

(where the maps are obvious). 

Example 6.22. The category of representations of a finite group G over a field of characteristic 
not dividing |G| (or 0) is semisimple. 

Note that in a semisimple category, any additive functor is automatically exact on both sides. 

Example 6.23. (i) The functors IndG , ResG are exact. K K 

(ii) The functor Hom(X, ?) is left exact, but not necessarily right exact. To see that it need not 
be right exact, it suffices to consider the exact sequence 

0 Z Z Z/2Z 0,→ → → → 

and apply the functor Hom(Z/2Z, ?). 

(iii) The functor X⊗A for a right A-module X (on the category of left A-modules) is right exact, 
but not necessarily left exact. To see this, it suffices to tensor multiply the above exact sequence 
by Z/2Z. 
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