18.712 Introduction to Representation Theory Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

7 Structure of finite dimensional algebras

In this section we return to studying the structure of finite dimensional algebras. Throughout the section, we work over an algebraically closed field k (of any characteristic).

7.1 Projective modules

Let A be an algebra, and P be a left A-module.

Theorem 7.1. The following properties of P are equivalent:

(i) If $\alpha : M \to N$ is a surjective morphism, and $\nu : P \to N$ any morphism, then there exists a morphism $\mu : P \to M$ such that $\alpha \circ \mu = \nu$.

(ii) Any surjective morphism $\alpha: M \to P$ splits, i.e. there exists $\mu: P \to M$ such that $\alpha \circ \mu = id$.

(iii) There exists another A-module Q such that $P \oplus Q$ is a free A-module, i.e. a direct sum of copies of A.

(iv) The functor $Hom_A(P,?)$ on the category of A-modules is exact.

Proof. To prove that (i) implies (ii), take N = P. To prove that (ii) implies (iii), take M to be free (this can always be done since any module is a quotient of a free module). To prove that (iii) implies (iv), note that the functor $\text{Hom}_A(P, ?)$ is exact if A is free (as $\text{Hom}_A(A, N) = N$), so the statement follows, as if the direct sum of two exact sequences is exact, then each of them is exact. To prove that (iv) implies (i), let K be the kernel of the map α , and apply the exact functor $\text{Hom}_A(P, ?)$ to the exact sequence

$$0 \to K \to M \to N \to 0.$$

Definition 7.2. A module satisfying any of the conditions (i)-(iv) of Theorem 7.1 is said to be **projective**.

7.2 Lifting of idempotents

Let A be a ring, and $I \subset A$ a nilpotent ideal.

Proposition 7.3. Let $e_0 \in A/I$ be an idempotent, i.e. $e_0^2 = e_0$. There exists an idempotent $e \in A$ which is a lift of e_0 (i.e. it projects to e_0 under the reduction modulo I). This idempotent is unique up to conjugation by an element of 1 + I.

Proof. Let us first establish the statement in the case when $I^2 = 0$. Note that in this case I is a left and right module over A/I. Let e_* be any lift of e_0 to A. Then $e_*^2 - e_* = a \in I$, and $e_0a = ae_0$. We look for e in the form $e = e_* + b$, $b \in I$. The equation for b is $e_0b + be_0 - b = a$.

Set $b = (2e_0 - 1)a$. Then

 $e_0b + be_0 - b = 2e_0a - (2e_0 - 1)a = a,$

so e is an idempotent. To classify other solutions, set e' = e + c. For e' to be an idempotent, we must have ec + ce - c = 0. This is equivalent to saying that ece = 0 and (1 - e)c(1 - e) = 0, so c = ec(1 - e) + (1 - e)ce = [e, [e, c]]. Hence $e' = (1 + [c, e])e(1 + [c, e])^{-1}$.

Now, in the general case, we prove by induction in k that there exists a lift e_k of e_0 to A/I^{k+1} , and it is unique up to conjugation by an element of $1 + I^k$ (this is sufficient as I is nilpotent). Assume it is true for k = m - 1, and let us prove it for k = m. So we have an idempotent $e_{m-1} \in A/I^m$, and we have to lift it to A/I^{m+1} . But $(I^m)^2 = 0$ in A/I^{m+1} , so we are done. \Box

Definition 7.4. A complete system of orthogonal idempotents in a unital algebra *B* is a collection of elements $e_1, ..., e_n \in B$ such that $e_i e_j = \delta_{ij} e_i$, and $\sum_{i=1}^n e_i = 1$.

Corollary 7.5. Let $e_{01}, ..., e_{0m}$ be a complete system of orthogonal idempotents in A/I. Then there exists a complete system of orthogonal idempotents $e_1, ..., e_m$ ($e_i e_j = \delta_{ij} e_i, \sum e_i = 1$) in A which lifts $e_{01}, ..., e_{0m}$.

Proof. The proof is by induction in m. For m = 2 this follows from Lemma 7.3. For m > 2, we lift e_{01} to e_1 using Lemma 7.3, and then apply the induction assumption to the algebra $(1-e_1)A(1-e_1)$.

7.3 **Projective covers**

Obviously, every projective module over an algebra A is a direct sum of indecomposable projective modules, so to understand projective modules over A, it suffices to classify indecomposable projective modules.

Let A be a finite dimensional algebra, with simple modules $M_1, ..., M_n$.

Theorem 7.6. (i) For each i = 1, ..., n there exists a unique indecomposable projective module P_i such that dim $Hom(P_i, M_j) = \delta_{ij}$.

(ii) $A = \bigoplus_{i=1}^{n} (\dim M_i) P_i$.

(iii) any indecomposable projective module over A is isomorphic to P_i for some i.

Proof. Recall that $A/\operatorname{Rad}(A) = \bigoplus_{i=1}^{n} \operatorname{End}(M_i)$, and $\operatorname{Rad}(A)$ is a nilpotent ideal. Pick a basis of M_i , and let $e_{ij}^0 = E_{jj}^i$, the rank 1 projectors projecting to the basis vectors of this basis $(j = 1, ..., \dim M_i)$. Then e_{ij}^0 are orthogonal idempotents in $A/\operatorname{Rad}(A)$. So by Corollary 7.5 we can lift them to orthogonal idempotents e_{ij} in A. Now define $P_{ij} = Ae_{ij}$. Then $A = \bigoplus_i \bigoplus_{j=1}^{\dim M_i} P_{ij}$, so P_{ij} are projective. Also, we have $\operatorname{Hom}(P_{ij}, M_k) = e_{ij}M_k$, so $\dim \operatorname{Hom}(P_{ij}, M_k) = \delta_{ik}$. Finally, P_{ij} is independent of j up to an isomorphism, as e_{ij} for fixed i are conjugate under A^{\times} by Proposition 7.3; thus we will denote P_{ij} by P_i .

We claim that P_i is indecomposable. Indeed, if $P_i = Q_1 \oplus Q_2$, then $\text{Hom}(Q_l, M_j) = 0$ for all j either for l = 1 or for l = 2, so either $Q_1 = 0$ or $Q_2 = 0$.

Also, there can be no other indecomposable projective modules, since any indecomposable projective module has to occur in the decomposition of A. The theorem is proved.

References

- [BGP] J. Bernstein, I. Gelfand, V. Ponomarev, Coxeter functors and Gabriel's theorem, Russian Math. Surveys 28 (1973), no. 2, 17–32.
- [Cu] C. Curtis, Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, AMS, 1999.
- [CR] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, AMS, 2006.
- [FH] W. Fulton and J. Harris, Representation Theory, A first course, Springer, New York, 1991.
- [McL] S. MacLane, Categories for a working Mathematician: 2nd Ed., Graduate Texts in Mathematics 5, Springer, 1998.