18.014 Homework 2 - Solutions

\[x < y \]
\[0 < y - x \]

By theorem I30, \(\exists n \in \mathbb{Z}_+ \) such that:

\[1 < n(y - x) \]
\[1 < ny - nx \]
\[nx + 1 < ny \]

According to exercise 5, page 28 (solved in recitation) \(\exists m \in \mathbb{Z} \) such that:

\[nx < m \leq nx + 1 < ny \]
\[nx < m < ny \]
\[x < \frac{m}{n} < y \]

Since \(m, n \in \mathbb{Z}, \frac{m}{n} \in \mathbb{Q} \).

Following the same argument, there must exist a rational number between \(x \) and \(\frac{m}{n} \). This process can be carried on indefinitely, hence there must be an infinite number of rational numbers between \(x \) and \(y \).

(a) From exercise 6, we know that the number of lattice points in \(S=\{(x, y) \) s.t. \(0 < x < b, 0 < y \leq x \cdot \frac{a}{b} \} \) is equal to \(\sum_{n=1}^{b-1}[-\frac{na}{b}] \). \(S \) is the set of all the points inside the right triangle of sides \(a \) and \(b \). Note that no lattice points lie on the hypotenuse of the triangle, since \(\frac{na}{b} \) is an integer if and only if \(n \) is a multiple of \(b \) (because \(a \) and \(b \) have no common factor), and \(1 \leq n \leq b - 1 \). Hence, the number of lattice points is equal to half the number of lattice points in the rectangle of sides \(a \) and \(b \) (since there are no lattice points on the diagonal), and that is \(\frac{(a-1)(b-1)}{2} \).

(b) Since \(a \) and \(b \) have no common factors, \(\frac{na}{b} \) is not an integer for \(1 \leq n \leq b - 1 \). Hence, by exercise 4:

\[[-\frac{na}{b}] = -[\frac{na}{b}] - 1 \]
Therefore:

\[
\begin{align*}
\sum_{n=1}^{b-1} \left\lfloor \frac{na}{b} \right\rfloor &= \sum_{n=1}^{b-1} \frac{a(b-n)}{b} \\
&= \sum_{n=1}^{b-1} \left(a - \frac{na}{b} \right) \\
&= \sum_{n=1}^{b-1} \left(a - \left\lfloor \frac{na}{b} \right\rfloor - 1 \right) \\
&= (a - 1)(b - 1) - \sum_{n=1}^{b-1} \left\lfloor \frac{na}{b} \right\rfloor \\
\Rightarrow 2 \sum_{n=1}^{b-1} \left\lfloor \frac{na}{b} \right\rfloor &= (a - 1)(b - 1) \\
\Rightarrow \sum_{n=1}^{b-1} \left\lfloor \frac{na}{b} \right\rfloor &= \frac{(a - 1)(b - 1)}{2}
\end{align*}
\]

Problem 3.

Let \(s(x) \) be a step function defined on the partition \(P = \{x_0, x_1, ..., x_n\} \), such that \(s(x) = s_k \forall x_{k-1} < x < x_k \). I will add a new subdivision point, \(y \), such that \(x_{k-1} < y < x_k \). Therefore, \(s(y) = s_k \). With the new partition the term \(s^3_k(x_k - x_{k-1}) \) is replaced by:

\[
\begin{align*}
s^3_k(x_k - y) + s^3_k(y - x_{k-1}) &= s^3_kx_k - s^3_ky + s^3_ky - s^3_kx_{k-1} \\
&= s^3_kx_k - s^3_kx_{k-1} \\
&= s^3_k(x_k - x_{k-1})
\end{align*}
\]

Hence, the addition of any subdivision point doesn’t alter the summation, so it doesn’t alter the integral, proving that the integral is independent of the partition.
(a)

\[
\int_a^b s(x)\,dx = \sum_{k=1}^m s_k^3(x_k - x_{k-1}) \quad \text{with} \quad a = x_0 < x_1 < \cdots < x_m = b
\]

\[
\int_b^c s(x)\,dx = \sum_{k=1}^{n-m} s_k^3(y_k - y_{k-1}) \quad \text{with} \quad b = y_0 < y_1 < \cdots < y_{n-m} = c
\]

Let \(y_i = x_{m+i} \). Then \(P = \{x_0, x_1, \ldots, x_n\} \) is a partition for \([a, c]\), in which \(s(x) \) is a step function. Then:

\[
\int_a^b s(x)\,dx + \int_b^c s(x)\,dx = \sum_{k=1}^m s_k^3(x_k - x_{k-1}) + \sum_{k=m+1}^n s_k^3(x_k - x_{k-1})
\]

\[
= \sum_{k=1}^n s_k^3(x_k - x_{k-1})
\]

\[
= \int_a^c s(x)\,dx
\]

(b)

Let \(s(x) = 1, t(x) = 2 \ \forall x \in [0, 1] \). Then:

\[
\int_a^b (s + t) = (1 + 2)^3(1 - 0) = 27 \neq 9 = 1^3(1 - 0) + 2^3(1 - 0) = \int_a^b s + \int_a^b t
\]

(c)

Let \(s(x) = 1, c = 2 \ \forall x \in [0, 1] \). Then:

\[
\int_a^b cs = (1 \cdot 2)^3(1 - 0) = 8 \neq 2 = 2 \cdot (1)^3(1 - 0) = c \cdot \int_a^b s
\]