Let $w = f(x, y)$ be a differentiable function of x and y. The linear approximation of f is given by

$$\Delta f_{\text{app}} = f_x(x, y)\Delta x + f_y(x, y)\Delta y.$$

We introduce a new notation, the differential notation for the increments $\Delta f, \Delta x, \Delta y$, namely we write df, dx, dy instead: $df = f_x dx + f_y dy$. This expression is called the differential of f. For example, the differential of

$$w = x^2 + y^2 - 1 \quad \text{is} \quad dw = 2x dx + 2y dy.$$

For any function $w = f(x, y)$, the equality

$$dw = \left(\frac{\partial w}{\partial x} \right)_y dx + \left(\frac{\partial w}{\partial y} \right)_x dy$$

holds. By the elimination method, we can find $\frac{\partial w}{\partial x}_y$ and $\frac{\partial w}{\partial y}_x$ if w is not given directly as a function of x and y but can be reduced to such a function. We illustrate this in the following example. Consider the these two equalities:

$$w = f(x, y, z) = xyz, \quad z = g(x, y) = e^{xy}.$$

Then the differentials of w and z are

$$dw = yzdx + xzdy + xydz \quad \text{and} \quad dz = ye^{xy}dx + xe^{xy}dy.$$

Substituting dz in the first equality, we get

$$dw = (yz + xy^2e^{xy})dx + (xz + yx^2e^{xy})dy.$$

Then the derivative of w with respect to x when w is seen as a function of x and y is precisely the term of dx in the equality above:

$$\left(\frac{\partial w}{\partial x} \right)_y = yz + xy^2e^{xy} \quad \text{and} \quad \left(\frac{\partial w}{\partial y} \right)_x = xz + yx^2e^{xy}.$$