
22.05      Reactor Physics  -  Part Twelve
 

Application of One-Velocity Diffusion  
Equation to Multiplying Media 

 
 
1.   Multiplying Media:   
 

A multiplying medium is one in which fission, either thermal or fast or both, does 
occur.  Hence, the source term is retained in writing the diffusion equation.  Thus, 
one has both a  term for absorption and a φΣa φΣf  term for fission.  Both terms 
have the same mathematical form, a cross-section times a flux.  So, what then is 
the difference between the solution for a non-multiplying medium and a 
multiplying one?  The boundary conditions are different.  For a non-multiplying 
medium, the source (or actually the current produced by the source) is a boundary 
condition.  For a multiplying medium, one has conditions such as extrapolation 
distance or symmetry (e.g., zero current at the midsection of the multiplying 
medium.) 

 
A second difference is that for non-multiplying media the solutions were in terms 
of exponential and/or hyperbolic functions.  For multiplying medium, the 
solutions are in terms of sines and cosines.  The latter repeat and hence one can 
have multiple solutions.  As we will see, one of these modes corresponds to the 
desired critical condition.   
 
 

2. Bare Slab Reactor:  
 

The simplest multiplying medium example would be a bare slab that is of 
thickness, a, and is infinite in height and width.  We start with the time-dependent 
diffusion equation: 
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For steady state conditions this becomes: 
 

)x(D)x()x(0 2
af φ∇+φΣ−φΣν=  

 
The above equation is completely general provided that one obtains cross-sections 
that represent the complete range of neutron energies.  This is unrealistic.  Hence, 
it is common practice to limit the analysis to fast neutrons for which the cross-
sections are relatively smooth and constant.   
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The quantity  is the source term where ν is the number of neutrons per 
fission and  is the macroscopic fission cross-section.  Because we are limiting 
the analysis to fast reactors, it is common practice to express the source term in an 
alternative form.   

φΣν f

fΣ

 
The original motivation for this change of nomenclature was to express the source 
term in parameters that were measurable and readily computed.  No such need 
now exists given present-day computing power.  Nevertheless, familiarity with 
the traditional nomenclature is of benefit. 
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Where  is the macroscopic absorption cross-section of the fuel (i.e., absorption 

in the fuel that leads to either fission or radiative capture) and is the total 
absorption cross-section of the core.  That is,  
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Where  is the absorption cross-section of everything except the fuel. M

aΣ
 
To continue, 
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Where f is called the “fuel utilization” because we are dealing with fast neutrons.  
(Note:  The parameter for the neutron life cycle analysis that encompassed fast 
and thermal neutrons was called the “thermal utilization.”)  The quantity φΣη af  
is the number of neutrons produced from fission.  The quantity  is the 
number absorbed.  So,  

φΣa
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Hence, we now write the source term as: 
 

φΣ= ∞ aKS  
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which also equals  and φΣη af φΣν f . 
 

 
Hence, the steady-state diffusion equation becomes: 
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Where: 
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Where  is called the one-group diffusion area.  (a

2 /DL Σ= Note:  The term one-
group can be substituted for one-velocity.  One group means one energy range.)  
It merits repeating that this change of nomenclature is not of significance in 
solving the diffusion equation.  We could as well solve the equation as originally 
written by defining B2 as ( )D/)af Σ−Σν from the outset.   
 
The physical meaning of the B2 term will be explained later.  For now, we wish to 
focus on solving the equation for the flux shape.  The following figure shows the 
geometry of the problem.  
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The slab is of width a with the centerline at x = 0.  So, the width of the slab goes 

from 
2
a−  to

2
a .  We take the extrapolation distance as d.    

 
The boundary conditions are as follows: 
 
 The flux must vanish at the extrapolation distances.  To reiterate, this is a 

physically unreal requirement but its imposition results in the diffusion 
theory calculation of the flux being correct in the interior of the slab.  
Thus,  
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To simplify the notation, let ⎟
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a  be denoted as f.  Thus,  
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 The problem is symmetric because of the geometry and the choice of x = 0 
for the centerline.  Hence, 
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Or in other words, 
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The general solution of a differential equation of the form of  
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is 
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Differentiation of this result and application of the second boundary 
condition gives C=0.  So, the solution reduces to:   
 

BxcosA)x( =φ  
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To determine A, we use the extrapolation distance condition.  The cosine 
is an even function, so we can use either 0)f(or0)f( =−φ=φ . Thus, 
 

)Bfcos(A0)f( ==φ  

 
This yields two solutions.  The first is that A=0 and hence is 
everywhere zero (the trivial solution).  The second is: 

)x(φ

 
cos (Bf)=0 
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Where n is an odd integer, 1, 3, 5…. 
 
The values of Bn, each a constant, are called the eigenvalues and the 
corresponding flux shapes, cos Bnx, are called the eigenfunctions.  The 
critical condition is the fundamental mode for which n=1.  Thus,  
 

)f2/xcos(A)x( π=φ  

 
or, for small values of the extrapolation distance, 
 

)a/xcos(A)x( π=φ  

 
 (Note:  Each eigenfunction contributes to the flux shape so that the flux 
would be a sum of the eigenfunctions (of which there are an infinite 
number) with each weighted by a time-dependent function.  For the 
critical condition, all of these weighting functions go to zero except that 
for which n=1.) 
 
So, one-group diffusion theory predicts that the flux in a bare slab of 
thickness a is: 
 

)a/x(cosA)x( π=φ  
 
 

3. Power Level and Critical Condition:   
 

We have not yet evaluated the constant A in the above-equation for the flux.  This 
is because the reactor can be critical at any power level.  The value of A 
determines the magnitude of the flux which in turn determines the power level.   
One can not obtain a value of A from the geometry of the problem.  Recall that:   
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and hence 
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Thus, for a given power level (P) in a critical bare slab reactor, one group 
diffusion theory predicts that the flux is: 
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4. Buckling:   
 

“Buckling” is a term that arose in the 1950s and 1960s as part of an effort to give 
physical meaning to the one-group equation.  It is defined as the square of the 
lowest eigenvalue.  Thus,  
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and the diffusion equation would be: 
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The buckling is therefore a measure of extent to which the flux curves or 
“buckles.”  For a slab reactor and the buckling goes to zero as “a” 
goes to infinity.  This makes physical sense – there would be no buckling or 
curvature in a reactor of infinite width. 

( )22
1 a/B π=

 
Buckling can be used to infer leakage.  The greater the curvature, the more 
leakage would be expected.   
 
 

5. Flux Shape for Bare Slab Reactor:   
 

Does the predicted flux shape for a bare slab reactor make physical sense?  The 
answer is yes given that fa andΣΣ are uniform throughout the slab and net losses 
from leakage occur at the edges.  We can think of the reactor as a series of mini 
slabs.  Each produces neutrons, each absorbs some, and each results in diffusion 
to its neighbors.  The largest sink is at ax ±=  where leakage is greatest.  Suppose 
the excess (production over absorption) is 10 neutrons per mini slab.  So, the slab 
nearest the centerline has 10 neutrons to push out in order to remain at steady-
state.  The slab next to it has 20 (its own 10 plus the ones from its neighbor).  The 
next mini slab has to move 30 and so on.  Diffusion is proportional to the gradient 
of the flux.  So, we expect the curvature of the flux shape to be greatest for mini 
slabs near the surface.  And this is what the cosine function does show. It is flat 
near the centerline and most strongly curved as x approaches a.   

 
 
6. Bare Slab Reactor with a Shield:  The slab would be a multiplying medium 

while the shield would be a pure absorber.  So, the flux shape would be: 
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7. Bare Spherical Reactor:   
 

Earlier we analyzed a point source in a sphere of non-multiplying materials.  The 
flux was only a function of the radial distance and was found to be a decaying 
exponential.  Specifically, the one-group diffusion equation in spherical 
coordinates was:   
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To solve for , we let φ φ= rw  and obtained: 
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The solution was of the form: 
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Note that if we substitute  into the differential equation for w, we obtain:  L/rAe−
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And conclude that e–r/L is indeed a solution.  Similarly,  can be shown to be 
a solution. 

L/re

 
Now, what about a multiplying medium?  The one-group diffusion equation for 
such a medium is: 
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Where  is equal to2B ( D/af )Σ−Σν .  We note immediately that an exponential 
cannot be the solution because the second term is now positive, not negative.  
Hence, the exponential and its second derivative will not cancel.  We expect a 
solution that is a sine or cosine where the second derivative is the negative of the 
original function.  Such functions are cyclic and that is a major difference 
between the multiplying and the non-multiplying medium.  For the former, one 
gets sine, cosine or Bessel functions.  For the latter one gets exponentials or a 
hyperbolic function.   
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To proceed, again let φ= rw  and obtain: 
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The solution is:  
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Next apply the boundary condition that the flux is finite at the center (r=0) of the 
sphere.  Hence, C=0. 
 
Thus,  
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If we assume that the extrapolation distance is small compared to the radius, R, of 
the sphere, then for a second boundary condition, we have that the flux at the 
sphere’s surface must be zero. 
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From this, one obtains: 
 
   R/nBn π=
 
where n is an integer.  The first eigenvalue (n=1) corresponds to the critical 
condition.  Thus, 
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and the flux is: 
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The constant A is found by specifying the power level of the reactor (see Section 
6.3 of Lamarsh).  The final result is: 
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Where P is the power level and Er is the energy released per fission. 
 
 

8. Bare Infinite Cylinder:   
 

This geometry is of interest because fuel elements in a PWR or BWR consist of 
cylindrical pellets that are stacked to form long cylinders.  In this case, the flux is 
again only dependent on the radial distance.  The one-group diffusion equation in 
cylindrical coordinates is: 
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This is a form of Bessel’s equation which is of the type:   
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Here, for our case, m=0.  The solutions are Jm (Br) and Ym (Br) which are called 
ordinary Bessel functions of the first and second kind.   For our case, m=0 and the 
general solution is:   
 

 )Br(CY)Br(AJ)r( 00 +=φ  
 

The attached figure shows both J0 and Y0.  First note that they are cyclic as is to 
be expected for a multiplying medium.  Second note that Y0 goes to -∞ as x→0. 
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Hence, the constant C=0.  Thus, we have: 
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Again, assume that the extrapolation distance is small compared to the cylinder’s 
radius.  So,  
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Examination of the figure for the Bessel functions shows that J0 equals zero for 
various values of x.  Denote these as xn.  Hence, we require: 
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The critical condition corresponds to n=1.  So,  
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The constant A is again determined from the power level (see Section 6.3 of 
Lamarsh).  The final result is: 
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