
22.05 Reactor Physics  -  Part Sixteen 
 
 

Solution of Group Equations 
 
 
1. The multi-group equations in their most general form for an infinite homogeneous 
reactor are: 
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A non-trivial solution exists only if the determinant of the matrix is zero.  The 
value of the determinant depends on the choice of materials that comprise the 
reactor.  These include the fuel, coolant, moderator, reflector, control devices, and 
structural materials.  It is unlikely (very, very unlikely) that any given initial 
choice of materials will result in a critical assembly.  Accordingly, an interactive 
approach is needed where one selects a composition (perhaps guided by hand 
calculations using one-velocity theory), determines the proximity of the choice to 
criticality, readjusts a parameter (perhaps the fuel loading or its enrichment) and 
then redoes the calculations.  The question therefore arises as how to assess 
proximity to criticality.  We need some parameter that is a measure of the 
correctness of our design and in particular our choice of materials. We do this by 
pretending that the quantity ν, which is the number of neutrons emitted per 
fission, can be arbitrarily varied.  Thus, we replace ν by ν/λ where λ is a real, 
positive number.  The end result of the solution of the multigroup equations is the 
value of λ that will make the determinant of the matrix go to zero. If too much 
fuel is present, λ will be greater than 1.  If too little, then λ will be less than one.  
We then adjust some parameter (fuel loading, enrichment, more or less 
moderation, etc.) and redetermine the value of λ.   
 
 

2. The Eigenvalue λ:   
 
 The role of the quantity λ in the multi-group equations is most easily seen by 

rewriting those equations as the sum of two distinct matrices.  Define two G x G 
matrices [A] and [M] whose gg ′ elements are 

 
ggggtgggA ′′′ Σ−δΣ≡ , 

gfgggM ′′ Σνχ≡  



 
where  is the Kronecker delta. That is gg ′δ ggfor1gg ′==δ ′ and 

.  The multi-group equations can then be written as: ggfor0gg ′≠=δ ′

 
[ ] [ ][ ] [ 0Φλ/MA ]=−  

 
or 
 

[ ][ ] [ ][ ]/λΦMΦA = . 
 
The [A] matrix combines the absorption plus scattering terms.  The [M] matrix 
represents the source terms (fission).   We quote directly from Henry (pp. 73-74) 
on the solution method.   
 
“It is possible to prove that [A]-1, the inverse of the matrix [A], exists for any 
physically real set of cross-sections and number densities (and, moreover, that 
every element of it is non-negative).  Thus, we can obtain: 
 

[ ] [ ][ ] [ ]Φ=− λΦM1A . 
 
This result has the standard eigenvalue-equation form.  The number λ is thus an 
eigenvalue of the matrix [ ] [ ]M1A − , and a nontrivial solution for   will exist if, 

and only if, the determinant of [ ]
[ ]Φ

[ ] [ ]IM1A λ−− vanishes ( [ ]I being the G x G unit 
diagonal matrix). 
 
In general, there will be G values of λ for which there will be a nontrivial 
solution.  However, in this case, it is possible (for any physically realizable set of 
multi-group parameters) to prove the following mathematical statements:   
 
a) There is a unique real, positive eigenvalue of greater in magnitude than 

any other eigenvalue. 
 
b) All the elements of the eigenvector corresponding to that eigenvalue are 

real and positive. 
 
c) All other eigenvectors of either have some elements that are zero or have 

elements that differ in sign from each other. 
 
These properties guarantee that here always exists a solution to the multi-group 
equations corresponding to a real positive value of λ and that the eigenvector [ ]Φ  
corresponding to that eigenvalue is the only physically acceptable (all-positive) 
solution.  Moreover, the fact that the eigenvalue we seek is greater in magnitude 
than any other eigenvalue for the multi-group equations leads to a systematic 
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procedure for solving those equations that is guaranteed to yield the desired 
eigenvalue and eigenvector.”  (Henry, pp. 73-74) 
 
Reference should be made to Henry (p. 74) for the proof of these statements.   
 
 

3. Physical Meaning of λ and K-Effective:   
 
 It is evident from the relation [ ][ ] [ ][ ]/λΦMΦA =  that λ can be interpreted as a 

ratio of neutron production to neutron loss.  This concept becomes more precise if 
one writes out the multi-group equation for a single group and then sums over all 
groups.   It can be shown that λ is:   
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Where  is the total macroscopic absorption cross-section for group g.  If the 
reactor is critical, then λ is unity and it is the ratio of the total rate of neutron 
production to the total rate of neutron absorption. It is common practice to extend 
this interpretation to the case where λ is not unity.  In that case, however, the 
reactor is artificially critical and λ is not a physically measurable quantity.  Given 
this interpretation of λ and given that we are discussing an infinite homogeneous 
medium, λ is termed the infinite multiplication factor or K-infinity that was 
discussed when we considered neutron life cycle analysis. 

agΣ

 
The ideas developed above are not limited to an infinite homogeneous medium.  
For realistic reactors (heterogeneous with finite, complex geometries) it is still 
always possible to find some real, positive value of λ such that when it is divided 
into ν, the reactor assembly will be critical.  Thus, we can generalize the 
interpretation of λ as the ratio of neutron production to that of the sum of both 
neutron absorption and leakage. In this case, λ is then the effective multiplication 
factor of K-effective.   
 
Thus,  
 

AbsorptionNeutron
oductionPrNeutronK =∞  

 
and applies to an infinite medium 
 

LeakageNeutronAbsorptionNeutron
oductionPrNeutronKeffective +

=  

 
and applies to reactors of finite size. 
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4. Reactivity:
 

Another very useful quantity, particularly in time-dependent reactor physics, is 
the reactivity.  It is defined as:   
 

effective

effective
K

1K −
≡ρ  

 
or 
 

λ
−λ 1  

 
Reactivity is global property.  That is, it is a property of the reactor as a whole.  
Nevertheless, it is common practice to speak of the reactivity associated with a 
control blade or a fuel element.  But such statements are only valid for the reactor 
configuration in which the calculation (or measurement) of the reactivity was 
made.  If the configuration is altered, then the reactivity numbers will be different.  
When we discuss reactor kinetics, we will see that failure to realize this has lead 
to some operational problems.   
 
Data from the MIT Research Reactor provides strong evidence of the global 
nature of reactivity.  Refer to Fig. 1 of the attached paper,” Effect of Radial Power 
Distribution on MITR-II Fuel Element and Control Blade Worth.”  The reactor 
core consists of three rings (labeled A, B, and C) of fuel arranged in the shape of a 
hexagon.  If fresh fuel is placed in the innermost (A) ring, power shifts to the core 
interior.  The converse occurs if fresh fuel is placed in the C-ring.  Fig. 1 shows 
this strong dependence of the reactivity worth of the shim blades, which are 
located exterior to the C-ring on the core perimeter.  Why does this occur?  The 
reactivity of a control device is a function of the number of neutrons that it 
absorbs which is in turn dependent on the neutron flux in which the device is 
immersed.   So, when the core power shifts inward, the flux near the blades 
decreases and therefore the number of neutrons that strike the blades and hence 
are absorbed by them also decreases.  Hence blade reactivity worth decreases.  
(Note:  If one performs a thorough analysis of blade reactivity worth, one finds 
that it is approximately proportional to the square of the neutron flux.  So, the 
effect is very pronounced.) 
 
 

5. Sample Calculations: 
 

Computer codes exist for the purpose of solving the multi-group equations.  The 
design of those codes requires knowledge of both numerical methods and linear 
algebra, both of which are beyond the scope of this course.  For accurate estimates 
of the energy spectrum, the number of groups may be as many as 3000.  However, 
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for illustrative purposes, two or three group problems can be solved by hand.  We 
summarize a three group example given by Henry (p. 79).   
 
In this example, it is assumed that there is no upscattering (i.e.,  for 

), that there is only one fissionable isotope (no need to average cross-
sections over several isotopes) and that 

0gg =Σ ′

gg >′
03 =χ   (no fission neutrons appear in 

group 3 which is the thermal group).  Also, we make use of the notation for the 
total removal cross-section, gΣ , which is defined as absorption plus scattering out. 

That is,  
 

∑ Σ+Σ=Σ−Σ+Σ=Σ−Σ≡Σ
≠′

′
gg

ggagggsgagggtgg  

 
The general form of the multi-group equations (first page of these notes) therefore 
reduces to this three-group example:   
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This is a homogenous equation and hence we will only be able to find the column 
vector [  to within a multiplication constant.  That is, if ]Φ [ ]Φ  is a solution, so is a 
constant times [ .  We now quote directly from Henry:  ]Φ
 
“The critical condition is that the determinant be zero. 
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If we multiply the second line of this determinant by 1χ , subtract from the result 
the first line multiplied by 2χ , then multiply the first line by λ (assumed 
nonzero), we obtain 
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It is clear from this result that the equivalent algebraic equation will be one of first 
order in λ and hence will yield only one value of that quantity.  Expansion of the 
determinant shows that this value is: 
 
 

( )( ) ( )
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31f313f32f323f21 21121

ΣΣΣ

ΣΣν+ΣΣνΣχ+ΣΣν+ΣΣνΣχ+Σχ
=λ  

 
Because the ’s and ’s in this equation are real positive numbers, we have thus 
demonstrated mathematically for this case that there always exists a real positive 
value of λ that causes the determinant to vanish.  Moreover, we have found that 
there is only one such value of λ. 

χ Σ

 
The other two eigenvalues are both λ=0.  The corresponding eigenvectors 

 must be such that { 321 ,,Col ΦΦΦ } 0
321 3f2f1f =Σν+Σν+Σν ΦΦΦ , and thus 

must have elements that differ in sign.   
 
As noted above, we can find the column vector [ ]Φ  only to within a 
multiplicative constant; or, to put it another way, we are free to set any one of the 
group fluxes  equal to an arbitrary constant and find the other two 
fluxes in terms of that constant.  The constant would be determined by the power 
level of the reactor.  Let us fix the element

321 or,, ΦΦΦ

1Φ .  The last two multi-group 
algebraic equations implied, then yield ( )0for ≠λ  
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Inverting the matrix that multiplies { }32,Col ΦΦ  yields 
 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Σ

Σ+Σνχ
λ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Σνχ
λ

−ΣΣ

Σνχ
λ

Σ

ΣνΣχλ−Σνχλ−ΣΣ
Φ

=⎥
⎦

⎤
⎢
⎣

⎡
Φ
Φ

−−

31

211f2

2f2232

3f23

3f322
1

2f2
1

23

1

3

2

1

1

1

 
This equation along with value of λ constitutes the solution that is of physical 
interest.”   
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