
22.05    Reactor Physics   –   Part Nineteen

Extension of Group Theory to Reactors of Finite Size1

1. Background:

We reviewed group theory with the objective of being able to calculate .  
Thus far, we have determined the energy behavior of the flux by applying the 
group method to an infinite homogeneous medium.  We now extend the approach 
first to reactors of finite size and then to reactors of multiple regions.  The former 
might be a bare (unreflected) slab.  The latter might be a core with a moderator 
designed so that both sit in a tank that is surrounded by a reflector. Thus, our 
design is becoming realistic in terms of an actual operating reactor.   

E),(rφ

2. Review of Neutron Current:  

The treatment of reactors of finite size requires treatment of neutron leakage.  
This is done by developing the concept of a neutron current and showing that 
leakage is given by the divergence of that current.  See Parts 9 and 10 of these 
notes.  We review the principal concepts here: 

� The net current density  is the maximum over all orientations of a 
unit surface at r of the net number of neutrons with energies between E 
and E + dE crossing that unit surface per second, the direction of the 
vector being the direction of this maximum net flow 

E)(r,J

E)dE(r,J≡

The units of are neutrons per unit energy per cmE)(r,J 2 per sec.   

� Once , which is the net current through one particular unit surface 
(namely the one oriented so that this net flow is a maximum), is known, 
the net current through any surface at r can be obtained.  Thus, if r is a 
vector normal to dS, we have  

E)(r,J

Net current (neutrons per unit energy per sec) through n dS 

1 Material in this section follows that of Henry,  pp. 130-138.  Portions that are verbatim are indicated by 
quotations. 
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dSE)( nr,J ⋅=

� We then use Gauss’s law to convert the surface integral to one over 
volume.  Thus, the total rate at which neutrons are lost from a volume 
element dV per unit energy is: 

dEVdE)(r,J⋅∇=

3. Fundamental Neutron Balance Condition:   

“For a reactor in a steady-state critical condition the rate at which neutrons leak 
out of dV dE must equal the rate at which they are removed by interaction with 
the material in dV (i.e., by absorption and scattering-out).  The physical statement 
that leakage equals production less removal then becomes:   
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Where, for this general, heterogeneous, finite assembly, the cross sections, flux 
density, and current density are all expressed as functions of both energy and 
position.  (Note:  The summation over the lower case j is to cover all isotopes.) 
This equation is rigorous for the external-source-free, steady-state condition.  We
have made no approximations in deriving it other than those inherent in the basic 
expressions for reaction rates.  Thus, if we could obtain )E,(rΦ without 
approximation, it would be possible to compute the power level at all locations in 
a critical reactor with an accuracy limited only by the reliability of the nuclear 
data.  Unfortunately, since the equation contains J as well asΦ , it cannot be 
solved for either of these functions without making use of some second equation 
relating them.”  (Henry, p. 120)   

4. Fick’s Law:

“As might be expected, the best that can done to relate J to Φ  without actually 
finding a solution for N(r,Ω,E) is an approximation.  Fortunately, there turns out 
to be a rather accurate approximation that is quite satisfactory for many reactor-
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design calculations.  It is called Fick’s Law, and it relates to by 
the equation:

E)(r,J )E,(rΦ∇

E)(E)(DE)( ,r,r,rJ Φ∇−=

Where  is called the diffusion constant.” (Henry, p. 121)  It is given by E),(D r
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=

Where 0μ  is the cosine of the scattering angle in the laboratory system.  Fick’s 
law is valid within weakly absorbing media.  It fails at surfaces where material
properties change abruptly and in the presence of strong absorbers.” 

5. Continuous Energy Diffusion Equation:  

Substitution of the Fick’s Law relation into the fundamental neutron balance 
equation yields an equation for E)(r,Φ , the scalar-flux density:   
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It is this equation that we will now try to solve using group theory.  The 
conditions imposed on the solution include that: 

�  be real and non-negative. )E,(rΦ

�  be a continuous function of r within the reactor.  )E,(rΦ

� The component )E,(n rJ⋅ of the net current across an internal surface 
separating two different materials be continuous.  (Note:  D(r, E) is not 
continuous between two different media.  Neither is )E,(rΦ∇ .  The 
requirement is on ( ) ( ))E,(nE)D( rr Φ∇⋅, .) 

�  go to zero at the extrapolation distance. )E,(rΦ

The solution of this equation requires that we simultaneously solve for both the 
energy and the spatial dependence of the flux.  This is a major challenge and the 
approach taken is often iterative in that one solves for the energy dependence in 
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an infinite media of the same composition as the actual reactor, defines 
constants using that energy dependence, and then solves for the spatial 
dependence.
w

6

This is the simplest case that can be considered.  It is also one that was addressed
earlier using one-velocity theory where the neutrons were all assumed to b
si

Homogeneity implies that the concentrations of the materials are uniform.  Thus, 
the material properties which are the macroscopic cross-sections and the diffusi
constant are
b
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We can do this because the problem involves one region and hence can be 
described by a single spatial and a single energy function.  This separability 
approach will not work for a multi-region reactor because then we would be 
requiring one energy function to be viable in multiple regions.  To continue, 
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“This result states that a function of r alone (the left side) equals a function of E
alone (the right side), a situation which can be true only if both functions equal 

 same constant.  We call this constant 2
rB and expect, on physical grounds, that 

2
rB will be real (although it may be negative).” (Henry, p. 131)  On physical term

the

group 

  The result is then checked to see if the assumed energy dependence 
as valid.   

. Solution of Diffusion Equation for a Bare, Homogeneous Core:  

e of a 
ngle uniform energy.  Here, we explicitly retain the energy dependence. 

on 
 independent of r.  Thus, the continuous energy diffusion equation 

ecomes:   

ext we assume that )E,(rΦ is separable and can be written as: 

)E()(R)E,( Ψ=Φ rr

te the above into the homogeneous diffusion equation and separate terms.  
hus, 

r 

s, 
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this equation states that geometrical considerations (left side) balance material
conditio
o

22

Let us apply this result to a bare

22

Where C1 and C2 are constants.  Further assume that the slab extends in width 
from x=0 to x=L.  Also assume that the extrapolation distance is small compared
to L.  Henc
th
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So, now we have the spatial component of the solution.  We subst
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This relation is identical in form to the infinite, homogeneous medium equation 

ns (right side).  It follows that the separability assumption can be valid 
nly if  
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 slab that is infinite in the y and z directions and 
finite in the x direction.  Thus,  

)x(RB)x(R x−=∇

The general solution for R(x) is: 

xBcosCxBsinC)x(R x2x1 +=

e, 0)x(R =  at x=0 and at x=L.  From this requirement we conclude 
at C2=0. 

t is that sin  equal zero at both x=0 and x=L for all 
alues of xB .  Thus, 

...,2,1,0nforL/nBB xnx ±±=π=≡

 which is non-trivial and has no negative components is n=1.  
hus, we obtain 

⎠⎝ L

itute this back 
to the original equation to obtain an equation in energy.  Thus, 

that was developed in Part 15 of these notes.  The only difference is the presence 
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of the  term.  However, this term has the same behavior as .  So, if 

we replace  by 

2
1xBD(E) (E)tΣ

(E)tΣ ( ))E(B)E(D t
2

1x Σ+  we obtain the same result for .   )E(Ψ

To solve the problem using the group theory approach, we define a group 
diffusion constant as: 
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“Solution of these equations gives us an excellent approximation for the energy 
part of the solution  )E(Ψ E)r)r ((R)E,( Ψ=Φ .  It also gives us the value of λ
(the “eigenvalue”) required if this solution is to be positive for all energy groups.  
If λ turns out to be unity, the theory is predicting that the particular slab reactor 
being analyzed will be critical.  If λ is not unity, we can determine what must be 
done to make the system critical.  For example, if solution of the critical 
determinant associated with the above equation yields a value of λ greater than 
unity, we know from our earlier discussion that the reactor will be supercritical.  
We may then search for the critical conditions by decreasing the fuel loading, 
increasing a control poison, or increasing the leakage out of the reactor (i.e., 
decreasing Lx and hence increase .”   (Henry p. 134)2

1xB)E(D

The final solution is then: 

L
xsin)E(CxBsin)E(C)E,x( 11x1
π
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Where the constant C is found by specifying a power level and integrating over 
the core volume.   

7. Non-Leakage Probability:

The above group equation can be summed over all groups and then solved for λ.  
The result is: 
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The quantity on the right ( )gaggfg / ΨΣΨΣν  is k∞.  Thus, we have 

( ) ∞−= kP1k Leff

where  is defined as the leakage probability and (1- ) is the non-leakage probability.  
Thus,  for a slab is: 
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“As would be expected, the leakage probability increases as LP ( )L/B 1x π≡  increases (i.e.,
as the core thickness L decreases).  It also increases as )E(aΣ decreases and as D(E) 
increases (and thus as  decreases).  Decreases in either )E(trΣ )E(aΣ or permit 
neutrons to move further between interactions, and this leads to a greater probability that 
they will leak out of the reactor before an interaction can occur.”  (Henry, p. 145) 

)E(trΣ

8. Summary

“To sum up the situation for the finite homogeneous reactor:  the solution the continuous-
energy diffusion equation for a bare, homogeneous reactor is 

),E()(R)E,( Ψ=Φ rr

Where  is the one everywhere-positive solution of  )(R r

(RB)(R 22 rr r−=∇

)(R r  being the shape of the flux and , the geometrical buckling (often simply called 
the buckling), being a number that depends on the geometry and dimensions of the 
reactor, and where the spectrum function 

2Br

)E(Ψ  is the solution of

)
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A sequence of steps for calculating the criticality of a bare core is as follows:   

1. From the dimensions and geometry (assuming it is simple) obtain  and R(r) 
using the formulas given in the attached Table.  (Note that for the bare core the spatial 
shape of the flux depends only on the geometry and not on the material constituents.)   

2Br

2. Knowing , solve for λ and 2Br )E(Ψ . 

3. If 1≠λ , so that the reactor is not predicted to be critical, alter whatever parameter 
is adjustable (fuel loading, control-poison concentrations, size – i.e., ) until λ=1. 2Br

For a large, bare, homogeneous reactor for which the leakage probability PL is less than
about 5 percent, the accuracy with which keff (i.e., λ) can be computed by this procedure 
(assuming cross-sections are known) is better than a few tenths of a percent.  Thus, for 
the large, bare, homogeneous core, errors in predicting criticality due to nuclear data will 
almost always outweigh errors inherent in the use of the diffusion-theory 
approximations.”  (Henry pp. 136-138) 
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From Henry, A. F. Nuclear Reactor Analysis. Cambridge, MA: MIT Press, 1975. 
Courtesy of MIT Press. Used with permission. 


