
22.05 Reactor Physics  -  Part Twenty 
 
 

Extension of Group Theory to Reactors of Multiple Regions 
One Energy Group*  

 
 

1. Background: 
 

The objective remains to determine )E,(rΦ  for reactors of finite size.  The first 
such case that we examined was a bare homogeneous core.  The major steps in the 
solution were to:   
 
 
 Modify the continuous energy diffusion equation, in which cross-section 

and flux were functions of r and E for a homogeneous medium.  Hence, 
cross-sections become functions of E alone.  Flux remains a function of r 
and E. 

 
 Assume separability of the energy and spatial functions of the flux.  That 

is . )()(R)E,( Err Ψ=Φ
 
 Substitute the separability assumption into the homogenized diffusion 

equation and separate terms so that a function of position equals a function 
of energy.  This is only possible if both functions equal a constant. This 
constant is called the buckling, . 2Br

 
 Solve for the spatial solution. 

 
 Substitute the spatial solution into the homogenized diffusion equation. 

 
 Define group constants within each energy group. 

 
 Solve for the energy dependence of the flux.   

                                                

 
This sequence is unique to a bare (unreflected) core and is NOT the general case.  
Specifically, for cores of multiple regions (fuel/moderator and reflector), the 
separability a ion does not hold.  As a result, the sequence for obtaining a 
solution for )E,(rΦ  changes.  In particular, the energy dependence is obtained 

efore the spatial dependence. 
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* Material in this section follows that of Henry pp 144-150.  Portions that are verbatim are indicated by 
quotations.   
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The problem is considered here for a two region reactor with one energy group 
being assumed.  In the next section of these notes, we consider a two region 
reactor with two energy groups.  Finally, we extend the idea to multiple region 
reactors with multiple energy groups.   
 
 

2. One Energy Group:   
 
 The term “one-group theory” is used to describe several different methods of 

solution in reactor physics.  Earlier (Section 10 of these notes) we derived a one-
velocity model and used it to solve for the spatial flux in bare cores.   That 
approach is often called “one-group theory” because the single velocity 
corresponds to a single energy group.  But, a distinction should be made between 
that derivation and what we will do next because, even though the result is the 
same, the method of derivation employed here is far more rigorous. 

 
The starting point is the continuous energy diffusion equation which we restate 
below:        
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For a homogeneous medium, this becomes: 
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We wish to apply this equation to a two region reactor subject to the assumption 
that each region is homogeneous.  Thus, we modify the above equation by adding 
a superscript k to each parameter (D, .)etc,,, fst ΣΣΣ .  A given value of this 
superscript corresponds to a particular region.  For example, k=1 might be 
core/moderator; k=2 might be reflector, k=3 might be shielding, etc.  The 
equation becomes: 
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          (A) 
 
For the case at hand, k = 2 because there are two physical regions.  (Note: The 
“one” in one-group theory refers to the number of energy groups and hence there 
is one energy function  that will apply to each region.)   We can now see 
why the separability assumption 

)E(Ψ
Φ( (r,E)=R(r)ψ(E)) that was used for the 
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homogeneous bare core (k=1) will not work for a multi-region reactor (k≥2).  
Each region has its own set of material properties (i.e.,  etc.)  A single 
function ψ(E) cannot satisfy k different sets of properties.   

,,D kk Σ

 
A preferred approach, and one that is viable, is to recognize that after a few 
collisions, neutron behavior is independent of neutron origin.  Thus, the neutron 
energy spectrum in a given region should be characteristic of only the 
homogenized materials that are present in that region.  Thus, we assume 
separability within each region.  Here the word “within” implies a few mean paths 
inside a given region.  Thus, we assume: 
 

 )      (B) E()(R)E,( kk Ψ≅Φ rr
 
Where is an energy spectrum function for region k.   )E(kΨ
 
This is the essential assumption of one-group diffusion theory.  As a result of 
making it, we can further assume that, within a given region, the type of analysis 
done for the bare homogeneous reactor remains relevant.  Thus, “the essential 
strategy of one-group diffusion theory is:  1) assume that separabilty (equation B 
above) is valid within each region k; 2) find an appropriate spectrum function 
ψk(E) for each region; and 3) connect the spatial function Rk(r) for each region to 
the corresponding spatial functions of neighboring regions.”  (Henry, p. 146).   
 
Given the above strategy, we expect that the leakage term can be approximated 
as: 
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Where  is a number and is called the materials buckling.  For the single 
region reactor, we encountered a similar quantity, 

( )2k
mB

2
rB  ,  which depended on the 

geometry of the reactor and was termed the “geometric buckling.”  The materials 
buckling is different.  Specifically, ( )2k

mB  has nothing to do with either the 
geometry of the reactor or of an individual region.  It is found by recognizing that 
each region k is part of a critical reactor for which λ is unity.  Hence, s 
found by writing the homogeneous diffusion equation for each region as: 

( )2k
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                                                  for r in the interior of region k,  
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and selecting (  as the eigenvalue that yields an everywhere positive solution 
for the flux.  It is important to understand the physical meaning of this number 
and we quote from Henry (p. 146): 

)2k
mB

 

“The number  is characteristic of the mixture of materials making up region 
k and, for that reason, is called the materials buckling.  Mathematically it is an 
eigenvalue of the homogeneous equation.  As can be seen from that equation, its 
effect on neutron balance is to regulate the leakage rate so that the portion of the 
reactor in the interior of region k behaves in a sustained, critical fashion.  If the k

( )2k
mB

∞ 
of that region exceeds unity, the number of neutrons removed from dE dV per 
second by out-leakage, scattering, and absorption will equal the number 
introduced into dE dV by fissioning and scattering from other energies; while, if 
the k∞ is less than unity, the number removed by scattering and absorption will 
equal the number introduced by fissioning, scattering, and leakage into the region.  

Thus, if the k∞  for region-k material is less than unity, ( )2k
mB  will be a negative 

number so that the extra neutrons needed for overall balance will be supplied by  
negative leakage, i.e., by net leakage into dV.  In reflector material, for which  

( )2k
mf B,0)E( =Σν will always be negative.”  (Henry, pp. 146-147) 

 
We now substitute into the modified homogeneous 
diffusion equation for region k, eliminate the spatial function, and obtain: 
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This relation can be solved using the methods developed earlier (Section 16 of 
these notes) to find .  It will be recalled that the approach is to divide the 
energy range (0-10 MeV) into G groups where G might be as large as 3000.  The 
width of each group, , is selected so that cross-section properties will be 
constant over that group.  This allows a further assumption that the flux  
will be constant over each group.  Group constants can now be defined.  These are 
of the form: 
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Note that these group constants are defined:  1) for an assumed flux shape,  
and 2) a narrow energy range, 

)E(Ψ

gEΔ .  This will be in contrast to a different set of 
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group constants that we will define later when we solve for spatial flux shape.  
Use of the above group constants allows us to rewrite Equation (C) as a set of 
algebraic relations, which are readily solvable numerically. 
 
So, at this point we can obtain )E(Ψ .  The objective therefore becomes to obtain 
the spatial flux shape.   Thus far the derivation has been rigorous.  But a problem 
now arises in that we have to treat the interfaces between regions.  The preferred 
boundary conditions are the standard ones that flux and the normal component of 
the current be continuous at all energies.  However, this isn’t possible because the 

 differ for each region.  To quote Henry (p. 147), “The basic problem is that 
the separable forms (k=1,2,…K,), which are good approximations 
to  in the interior portions of the regions, cannot be valid near interfaces 
between regions, since, if superscripts k and l designate two adjacent regions of 
different composition so that and are different functions of E, then, 
if r

)E(Ψ
)E()(R kk Ψr

)E,(rΦ

)E(kΨ )E(lΨ
c is any point on the interface between these regions, cannot 

equal for all energies.  (If it did, then would have to have 
the same energy shape .  Thus, assuming that the separable form 

is valid throughout each region k makes it impossible to meet the 
continuity-of-flux boundary condition at the interface between regions.”  The best 
one can do is to adopt “the much weaker boundary condition that the integrals 
over all energies of and 
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)E,(rΦ )E,(rn Φ∇⋅ be continuous.  This boundary 
condition is entirely consistent with the continuity of )E,(rΦ  and 

at all energies since, if there were continuity at each energy, the 
integrals over all energies would certainly be continuous.  (The reverse 
implication cannot, of course, be drawn.)   

)E,(D rn Φ∇⋅

 
To be specific, one-group theory is based on the following assumptions: 
 
1. throughout each composition k,  being found 

by solving Equation C as described above. 
)E()r(R)E,( kk Ψ=Φ r )E(kΨ

 
2. If k and l indicate any two adjacent compositions and rc is a point on the 

interface, we require that 
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Note:  If  is normalized so that , then these conditions 

become: 

)E(Ψ 1dE)E(
0∫
∞

=Ψ

5 



 

)(RdE)E()E(D)(RdE)E()E(D

and

)(R)(R

c
1

k0
11

c
k

k0
kk

c
1

c
k

rnrn

rr

∇⋅⎥⎦
⎤

⎢⎣
⎡ Ψ=∇⋅⎥⎦

⎤
⎢⎣
⎡ Ψ

=

∫∫
∞∞

 

 
We now substitute the separability relation (equation labeled as B above) into the 
homogenized diffusion equation for each region (equation labeled as (A) above) 
and integrate over all energies so as to comply with the boundary conditions.  The 
result is:   
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Next, we define a set of one-group cross-sections: 
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These numbers are independent of both space and energy.  They may be 
computed for any region k once we have determined the nuclear concentrations nj 
and the microscopic cross-section σj(E) of the material in region k and have 
obtained the spectrum functions .”  (Henry, pp. 144-149) )E(kΨ
 
It is important to recognize the differences between these group constants that are 
used to obtain the spatial flux shape from the ones defined earlier to obtain the 
energy flux shape.  First, the current group constants (spatial calculations) are 
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integrated over a very wide energy range.  Here, that range is 0 to ∞.  The more 
common ranges and the ones that we use later on are thermal, epithermal, and 
fast.  Second, the shape of  is known.  This is what allows evaluation of 
the integration over such wide ranges. 

)E(kΨ

 
One other clarification is appropriate.  The word “group” as used here refers to 
the number of energy ranges over which the above integrations are performed.  
For the present set of lecture notes, there is one range (0 to ∞) and hence one 
group.  The more common approach, as is already noted, is for three ranges 
(thermal, epithermal, and fast) and hence three groups.   
 
“Upon substitution of those one-group cross-sections, we obtain: 
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The condition that the flux is to vanish on the external surface of the reactor is 
met by requiring that the appropriate Rk(r) vanish for any r on that surface.   
 
Finally, since Rk(r) is everywhere continuous throughout the reactor, the 
superscript k is redundant.  The point r automatically specifies the region k.  
Accordingly, we shall replace all the Rk(r) by the single function , the one-
group scalar flux.  (Note that 

)(rΦ
)(rΦ is not a flux per unit energy; its units are 

(speed) x (neutrons/cc) = neutrons per square cm per sec.)   
 
With this change in notation the one-group diffusion equation for a reactor 
composed of several homogeneous regions becomes 
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With the following boundary conditions: 
 
1.   and the normal component )r(Φ )(Dn rΦ∇⋅ are continuous across 

interfaces between different compositions; 
 
2.   on the outer boundary of the reactor. 0)( =Φ r
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The above equation is sometimes called the one-velocity diffusion equation since 
it can also be derived by assuming that all the neutrons are traveling at a single 
speed.  The trouble with that approach is that it provides no systematic procedure 
for finding the one-group constants , and makes it hard to 
account for such effects as fast fission, resonance capture, and fast-neutron 
leakage.  It also makes one-group theory appear much cruder than it actually is.  
According to the view we have adopted, the one-group theory actually provides a 
very detailed energy-dependent flux, namely, , in each region.  The 
essential approximation consists of a very crude treatment of the “transition 
zones” between the different material compositions.  In these zones the true scalar 
flux density actually changes gradually from the appropriate to the 
interior parts of one region to that appropriate to the interior parts of the next.  We 
replace this gradual change by an abrupt one and in so doing make an error in the 
net leakage rate from one region to the next.” (Henry, pp. 149-150)   
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It is important to recognize that for this multi-region reactor example, the spectral 
(or energy) functions are identified before the spatial solution is obtained.  The 
latter is done numerically using finite difference equations.   
 
 

3. Summary
 
1. Consider the reactor that is to be analyzed and the desired accuracy of the 
solution.  Determine: 
 

a) The number of distinct regions into which the reactors will be 
divided (i.e., fuel/moderator; reflector; shield) 

 
b) The number of energy groups that will be used when obtaining the 

shape of the spatial flux.  (Note:   The number used to determine 
the shape of the energy flux is normally several thousand.)   

 
 
2. Write out the continuous energy diffusion equation for each region.  

Assume homogeneity within each region. 
 
3. Assume separability of the flux (i.e., ))E()(R)E,( Ψ≅Φ rr within each 

region. 
 
4. Approximate the leakage term via the relation: 
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This is obtained by analogy with the bare homogeneous case where we 
were able to solve directly for the spatial part. 
 

5. Substitute separability (step 3) into the equation step (4) and eliminate 
R(r).  Solve the resulting equation for )E(Ψ by dividing the full energy 
range into several thousand groups, taking the flux shape as constant over 
each group, and defining group constants over each gEΔ . 

 
6. Select boundary conditions in an integral sense.  The range(s) of 

integration on the boundary conditions is the same as the range(s) chosen 
for the number of energy groups used to compute the spatial flux.   

 
7. Combine the separability relation, the solution for )E(Ψ , and the 

definitions of the boundary conditions to obtain the equation labeled as 
“D” in the notes. 

 
8. Define a set of group cross-sections that are to be integrated over the 

energy range(s) selected for the spatial flux determination.  Evaluate these 
group constants – this is possible because )E(Ψ  is now known. 

 
9. Rewrite the integral equation labeled as “D” as a set of algebraic ones.  

Solve, numerically. 
 
10. Readjust fuel concentrations, etc., and repeat the calculations until a 

design for which λ=1 is obtained.  When designing an actual reactor, it is 
common practice to do steps (1) – (5) of the above sequence only once.  It 
is then assumed that )E(Ψ  is insensitive to small changes in material 
concentrations and/or geometry.  Steps (6) – (10) are then done many 
times until a critical configuration is identified.  This approach reduces 
computer time because Step 5 which involves thousands of groups is only 
done once.   
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