22.05 Reactor Physics Part Twenty-One

Extension of Group Theory to Reactors of Multiple Region Two Energy Groups¹

1. "The basic approximation which leads to one-group theory is that $\Phi(\mathbf{r}, E)$ has a separable energy dependence $\psi^k(E)$ throughout each given material composition k. This approximation is very questionable at interfaces between regions k and l, since the form of $\psi^k(E)$ will not in general match that of $\psi^1(E)$ at such boundary. We tried to minimize this problem by matching $R^k(\mathbf{r}_c)\psi^k(E)$ and $R^1(\mathbf{r}_c)\psi^1(E)$ in an energy-integral sense. But if $\psi^k(E)$ and $\psi^1(E)$ are quite different (as will be in the case if k is core material an l is reflector material), there are bound to be significant mismatches over particular subranges of the overall energy range 0 to ∞ .

For example, at an interface between core and reflector material, the net leakage of high-energy neutrons, which are originally created by fission in the core, is from the core to the reflector, whereas the net leakage of low-energy neutrons, created in abundance by the superior moderating power of the reflector material, is in the opposite direction. A one-group model cannot describe this process. Depending on the sign of $\mathbf{n}_k \cdot \mathbf{D}^k \nabla \mathbf{R}^k(\mathbf{r}) (= \mathbf{n}_k \cdot \mathbf{D}^l \nabla \mathbf{R}^1(\mathbf{r}))$, either a net number of neutrons having the energy distribution $\psi^k(\mathbf{E})$ leak from k to *l* per second or a net number having the distribution $\psi^1(\mathbf{E})$ leak from *l* to k.

Two-group theory represents an attempt to improve the accuracy with which the flux can be described near such interfaces. The basic idea is to split the spectrum functions $\psi^{k}(E)$ into two parts, $\psi_{1}^{k}(E)$ (for energy group one, extending from a "cut-point" energy E_{c} to ∞) and $\psi_{2}^{k}(E)$ (for energy group two, extending from 0 to E_{c}) and to associate separate spatial functions $R_{1}^{k}(\mathbf{r})$ and $R_{2}^{k}(\mathbf{r})$ with neutrons belonging to each of these two groups. Continuity of flux and current across an interface is then required in an integral sense, individually, for the ranges 0 to E_{c} and E_{c} to ∞ . Thus the two-group model permits a net leakage rate of group-one neutrons in one direction across an interface and a net leakage rate of group-two neutrons in the opposite direction. In the interior portions of a given region, where it is expected that the separable form $\Phi(\mathbf{r}, E) = R^{k}(\mathbf{r})\psi^{k}(E)$ will be valid over the entire energy range, the two-group approximation will yield the result that $R_{1}^{k}(\mathbf{r})$ and $R_{2}^{k}(\mathbf{r})$ have the same spatial shape, so that $R_{1}^{k}(\mathbf{r})\psi_{1}^{k}(E)$ and $R_{2}^{k}(\mathbf{r})\psi_{2}^{k}(E)$ for the two energy ranges fit together to form a single function of the form $R^{k}(\mathbf{r})\psi^{k}(E)$.

¹ Material in this section follows that of Henry pp. 162-165. Portions that are verbatim are indicated by quotations.

Mathematically the assumptions of two-group theory may be summarized as follows:

The scalar flux function may be written, for **r** in region k, as:

$$\Phi(\mathbf{r}, E) = \begin{cases} R_1^k(\mathbf{r})\psi_1^k(E) \text{ for } E_c < E < \infty \\ R_2^k(\mathbf{r})\psi_2^k(E) \text{ for } E < E_c \end{cases}$$

Where $\psi_1^k(E)$ and $\psi_2^k(E)$ are the parts of $\psi^k(E)$." (Henry, pp. 162-163)

2. Derivation of Two-Group Equations

a) <u>Spectrum Equations</u>:

The starting point is again the continuous energy diffusion equation and we follow our now standard procedure.

(i) Write out the continuous energy diffusion equation

$$-\nabla \cdot \mathbf{D}(\mathbf{r}, E) \nabla \Phi(\mathbf{r}, E) + \Sigma_t(\mathbf{r}, E) \Phi(\mathbf{r}, E)$$

$$= \int_0^\infty \left[\sum_j \chi^j(E) \nu^j \Sigma_f^j(\mathbf{r}, E') + \Sigma_s(\mathbf{r}, E' \to E) \right] \Phi(\mathbf{r}, E') dE'$$

(ii) Modify this equation for a homogeneous medium (i.e., material parameters are not position dependent.)

$$-\mathbf{D}(E) \nabla^2 \Phi(\mathbf{r}, E) + \Sigma_t(E) \Phi(\mathbf{r}, E)$$

$$= \int_0^\infty \left[\frac{1}{\lambda} \chi(E) \nu \Sigma_f(E') + \Sigma_s(E' \to E) \right] \Phi(\mathbf{r}, E') dE'$$

 (iii) Add superscripts k to denote the various regions of the reactor. We again chose k=2 as to describe two regions: Fuel/moderator and reflector. (<u>Note</u>: The regions are **NOT** the groups. The word "group" in group theory refers to the division of the neutron energies.)

$$-\nabla \cdot \mathbf{D}^{k}(\mathbf{E}) \nabla \Phi(\mathbf{r}, \mathbf{E}) + \Sigma_{t}^{k}(\mathbf{E}) \Phi(\mathbf{r}, \mathbf{E})$$
$$= \int_{0}^{\infty} \left[\frac{1}{\lambda} \chi^{k}(\mathbf{E}) \nu \Sigma_{f}^{k}(\mathbf{E}') + \Sigma_{s}^{k}(\mathbf{E}' \rightarrow \mathbf{E}) \right] \Phi(\mathbf{r}, \mathbf{E}') d\mathbf{E}'$$
$$(\mathbf{k} = 1, 2, 3, \dots, \mathbf{K})$$
$$(4.9.1)$$

(iv) Approximate the leakage term in each region as:

$$-\nabla \cdot \mathbf{D}^{k}(E) \nabla \Phi(\mathbf{r}, E) = \mathbf{D}^{k}(E) \left(B_{m}^{k} \right)^{2} \Phi(\mathbf{r}, E)$$

and rewrite the diffusion equation for each region as:

$$\begin{split} & \left(D^{k}(E) \left(B_{m}^{k} \right)^{2} + \Sigma_{t}^{k}(E) \right) \Phi(\mathbf{r}, E) \\ & = \int_{0}^{\infty} \left[\frac{1}{\lambda} \chi^{k}(E) \nu \Sigma_{f}^{k}(E') + \Sigma_{s}^{k}(E' \to E) \right] \Phi(\mathbf{r}, E') dE' \end{split}$$

for **r** in the interior of region k; k = 1, 2.

(v) Substitute the two group definition of the scalar flux

$$\Phi(\mathbf{r}, E) = \begin{cases} R_1^k(\mathbf{r})\psi_1^k(E) & \text{for } E_c < E < \infty \\ R_2^k(\mathbf{r})\psi_2^k(E) & \text{for } E < E_c \end{cases}$$

into the above relation and obtain two spectral equations for each region. For region 1, these would be

$$\begin{bmatrix} D^{1}(E) (B_{m}^{1})^{2} + \Sigma_{t}^{1}(E) | R_{1}^{1}(r) \psi_{1}^{1}(E) \\ = \int_{E_{c}}^{\infty} [\chi'(E) v \Sigma_{f}^{1}(E') + \Sigma_{s}^{1}(E' \to E)] R_{1}^{1}(r) \psi_{1}^{1}(E') dE'$$

and

$$\begin{bmatrix} D^{1}(E) \left(B_{m}^{1} \right)^{2} + \Sigma_{t}^{1}(E) \Big] R_{2}^{1}(r) \psi_{2}^{1}(E) \\ = \int_{0}^{E_{c}} \Big[\chi'(E) \nu \Sigma_{f}^{1}(E') + \Sigma_{s}^{1}(E' \to E) \Big] R_{2}^{1}(r) \psi_{2}^{1}(E') dE' \end{bmatrix}$$

(<u>Note</u>: The difficult part of these equations is the notation. Superscripts denote regions; subscripts denote energy groups.) The equations for region 2 are similar. These four equations are solved for the spectral functions to obtain $\psi_1(E)$ and $\psi_2(E)$.

b. <u>Spatial Equations</u>:

We now have the energy distribution of the scalar neutron flux and can obtain two group cross-sections.

Hence, we can proceed with the spatial analysis. We now quote again from Henry's Nuclear Reactor analysis (p. 163):

• "The scalar flux function may be written, for r in region k, as:

$$\Phi(\mathbf{r}, E) = \begin{cases} R_1^k(\mathbf{r})\psi_1^k(E) & \text{for } E_c < E < \infty \\ R_2^k(\mathbf{r})\psi_2^k(E) & \text{for } E < E_c \end{cases}$$
(4.11.1)

Where $\psi_1^k(E)$ and $\psi_2^k(E)$ are parts of $\psi^k(E)$ found as described above.

 Boundary conditions, for k and l indicating any two adjacent compositions and r_c being a point on the interface separating them, require that

$$\int_{E_{c}}^{\infty} dE R_{1}^{k}(\mathbf{r}_{c})\Psi_{1}^{k}(E) = \int_{E_{c}}^{\infty} dE R_{1}^{l}(\mathbf{r}_{c})\Psi_{1}^{l}(E)$$

$$\int_{0}^{E_{c}} dE R_{2}^{k}(\mathbf{r}_{c})\Psi_{2}^{k}(E) = \int_{0}^{E_{c}} dE R_{2}^{l}(\mathbf{r}_{c})\Psi_{2}^{l}(E)$$

$$\int_{E_{c}}^{\infty} dE \mathbf{n}_{k} \cdot D^{k}(E)\nabla \left[R_{1}^{k}(\mathbf{r}_{c})\Psi_{1}^{k}(E)\right] = \int_{E_{c}}^{\infty} dE \mathbf{n}_{k} \cdot D^{l}(E)\nabla \left[R_{1}^{l}(\mathbf{r}_{c})\Psi_{1}^{l}(E)\right]$$

$$\int_{0}^{E_{c}} dE \mathbf{n}_{k} \cdot D^{k}(E)\nabla \left[R_{2}^{k}(\mathbf{r}_{c})\Psi_{2}^{k}(E)\right] = \int_{0}^{E_{c}} dE \mathbf{n}_{k} \cdot D^{l}(E)\nabla \left[R_{2}^{l}(\mathbf{r}_{c})\Psi_{2}^{l}(E)\right]$$

As with the one group case, it simplifies the algebra if, after having found the shape in energy of $\psi_1^k(E)$ and $\psi_2^k(E)$ for the material of region k, we renormalize these two segments $\psi^k(E)$ so that

$$\int_{E_c}^{\infty} \Psi_1^k(E) dE = 1 \quad (k = 1, 2, ..., K),$$
$$\int_{0}^{E_c} \Psi_2^k(E) dE = 1 \quad (k = 1, 2, ..., K).$$

Then the continuity equations show that $R_1^k(\mathbf{r}_c) = R_1^l(\mathbf{r}_c)$ and $R_2^k(\mathbf{r}_c) = R_2^l(\mathbf{r}_c)$ for points \mathbf{r}_c on the interface between regions k and l. Thus, as in the one-group case, the superscript k on the functions R are superfluous, and we shall change notation by replacing the various $R_1^k(\mathbf{r})$ by the single, everywhere-continuous function $\Phi_1(\mathbf{r})$ and similarly replacing $R_2^k(\mathbf{r})$ by $\Phi_2(\mathbf{r})$. The functions $\Phi_1(\mathbf{r})$ and $\Phi_2(\mathbf{r})$ are called the two-group fluxes. Note that they are not fluxes per unit energy (in the way that $\Phi(\mathbf{r}, E) = v(E)n(\mathbf{r}, E)$ is). Physically $\Phi_1(\mathbf{r})$ is the two-group approximation to the number of neutrons per cc having energies in the range E_c to $\infty \left(\int_{E_c}^{\infty} n(\mathbf{r}, E) dE \right)$ multiplied by the average "fast" speed.

$$\mathbf{v}_1 = \frac{\int_{\mathbf{E}_c}^{\infty} \mathbf{v}(\mathbf{E}) \mathbf{n}(\mathbf{r}, \mathbf{E}) d\mathbf{E}}{\int_{\mathbf{E}_c}^{\infty} \mathbf{n}(\mathbf{r}, \mathbf{E}) d\mathbf{E}}$$

And $\Phi_2(\mathbf{r})$ is the two-group approximation to the number in the range 0 to E_c multiplied by the average thermal speed.

$$v_2 = \frac{\int_0^{E_c} v(E) n(\mathbf{r}, E) dE}{\int_0^{E_c} n(\mathbf{r}, E) dE}$$

(These interpretations are somewhat ambiguous since (4.11.1), on which they are based, is an approximation which cannot be rigorously correct.)

To find differential equations for the two-group fluxes $\Phi_1(\mathbf{r})$ and $\Phi_2(\mathbf{r})$ we substitute the approximation (4.11.1) into (4.9.1) which is the homogenized diffusion equation for two regions. This will give us different results for $E > E_c$ and $E < E_c$.

$$\begin{aligned} -D^{k}(E)\psi_{1}^{k}(E)\nabla^{2}\Phi_{1}(\mathbf{r}) + \Sigma_{t}^{k}(E)\psi_{1}^{k}(E)\Phi_{1}(\mathbf{r}) \\ = \int_{Ec}^{\infty} \left[\frac{1}{\lambda}\chi^{k}(E)\nu\Sigma_{f}^{k}(E')\psi_{1}^{k}(E') + \Sigma_{s}^{k}(E'\rightarrow E)\psi_{1}^{k}(E')\right]dE'\Phi_{1}(\mathbf{r}) \\ + \int_{0}^{E_{c}} \left[\frac{1}{\lambda}\chi^{k}(E)\nu\Sigma_{f}^{k}(E')\psi_{2}^{k}(E')\right]dE'\Phi_{2}(\mathbf{r}) \quad \text{for } E > E_{c} \end{aligned}$$

$$(4.11.4)$$

and

$$= \int_{E_{c}}^{\infty} \left[\frac{1}{\lambda} \chi^{k}(E) \nu \Sigma_{f}^{k}(E') \psi_{1}^{k}(E') + \Sigma_{s}^{k}(E' \to E) \psi_{1}^{k}(E') \right] dE' \Phi_{1}(\mathbf{r}) + \int_{0}^{E_{c}} \left[\frac{1}{\lambda} \chi^{k}(E) \nu \Sigma_{f}^{k}(E') \psi_{2}^{k}(E') + \Sigma_{s}^{k}(E' \to E) \psi_{2}^{k}(E') \right] dE' \Phi_{2}(\mathbf{r}) \quad for \ E \leq E_{c}$$

$$(4.11.5)$$

Where on physical grounds we have omitted from (4.11.4) the scattering from $E' < E_c$ to $E > E_c$ (For thermal reactors the cut point E_c will always be such that $\chi^k(E)$ is zero for $E < E_c$; hence no fission terms will appear in (4.11.5). We retain them for possible application to fast reactors, for which E_c will be much higher.

 $-\mathbf{D}^{k}(E)\psi_{*}^{k}(E)\nabla^{2}\Phi_{*}(\mathbf{r})+\Sigma^{k}(E)\psi_{*}^{k}(E)\Phi_{*}(\mathbf{r})$

There is no solution $\Phi_1(\mathbf{r})$, $\Phi_2(\mathbf{r})$ that will satisfy (4.11.4) and (4.11.5) at all energies since the form (4.11.1) is not sufficiently general. However, we can force equality of the right- and left-hand sides in an integral sense and in that way find equations which, when solved, will give us $\Phi_1(\mathbf{r})$ and $\Phi_2(\mathbf{r})$. Accordingly, we shall integrate (4.11.4) from E_c to ∞ and (4.11.5) from 0 to E_c and require that the resultant equations be valid at all \mathbf{r} . To simplify the result, we first define a set of "two-group constants":

$$\begin{split} D_{1}^{k} &\equiv \int_{E_{c}}^{\infty} D(E) \Psi_{1}^{k}(E) dE, \qquad D_{2}^{k} \equiv \int_{0}^{E_{c}} D(E) \Psi_{2}^{k}(E) dE, \\ \Sigma_{t1}^{k} &\equiv \int_{E_{c}}^{\infty} \Sigma_{t}^{k}(E) \Psi_{1}^{k}(E) dE, \qquad \Sigma_{t2}^{k} \equiv \int_{0}^{E_{c}} \Sigma_{t}^{k}(E) \Psi_{2}^{k}(E) dE \\ \chi_{1}^{k} &\equiv \int_{E_{c}}^{\infty} \chi^{k}(E) dE, \qquad \chi_{2}^{k} \equiv \int_{0}^{E_{c}} \chi^{k}(E) dE \\ \nu \Sigma_{f1}^{k} &\equiv \int_{E_{c}}^{\infty} \nu \Sigma_{f}^{k}(E) \Psi_{1}^{k}(E) dE, \qquad \nu \Sigma_{f2}^{k} \equiv \int_{0}^{E_{c}} \nu \Sigma_{f}^{k}(E) \Psi_{2}^{k}(E) dE, \\ \Sigma_{11}^{k} &\equiv \int_{E_{c}}^{\infty} dE, \int_{E_{c}}^{\infty} dE' \Sigma_{s}^{k}(E' \to E) \psi_{1}^{k}(E'), \qquad \Sigma_{12}^{k} \equiv \int_{0}^{E_{c}} dE, \int_{0}^{E_{c}} dE' \Sigma_{s}^{k}(E' \to E) \psi_{2}^{k}(E') \\ \Sigma_{21}^{k} &\equiv \int_{0}^{E_{c}} dE, \int_{E_{c}}^{\infty} dE' \Sigma_{s}^{k}(E' \to E) \psi_{1}^{k}(E') \qquad \Sigma_{1}^{k} \equiv \Sigma_{t1}^{k} - \Sigma_{11}^{k}, \qquad \Sigma_{2}^{k} \equiv \Sigma_{t2}^{k} - \Sigma_{22}^{k} \end{split}$$

Using these definitions, integrating (4.11.4) from E_c to ∞ . and integrating (4.11.5) from 0 to E_c , we get

$$-D_{1}^{k}\nabla^{2}\Phi_{1}(r) + \Sigma_{1}^{k}\Phi_{1}(r) = \frac{1}{\lambda}\chi_{1}^{k} \Big[\nu\Sigma_{f1}^{k}\Phi_{1}(r) + \nu\Sigma_{f2}^{k}\Phi_{2}(r)\Big]$$
$$-D_{2}^{k}\nabla^{2}\Phi_{2}(r) + \Sigma_{2}^{k}\Phi_{2}(r) = \frac{1}{\lambda}\chi_{2}^{k} \Big[\nu\Sigma_{f1}^{k}\Phi_{1}(r) + \nu\Sigma_{f2}^{k}\Phi_{2}(r)\Big] + \Sigma_{21}^{k}\Phi_{1}(r)$$

$$(4.11.7)$$

The boundary conditions become:

1. $\Phi_1(\mathbf{r})$, $\Phi_2(\mathbf{r})$ must be continuous everywhere,

2. $n \cdot D_1 \nabla \Phi_1(r)$ and $n \cdot D_2 \nabla \Phi_2(r)$ must be continuous across interfaces separating different material compositions,

3. $\Phi_1(\mathbf{r}) = \Phi_2(\mathbf{r})$ on the outer boundary of the reactor.

The above equations (4.11.7) are the "two-group diffusion equations." They are the standard workhorses of thermal-reactor design. It can be proved that a unique, positive solution corresponding to a most-positive real eigenvalue λ always exists for the two-group equations. Thus, a physically acceptable solution for the group fluxes Φ_1 and Φ_2 can always be found, and from this the two-group approximation $(\Phi_1(r)\psi_1^k(E)), (\Phi_2(r)\psi_2^k(E)))$ for the scalar flux $\Phi(\mathbf{r}, E)$ can be constructed throughout each material composition k." (Henry, pp. 163-165)