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We present a search for the standard model Higgs boson produced in association with a Z boson, using
up to 7.9 fb−1 of integrated luminosity from pp̄ collisions collected with the CDF II detector. We utilize
several novel techniques, including multivariate lepton selection, multivariate trigger parametrization, and
a multi-stage signal discriminant consisting of specialized functions trained to distinguish individual
backgrounds. By increasing acceptance and enhancing signal discrimination, these techniques have
significantly improved the sensitivity of the analysis above what was expected from a larger dataset
alone. We observe no significant evidence for a signal, and we set limits on the ZH production cross
section. For a Higgs boson with mass 115 GeV/c2, we expect (observe) a limit of 3.9 (4.8) times the
standard model predicted value, at the 95% credibility level.
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1. Introduction

The Higgs boson is the remaining unobserved particle of the
standard model (SM) [1–3] predicted by the Higgs mechanism,
which is postulated to describe the origin of electroweak sym-
metry breaking and elementary particle masses. Direct searches
at LEP and the Tevatron have excluded SM Higgs bosons with
masses (mH ) below 114.4 GeV/c2 [4] and in the range 156 � mH �
177 GeV/c2 [5], respectively, at the 95% credibility level (CL). Re-
cent results from the ATLAS and CMS experiments [6,7] have ex-
tended the excluded range of masses to 127 � mH � 600 GeV/c2

(at the 95% confidence level). ATLAS also excludes Higgs bosons
with masses in the range 112.9 � mH � 115.5 GeV/c2 [6].

Production of Higgs bosons at the Tevatron primarily pro-
ceeds through the gluon fusion mechanism, gg → H [8]. Low-
mass Higgs bosons (mH < 135 GeV/c2) decay predominantly to a
pair of b quarks, with a branching fraction of 79% (40%) [8] for
mH = 100 (135) GeV/c2. Due to overwhelming QCD multijet pro-
duction, low-mass searches with Higgs production via gluon fusion
and H → bb̄ decay are not feasible. To overcome this difficulty, we
utilize the associated production of a Higgs boson with a massive
vector boson, where leptonic decays of the vector boson produce
distinctive event signatures.

This Letter presents a search for the SM Higgs boson using the
ZH → �+�−bb̄ process, where � is an electron (e) or muon (μ).
We search for events containing two oppositely-charged leptons
consistent with the decay of a Z boson, and a hadronic signature
consistent with the H → bb̄ decay mode. Previous searches [9,10]
by the CDF and D0 Collaborations have demonstrated that this final
state provides good sensitivity to a Higgs boson signal, primarily
due to the ability of the experiments to reconstruct both the Z and
Higgs bosons. We study data from pp̄ collisions at

√
s = 1.96 TeV

recorded by the CDF II detector. We combine two independent
analyses, one with Z → e+e− [11] and one with Z → μ+μ− [12],
using data corresponding to 7.5 and 7.9 fb−1 of integrated lumi-
nosity, respectively.

The CDF II detector [13] consists of silicon-based and wire-
drift-chamber tracking systems immersed in a 1.4 T magnetic field
for particle momentum determination. Surrounding the tracking
systems are electromagnetic and hadronic calorimeters, providing
coverage in the pseudorapidity32 range |η| < 3.6. Additional drift
chambers used for muon identification are located in the outer-
most layer of the detector.

The sensitivity of this updated analysis is enhanced by using
several novel techniques following two general strategies: increas-
ing acceptance and enhancing signal discrimination. To increase ac-
ceptance, we introduce artificial neural networks (NNs) for lepton

18 Visitor from Ewha Womans University, Seoul 120-750, Republic of Korea.
19 Visitor from University of Manchester, Manchester M13 9PL, United Kingdom.
20 Visitor from Queen Mary University of London, London E1 4NS, United Kingdom.
21 Visitor from University of Melbourne, Victoria 3010, Australia.
22 Visitor from Muons, Inc., Batavia, IL 60510, USA.
23 Visitor from Visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.
24 Visitor from National Research Nuclear University, Moscow, Russia.
25 Visitor from Northwestern University, Evanston, IL 60208, USA.
26 Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.
27 Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.
28 Visitor from CNRS-IN2P3, Paris, F-75205 France.
29 Visitor from Texas Tech University, Lubbock, TX 79609, USA.
30 Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.
31 Visitor from Yarmouk University, Irbid 211-63, Jordan.
32 We use a cylindrical coordinate system with z along the proton beam direction,

r the perpendicular radius from the central axis of the detector, and φ the azimuthal
angle. For θ the polar angle from the proton beam, we define η = − ln tan(θ/2),
transverse momentum pT = p sin θ and transverse energy ET = E sin θ .
selection, and we also use several online event-selection (trigger)
algorithms not previously used. Using a new technique, we are
able to accurately model the combined behavior of these triggers,
allowing access to ZH candidate events beyond the reach of the
previous CDF searches. To enhance signal discrimination, we form
a multi-stage event discriminant organized to isolate ZH candidates
from known SM and instrumental processes (backgrounds).

2. Multivariate lepton identification

To improve on standard cut-based lepton identification, we in-
stead select leptons consistent with the decay of a Z boson by us-
ing several NNs. Each NN identifies individual electrons or muons,
distinguishing them from both non-leptonic candidates and true
leptons not originating from Z decays. A single NN is used for
muon identification, and is trained [14] to distinguish between
true muons from simulated Z decays and misidentified muons
from a data sample containing pairs of same-charge muon candi-
dates. The input quantities giving the best discrimination power in-
clude the energy deposited by the muon candidate in the calorime-
ters, the angular separation between the muon candidate and near-
est jet, and the number of hits recorded by the tracking systems.
In events with Z → μμ decays well contained in the detector, the
muon NN selection achieves a Z identification efficiency of ∼96%,
while simultaneously rejecting ∼94% of the non-Z background.
The muon NN selection has increased the signal acceptance for
dimuon events by ∼10%.

Detector geometry [15,16] motivates three NNs for electron
identification. One is optimized for identification in the pseudo-
rapidity range |η| < 1.1, and is trained to distinguish between
electrons from simulated events and both jets from collision data
along with electrons from data events not considered in this anal-
ysis. The other two NNs are trained for the forward regions; one
considers only candidates with a silicon-based track and the other
considers candidates without such a track in the region 1.1 � |η|�
2.8. Again, electrons from simulated events are used in the training
sample, along with electron candidates from data that may or may
not have an associated track. The most discriminating variables in
the electron NN include the ratio of the energy deposits in the
hadronic and electromagnetic calorimeters, the electron candidate
transverse momentum, and shape variables related to the shower
formation in the calorimeter. Compared to the selection utilized
in previous searches, the electron NN has improved the rejection
of jets misidentified as electrons by a factor of five. In total, the
multivariate lepton selection has increased the acceptance of the
analysis by ∼20% over previous searches [9].

3. Event selection

Complementary to the improved lepton identification, we add
additional triggers that were not previously utilized in this analy-
sis channel. Rather than using a single trigger with a threshold for
muon pT or electron ET for the respective Z selection, we consider
any event selected by any trigger in three general sets. The first
set includes several triggers that select events containing muon
detector and drift chamber activity indicative of a high-pT muon
[17,18]. Included in this category may be triggers with lower pT

thresholds than the default muon trigger. The second set of triggers
selects events with a large calorimeter-energy imbalance (missing
transverse energy, /E T

33). Some of these events contain muons that

33 The missing transverse energy, �/E T , is defined by �/E T = −∑
i Ei

T n̂i , where i is

the number of the calorimeter tower with |η| < 3.6 and n̂i is a unit vector perpen-
dicular to the beam axis and pointing at the ith calorimeter tower. We also define

/E T = |�/E T |.
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are not selected with the high-pT muon trigger, thereby increasing
the acceptance of this analysis. A third set of triggers selects events
with activity in the calorimeter suggestive of a high-ET electron
[19]. By using these sets of triggers rather than just single triggers
for each lepton type, we increase the event selection acceptance by
∼10%. To model the complicated correlations between kinematic
variables used in the trigger selection described above, we use a
novel technique that uses NN functions to parametrize trigger effi-
ciencies as a function of kinematic observables [11,12].

Utilizing the above strategies to increase acceptance, we select
events containing opposite-sign,34 same-flavor lepton pairs with
m�� in a window ([76,106] GeV/c2) centered on the mass of the
Z boson. Additionally, we require at least two jets [20], with trans-
verse energy ET > 25 GeV for the leading jet, and ET > 15 GeV for
all other jets. All jets are required to come from the central region
of the detector, |η| < 2.0.

4. Background composition and signal expectation

We define a pre-tag region (PT) before applying b-quark jet
identification, consisting of events with a reconstructed Z boson
and two or more jets passing the criteria described above. We ob-
serve 33 975 events in the PT region, and expect a total background
yield of 34 200 ± 4800 events, where the quoted uncertainty in-
cludes both systematic and statistical contributions. We expect
13.6 ± 1.1 ZH signal events in the PT region, for mH = 115 GeV/c2.
The dominant process in the PT region is Z + light-flavor (LF) jets
(u, d, s, and gluon jets), accounting for ∼85% of the total back-
ground. Z + heavy-flavor (b and c) jets events, which contribute
less than 10% of the background, are a small contribution in the
PT region, but become relatively more significant in the signal
regions. These processes are modeled using alpgen [21] to sim-
ulate the hard-scatter process, and pythia [22] for the subsequent
hadronization. The Z + jets processes are simulated at leading or-
der and require a K -factor of 1.4 [23] for normalization to NLO
cross sections. Other small backgrounds include diboson (Z Z , W Z ,
and W W ) events and tt̄ events, simulated entirely with pythia

normalized to NLO [24] and NNLO [25] predictions, respectively.
Finally, other processes, such as QCD multijet production, can pro-
duce two selected leptons in the event. For muon events, this back-
ground is modeled using same-charge muon pairs from data. For
electron events, we measure the rate of jets passing the electron
NN using collision data to estimate the contribution from these
processes. This background accounts for ∼3% of the background in
the PT region.

We utilize two different b-quark-identifying algorithms to
search for jets consistent with the H → bb̄ decay. The secondary
vertex algorithm (SV) [26] identifies jets consistent with the decay
of a long-lived b hadron by searching for displaced vertices. The
SV algorithm has both a tight and a loose operating point – the
loose point has better b-jet identification efficiency but also has a
higher rate of jets incorrectly identified as b jets. The jet proba-
bility (JP) algorithm [27] uses track impact parameters relative to
the primary vertex to construct a likelihood for all jet tracks to
have originated from the primary vertex. Both algorithms have im-
perfect rejection of c-quark jets, allowing some events containing
them to contribute to the final signal regions.

We use the combination of the two highest-E T jets to form
potential Higgs boson candidates. We use a hierarchy of tag combi-
nations to define three independent signal regions. We first search
for events with two tight SV tags – defining the double-tag (DT)
region, the most sensitive. A second signal region includes events

34 Forward (|η| > 1.1) electrons are exempt from this requirement.
Table 1
Expected background and observed data events for the three independent signal
regions. Also shown is the expected number of ZH signal events, for a SM Higgs
boson with mH = 115 GeV/c2. Quoted uncertainties include both systematic and
statistical contributions.

Process ST LJP DT

Z + LF, Z + cc̄ 683 ± 65 61 ± 9 7.6 ± 1.2
Z + bb̄ 287 ± 72 58 ± 15 42 ± 10
tt̄ 69 ± 7 29 ± 2 26 ± 3
Diboson 42 ± 3 9.5 ± 0.7 6.7 ± 0.6
Other 46 ± 12 3.4 ± 0.3 0.2 ± 0.1

Background 1127 ± 134 160 ± 23 82 ± 15
Data 1143 160 85
ZH (Predicted) 4.5 ± 0.4 1.8 ± 0.1 1.7 ± 0.1

with one loose SV tag and one JP tag (LJP), and the third con-
tains events with just one tight SV tag (ST). These three regions
are combined to search for ZH production. Table 1 shows the ex-
pected numbers of events for the signal and background processes,
as well as the observed data.

5. Signal discrimination

In this analysis, we use a one-dimensional signal discrimi-
nant while maintaining the simultaneous separation of tt̄ and
Z+jets events from the ZH signal that was previously accom-
plished through a two-dimensional discriminant [9]. This method
also further enhances signal discrimination by using two additional
NNs in a multi-stage method, as described below.

We first train a NN signal discriminant, using several kine-
matic variables such as the dijet mass and ET , to distinguish the
signal-like (trained with ZH simulated events) and background-like
(trained using a mixture of all background processes) events. Each
data and simulated event is sent through the same signal discrim-
inants, with a unique function optimized for 11 different Higgs
mass hypotheses, defined in increments of 5 GeV/c2 between 100
and 150 GeV/c2.

The multi-stage method defines three samples (I, II, III) where
events can enter the final distributions used for limit setting. The
first step involves separating tt̄ and Z + jets events. This is done
using a NN function trained to separate these specific processes.
A cut on the output of this discriminant is chosen to define a tt̄-
enhanced sample (Sample I). Events which fail this cut and fall into
Sample II or III are passed through a second NN function trained to
separate b jets from charm and light flavor jets [28]. A cut on the
output of this flavor separator function defines a sample containing
mainly Z + cc̄ and Z + LF backgrounds (Sample II), and a region
enriched in b jets (Sample III).

This multi-stage approach produces final output distributions
with three samples enriched in various background processes, as
seen in Fig. 1, where we add (0,1,2) to the signal discriminant
output score for each event when the event falls in Sample (I, II,
III) as described above. By enhancing the signal discrimination in
this way, we increase the sensitivity of the analysis by ∼10% over
the technique used in Ref. [9]. We use these distributions to set
limits on the ZH production cross section times H → bb̄ branching
ratio.

6. Systematic uncertainties

We evaluate several systematic uncertainties on the background
and signal events. A large source of systematic uncertainty arises
from the cross section values used in the normalization of events:
40%, 10%, 6%, and 5%, for Z + heavy-flavor [29], tt̄ , diboson, and
ZH simulated events, respectively. An uncertainty of (1,2,5)% is
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Fig. 1. Final discriminant output distributions for the three tag categories (ST, LJP, DT) used in this analysis. The distributions shown are for the discriminant trained on
mH = 115 GeV/c2 signal events. The ZH signal is shown, for mH = 115 GeV/c2, and drawn scaled up by a factor of 25.

Table 2
Expected and observed 95% CL limits on the ZH production cross section times H → bb̄ branching ratio, relative to the expected standard model value, for each Higgs mass
(in GeV/c2) hypothesis.

mH 100 105 110 115 120 125 130 135 140 145 150

Exp. 2.7 3.1 3.4 3.9 4.7 5.5 7.0 8.7 12 17 28
Obs. 2.8 3.3 4.4 4.8 5.4 4.9 6.6 7.3 10 14 22
applied to the (ST, LJP, DT) ZH samples after measuring changes
in acceptance using simulated events with more or fewer particles
radiated by the incoming and outgoing partons. The mistag predic-
tion is measured using data, and carries a rate uncertainty of 14%,
27%, and 29%, for the ST, LJP, and DT tag categories, respectively.
To account for differing b-jet identification efficiencies in data and
simulated events, uncertainties of 5.2% (ST), 8.7% (LJP), and 10.4%
(DT) are applied to the b-tagged samples. A 6% uncertainty is ap-
plied to simulated events, accounting for uncertainty in the mea-
surement of integrated luminosity. The trigger model applied to
simulated events requires a 5% normalization uncertainty. We also
apply uncertainties on the lepton reconstruction and identification
efficiency (1%) and lepton energy measurement (1.5%). For muons
(electrons), we measure a 5% (50%) uncertainty on the normaliza-
tion of the remaining background processes, based on differences
in the rates of events containing same-charge and opposite-charge
lepton pairs and in the rates of jets misidentified as electrons.

In addition, we account for sources of uncertainty that also in-
clude shape variations to account for the migration of events in
the final signal discriminant distributions when fluctuating these
shape-defining quantities within their uncertainties. These include
uncertainties on the jet energies [30] as well as on the expected
rate of Z + mistag events.

7. Results

Comparing the observed data to our background prediction in-
cluding uncertainties, we do not find any evidence of a ZH signal.
We set upper limits on the ZH production cross section times
H → bb̄ branching ratio using a Bayesian algorithm [31], assuming
a uniform prior on the signal rate. We do this by performing sim-
ulated experiments, each with a pseudo-dataset generated by ran-
domly varying the normalizations of background processes within
their respective statistical and systematic uncertainties, taking into
account all background expectations in the absence of a signal.
Each simulated experiment produces an upper limit on the ZH
production cross section. The median of the 95% CL upper limits
from the simulated experiments is taken to be the expected 95% CL
upper limit of the analysis. We define the 1-sigma and 2-sigma de-
viations on the expected limit as the bounds which contain 68.3%
and 95.5%, respectively, of the simulated experiment results. The
observed data distribution is used to set the observed limit in a
similar fashion. These limits are shown graphically, along with the
Fig. 2. Limits on the Higgs boson production cross section times the H → bb̄ branch-
ing ratio, given as a ratio to the standard model expected value.

1-sigma and 2-sigma ranges, in Fig. 2. Table 2 lists the expected
and observed limits for each Higgs mass hypothesis considered in
this analysis. We find that the observed limit is in good agreement
with the expected limit for no signal, within the 1-sigma range
across all Higgs mass hypotheses.

8. Conclusion

In conclusion, we have performed a search for the standard
model Higgs boson in the process ZH → �+�−bb̄. The sensitiv-
ity of this analysis has improved due to several new multivariate
techniques, including multivariate lepton identification, the use of
NNs to obtain trigger efficiencies for simulated events, and a novel
multi-stage discriminant approach used to enhance signal discrim-
ination. We observe no significant excess and set an upper limit
on the ZH production cross section times H → bb̄ branching ratio.
We expect (observe) a limit of 3.9 (4.8) times the standard model
predicted value, for a Higgs boson with mass mH = 115 GeV/c2, at
the 95% CL. The novel techniques presented here improve the sen-
sitivity of the analysis by ∼25% above the gain expected from the
∼85% larger dataset.
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