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Abstract— Testing constraints for real-time systems are usually
verified through the satisfiability of propositional formulae. In
this paper, we propose an alternative where the verification
of timing constraints can be done by counting the number of
truth assignments instead of boolean satisfiability. This number
can also tell us how “far away” is a given specification from
satisfying its safety assertion. Furthermore, specifications and
safety assertions are often modified in an incremental fashion,
where problematic bugs are fixed one at a time. To support this
development, we propose an incremental algorithm for counting
satisfiability. Our proposed incremental algorithm is optimalas no
unnecessary nodes are created during each counting. This works
for the class ofpathRTL ( [1], [5]). To illustrate this application,
we show how incremental satisfiability counting can be applied
to a well-known rail-road crossing example, particularly when
its specification is still being refined.

Index Terms— Real-time infrastructure and development, tim-
ing constraint, #SAT problem, incremental computation

I. I NTRODUCTION

Real-time systems can be defined either by a structural
specification (how its components work) or by a behavioral
specification (showing the response of each component in
response of an internal or external event). A behavioral speci-
fication often suffices for verifying the timing properties of
the system. Given the behavioral specification of a system
(denoted bySP ) and a safety assertion (denoted bySA) to
be analysed, the goal is to relate a given safety assertion with
the system specification [1]. IfSA is a theorem derivable
from SP , then the system issafe. If SA is unsatisfiable,
then the system is inherently unsafe. If¬SA is satisfiable
under certain conditions, additional constraints may be added
to ensure its safety. Our work is targetted to this scenario where
we introduce an incremental approach to obtain a modified
safety assertion as theorem, as outlined inAlgorithm A below.

Input: SP , SA such that¬SA is satisfiable;
Output: SPnew, SAnew such that the system is safe;
Method:
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1. k = 1; SP1 = SP ; SA1 = SA;
2. while ( SPk → SAk is not a tautology) {
3. let SPnew andSAnew be new constraints;
4. SPk+1 = SPk ⊕ SPnew;
5. SAk+1 = SAk ⊕ SAnew;
6. k = k + 1; }
7. SPnew = SPk; SAnew = SAk;

The satisfiability of the formulaSPk+1 → SAk+1 can
be expressed incrementally from the satisfiability ofSPk →
SAk. The total cost of the new method can be more efficiently
achieved through computing the satisfiability of the newly
added or subtracted clauses, according to the operator⊕, when
compared to the old formula, and not from the satisfiability of
the entire new formula. Our method requires the debugging
of the real-time system at step3. We correlate this with
the incremental computation for the satisfiability ofSPk →
SAk. Our approach does not require us to re-compile the
whole system, as we could incorporate the new constraints
by re-using most of the older formula. In general, automatic
debugging is hard. To assist in this direction, we will provide
a systematic way of debugging with the help of incremental
counting satisfiability. We illustrate this with the well-known
railroad crossing example, used in [2], [3], as case study.

Real-time logic (RTL), which is based on a first-order logic
with restricted features, was introduced in [4] to capture the
timing requirements of real-time systems. The problem of
proving the safety assertion from its specification is in general
undecidable for the full set of RTL formulas based on the
Presburger Arithmetic. The correctness of a real-time system
can be achieved by computing the satisfiability of an associated
propositional formula. We shall consider an RTL class of
formulas (invented in [1]), with the following restrictions:

a) each arithmetic inequalities may involve only two terms
and an integer constant, where a term is either a variable or a
function and

b) no arithmetic expressions that have a function taking an
instance of itself as an argument.

This subclass of RTL formulas (also calledpath RTL,
[5]) exploits an efficient constraint-graph technique in integer
programming [1]. Despite these restrictions, this constraint
graph technique (also calledrefutation by positive cycles) is
still undecidable [5]. Moreover, in [5], it is proved that the
refutation by positive cycles is incomplete for path RTL (that
is, even if the constraints graph attached to the formula has no
cycles, it may happen that the formula is still unsatisfiable).



Despite this, Wang and Mok mentioned that the refutation by
positive cycles method is believed to be a natural technique
for reasoning about timing inequalities. Furthermore, they
presented a polynomial time algorithm for the positive cycle
detection. To get the decidability and completeness of the path
RTL, more restrictions have to be added, so that is the case
of semi-periodicalRTL [5]. Informally, this subclass requires
that the occurrence of every event type exhibits a periodical
behavior and has infinitely many occurrences. The advantages
of this subclass are that the satisfiability problem is decidable
and the positive cycle detection is complete for the problem.
In our paper, we consider the refutation by positive cycle
for the path RTL. Of course, if the real-time system exhibits
a periodical behavior for every event occurrence, then our
technique may benefit from the completeness of the positive
cycle detection technique.

The class of path RTL formulas is very practical and
expressive ( [1], [3]). For example, it was used to describe the
timing properties of a moveable control rods in a reactor [1]
and of the X-38, an autonomous spacecraft designed and built
by NASA as a prototype of the International Space Station
Crew Return Vehicle [6].

Section II presents a motivating example in path RTL.
Section III presents preliminary results regarding#SAT prob-
lem. Section IV developed our approach for computing the
value of the determinant in an incremental way. This section
contains the main results (Theorem 4.1, Corollaries 4.1 and
4.2), AlgorithmB together with some practical improvements.
Subsection V solves the railroad crossing problem through
an incremental approach. Take note that the debugging of
the specification can be achieved by analysing the constraint
graph. The last two sections present related work and conclu-
sions.

II. M OTIVATING EXAMPLE IN RTL

Real-Time Logic provides a uniform way for the specifica-
tion of relative and uniform timing of events. It is an exten-
sion of integer arithmetic without multiplication (Presburger
arithmetic) that adds a single uninterpreted binaryoccurrence
function, denoted by@, to represent the relationship between
events of a system, and their times of occurrence. The equation
@(e, i) = t states that the time of thei−th occurrence of
evente is t. Let us denoteZ, N andN+ the set of integers,
positive integers, and strict positive integers, respectively. The
time occurrence function is a mapping@: E × N+ → N,
where E is a domain of events, and such that@is strictly
monotonically increasing in its second argument, i.e.@(E,
i) < @(E, i+ 1), for anyi ∈ N+. There are no event variables,
or uninterpreted predicate symbols. So, RTL formulas are
boolean combinations of equality and inequality predicates
of standard integer arithmetic, where the arguments of the
relations are integer valued expressions involving variables,
constants, and applications of the function symbol@. Usually,
there are four classes of events, namely: stop and start events
(↑A and↓A denote the start and stop events of the actionA),
transition events and external events (prefixed withΩ).

To illustrate this, consider the railroad crossing example.

Its behavioral specification (denoted asSP ) is described in
natural language [3] as follows:

“When the train approaches the sensor, a signal will initiate
the lowering of the gate”,and “Gate is moved to the down po-
sition within 30s from being detected by the sensor”,and “The
gate needs at least 15s to lower itself to the down position”.

The goal of this real-time system is described by the
following safety assertions (denoted asSA):

“ If the train needs at least 45s to travel from the sensor to the
railroad crossing”,and “the train crossing is completed within
60s from being detected by the sensor”,then “we are assured
that at the start of the train crossing, the gate has moved down
and that the train leaves the railroad crossing within 45s from
the time the gate has completed moving down”.

Let LP be the propositional logicover the finite set of
atomic formulae(known also aspropositional variables) de-
noted byV = {A1, A2, ..., An}. A literal is an atomic formula
(positive literal), and so is its negation (negativeliteral). For
any literal L, we putL = ¬A if L = A and L = A if L =
¬A. If A is the atomic formula corresponding toL or L, then
we denoteV(L) = V(L) = A.

Any functionS : V → {0, 1} is a structure(known also as
assignment, substitution, instance, and model) and it can be
uniquely extended inLP to F (this extension will be denoted
also byS). The binary vector(y1, ..., yn) is a truth assignment
for F overV = {A1, ..., An} iff S(F ) = 1 such thatS(Ai) =
yi, ∀ i ∈ {1, ..., n}. The formulaF |[yi/Ai] denotesF for
which all the occurrences of variableAi are replaced byyi.
If F1, F2 ∈ LP thenF1 ≡ F2 (F1 is strongly equivalentwith
F2) if S(F1) = S(F2) for any structureS. We say thatF1

is weakly equivalentwith F2 (F1 ≡w F2) iff there exists a
structureS such asS(F1) = S(F2). A formula F is called
tautology iff for any structureS, it follows that S(F ) = 1.
A formula F is calledsatisfiableiff there exists a structureS
for which S(F ) = 1. A formula F is calledunsatisfiable(or
contradiction) iff F is not satisfiable.

Any propositional formulaeF ∈ LP can be translated into
theconjunctive normal form(CNF): F = (L1,1∨ ... ∨L1,n1)∧
... ∧(Ll,1∨ ... ∨Ll,nl

), whereLi,j are literals. In this paper,
we shall use a set representationF = {{L1,1, ..., L1,n1}, ...,
{Ll,1, ..., Ll,nl

}} to denote CNF. Any finite disjunction of
literals is aclause. The set of atomic formulae whose literals
belong to clauseC and formulaF are denoted byV(C) and
V(F ), respectively. A formula in CNF (finite set of clauses) is
called aclausal formula.So, the above formula can be denoted
asF = {C1, ..., Cl}, whereCi = {Li,1, ..., Li,ni} (from now
on, l ≥ 1 is assumed). In this paper, onlynon-tautological
clauses (which have no simultaneous occurrences of a literal
L andL) are considered. We say that a clauseC1 is included
in the clauseC2 (denoted byC1 ⊆ C2) iff ∀ L ∈ C1 we have
L ∈ C2. A finite non-tautological clauseC constructed over
V is maximal iff V(C) = V. A clausal formula ismaximal
iff it contains only maximal clauses. We denote theempty
clause, the one without any literal, by. A clause with only
one literal is called aunit clause. A clauseC is calledpositive
(or negative) iff C contains only positive (or negative) literals.

Coming back to the problem of railroad crossing, we can
express it in terms of path RTL, as follows:



SP : ∀x ( @(TrainApproach, x) ≤ @(↑DownGate, x) ∧
@(↓DownGate, x) ≤ @(TrainApproach, x)+ 30) ∧ ∀y (
@(↑DownGate, y)+ 15 ≤ @(↓DownGate, y) )

SA : ∀t ∀u ( @(TrainApproach, t)+ 45 ≤ @(↑
TrainCrossing, u) ∧ @(↓ TrainCrossing, u) <
@(TrainApproach, t)+ 60→ @(↑TrainCrossing, u) ≥ @(↓
DownGate, t) ∧ @(↓TrainCrossing, u) ≤ @(↓DownGate,
t) + 45 )

In order to translate into an equivalent Presburger arithmetic
formula, each@(E, i) is replaced by a functionfE(i). For ex-
ample,@(TrainApproach, x) will be f(x), @(↑DownGate,
x) will be g1(x), @(↓ DownGate, x) will be g2(x), @(↑
TrainCrossing, u) will be h1(u), @(↓ TrainCrossing,
u) will be h2(u), etc. So, the complete translation into the
Presburger arithmetic formula becomes:
SP : ∀x ( f(x) ≤ g1(x) ∧ g2(x) ≤ f(x)+ 30) ∧ ∀y ( g1(y)+
15 ≤ g2(y) )
SA : ∀t ∀u ( f(t)+ 45 ≤ h1(u) ∧ h2(u) < f(t)+ 60 →
g2(t) ≤ h1(u) ∧ h2(u) ≤ g2(t) + 45 )

To show thatSP → SA is a tautology is equivalent to
proving thatSP ∧ ¬SA is unsatisfiable. The corresponding
formula forSP∧¬SA can be translated into CNF and denoted
by F1, where every literal has the general form:v1± I ≤ v2,
wherev1, v2 are function occurrences andI ∈ N a constant.
Here is the equivalent CNF form after skolemising ([T/t][U/u]
correspond to the¬SA part):

SP : ∀x ∀y ( f(x) ≤ g1(x) ∧ g2(x)− 30 ≤ f(x) ∧ g1(y)+
15 ≤ g2(y) )
¬SA : f(T )+ 45 ≤ h1(U) ∧ h2(U)− 59 ≤ f(t) ∧ (

h1(U)+ 1 ≤ g2(T ) ∨ g2(T )+ 46 ≤ h2(U) )
Next, the constraint graph is constructed (Figure 1). For

each literalv1± I ≤ v2, two nodes labelled withv1 and v2

are linked by an edge(v1, v2) with weight±I. Thus, a set of
inequalities represented by such a graph is unsatisfiable iff a
cycle is present in the graph with a positive total weight on it
[1]. It is straightforward to show that if all edges involved in
a positive cycle in the constraints graph correspond to literals
(inequalities) which belong to unit clauses, thenF1 must be
unsatisfiable. However, if an edge in the cycle corresponds to
a literal that belongs to a non-unit clause, then it is necessary
to show that each of the remaining literals in this clause
corresponds to an edge in a different positive cycle.

h1(U)

−30

g2(x)15g1(x)f(x)
0

f(T ) 46 g2(T )

45 −59

1

h2(U)

Figure 1. Railroad crossing constraint graph (1)

A variation of Herbrand’s Theorem for this approach was
presented in [1]. It says that: “a setS of clauses is unsatisfiable

iff there is a finite unsatisfiable set of ground instances of
S and ¬Pi ∀ i ∈ 1, n, where eachPi is the conjunction
of inequalities corresponding to the edges in a positive cycle
detected in the constraint graph forS”. The above formulation
permits one to use any method in propositional logic to check
for unsatisfiability as positive cycles are detected and the
appropiate clauses are added to the existing set of clauses.
Therefore,F1 is satisfiable iffF1 ∧ {¬Pi | for all positive
cycle i} is satisfiable.

The clausal formulaF1 contains only positive clauses
corresponding to all edges of the constraint graph, and only
negative clauses corresponding to a positive cycle. Even if
each clause is positive or negative, the CNF satisfiability is
NP-complete [1]. We make the following notations for the
literals: A1 = f(x) ≤ g1(x), A2 = g2(x)− 30 ≤ f(x), A3 =
g1(y)+ 15 ≤ g2(y), A4 = f(T )+ 45 ≤ h1(U), A5 = h2(U)−
59 ≤ f(T ), A6 = h1(U)+ 1 ≤ g2(T ), A7 = g2(T )+ 46 ≤
h2(U). Therefore,F1 has the positive clauses:{A1}, {A2},
{A3}, {A4}, {A5}, {A6, A7}.

To use the positive cycles, we have two methods: adynamic
one and aglobal one. The dynamic algorithm [1] means that
as each new cycle is detected, the corresponding clause is
added to the set of existing ones, and is then checked for
unsatisfiability. It if is shown to be unsatisfiable, we can stop
immediately. Otherwise, it is necessary to continue the node
removal operation until another positive cycle is found. An
equivalent approach says that we may identify all the positive
cycles and add all of them toF1 from the beginning (no node
removal is required).

Using the second above approach, three positive cycles in
the constraint graph have been identified (Figure 1), soF1

has the negative clauses:{A2, A4, A6}, {A4, A5, A6, A7},
{A1, A3, A5, A7}. Of course, the unification of the first-order
logic is applied, e.g. the nodes labelled withf(x) and f(T )
are considered as one using the substitution[T/x] ( [1], [3]).
At the end of Section III, we shall see thatF1 is unsatisfiable,
so SP ∧ ¬SA is too. Thus,SP → SA is a theorem, i.e. the
real-time system is safe.

We propose to embed the incremental computation of the
determinant of a clausal formula in the verification of timing
constraints of a real-time system. This will tell us how “far
away” is the current specification from satisfying the safety
assertion. The modification of the specification and/or safety
assertions is useful for incremental debugging, in which bugs
in problematic areas are fixed one at a time until the system
is safe [7]. We choose this approach in order to benefit from
incremental debugging, which includes not re-computing the
satisfiability of the whole problem every time.

III. PRELIMINARY RESULTS

The basic incremental satisfiability problem of propositional
logic has been introduced in [8], as follows: “Given a propo-
sitional formulaF , check whetherF ∪ {C} is satisfiable for
a given clauseC”. The algorithm presented in [8] solves the
SAT problem using the Davis-Logemann-Loveland’s proce-
dure [9] combined with a backtracking strategy that adds one
clause at a time. In [10], a SAT solver able to handle non-



conjunctive normal form constraints and incremental satisfia-
bility was presented. For efficiency reasons, our technique is
applied incrementally. The incremental#SAT problem says
that “Knowing the number of truth assignments ofF , what is
the number of truth assignments ofF ∪ {C}, for any arbitrary
clauseC”.

In this section we fix some concepts and notations [11] to
allow the text to be self contained, by including some results
and examples. For a finite setA, |A| denotes the number of
elements ofA. The number of all sets withi elements from
a set withn elements is denoted by(n

i ), and it is equal to
n!

(n−i)!·i! , wheren! = 2· 3· ... · n.
Notation 3.1: Let C1, ..., Cs be clauses overV (s ≥ 1). We

denote:
a) mV (C1, ..., Cs) = |{A | A ∈ V − V(C1∪ ... ∪Cs)}|;
b) difV (C1, ..., Cs) =

b1) 0 if (∃ i, j ∈ {1, ..., s}, i 6= j, such as∃ L ∈ Ci and
L ∈ Cj) or if (∃ i ∈ {1, ..., s}, such asCi = );

b2) 2mV (C1,...,Cs) otherwise;

c) detV (C1, ..., Cs) = 2|V | −
s∑

j=1

(−1)j+1 · ∑
1≤i1<...<ij≤s

difV (Ci1 , ..., Cij
) is called thedeterminant of the set of

clauses{C1, ..., Cs}.
Because the arguments ofdetV () can be permuted in any

order, we may denotedetV (F ) = detV (C1, ..., Cl), where
F = {C1, ..., Cl}. Next, some useful properties of the
determinant of a clausal formula will be presented. We show
how the determinant of a clausal formula will be affected if
we consider some particular forms of clauses/rules such as:
the empty clause, the unnecessary variables rule, the inclusion
rule. Lemma 3.1 will be intensively used in AlgorithmB
described in the next section.

Lemma 3.1:Let F = {C1, ..., Cl} be a clausal formula
over V . Then:
a) if ∃ i ∈ {1, ..., l}, such asCi = , thendetV (F ) = 0;
b) if A is a new atomic variable,A /∈ V , and{i1, ..., is} a
subset of{1, ..., l}, s ∈ N+, then:

b1) detV ∪{A}(Ci1 , ..., Cis , {A}) = detV (Ci1 , ..., Cis).
b2) detV ∪{A}(Ci1 , ..., Cis , {A}) = detV (Ci1 , ..., Cis).

c) if A1, ..., Am are atomic variables,m ∈ N+, A1, ..., Am /∈
V , thendetV ∪{A1,...,Am}(F ) = 2m· detV (F );
d) if C1 andC2 are two clauses fromF for which C1 ⊆ C2,
thendetV (F ) = detV (F − C2).

The next result makes the link between the determinant of a
clausal formula and its satisfiability [11]. An equivalent result,
but proved differently, has also been presented in [12].

Theorem 3.1:(Inverse Resolution Theorem) LetF ∈ LP
over V . Then:
(i) F is unsatisfiable⇐⇒ detV (F ) = 0;
(ii) F is satisfiable⇐⇒ detV (F ) 6= 0. Much more, in this
case there existdetV (F ) number of truth assignments forF.

For a systematic computation of the determinant of a clausal
formulaF = {C1, ..., Cl} overV , it is better to usean ordered
labelled clausal tree. The full clausal treeCT (F ) = (N, E)
associated withF may be inductively constructed:

1) the zero (ground) level contains only a “dummy” root,
that is an unlabelled node;

2) the first level contains, in order from the left to right
the sequence of nodes labelled with:(C1, difV (C1)), ...,
(Cl, difV (Cl));

3) for a given nodev on the levelk labelled with (Cik
,

difV (Ci1 , ..., Cik
)), the levelk + 1 has the following direct

descendants in this order, from the left to the right:(Cik+1,
difV (Ci1 , ..., Cik

, Cik+1)), ..., (Cl, difV (Ci1 , ..., Cik
, Cl)).

The number of nodes of the full clausal treeCT (F ), without
taking into account the “dummy” root, is the total number of
elements of the sum which occur indetV (F ). This number is
exponential inl, namely(l

1)+ (l
2) + (l

l) = 2l− 1.
Remark 3.1:Since difV (Ci1 , ..., Cis

) = 0 implies
difV (Ci1 , ..., Cis , Cis+1) = 0, then only the nodes labelled
with (Cik+1, difV (Ci1 , ..., Cik

, Cij
)), wheredifV (Ci1 , ...,

Cik
, Cij ) 6= 0 and j ∈ {k + 1, ..., l}, are enough to be

generated for computing the determinant.
The tree for which the nodes labelled with0 are not

generated is called theordered labelled reduced clausal tree,
and it is denoted asCTred(F ) = (Nred, Ered). The reduced
clausal tree has equal or fewer nodes that the full clausal tree.

The next example points out an ordered labelled reduced
clausal tree attached to a particular clausal formula useful for
computing the determinant.

Example 3.1:Let F = {C1, C2, C3, C4, C5} be a clausal
formula overV = {p, q, r, t}, whereC1 = {p, q}, C2 = {p,
r, t}, C3 = {p, r, t}, C4 = {q, r}, andC5 = {p, q, r}. Then
CTred(F ) is in Figure 2:

3:

2:

1:

0:

C4, 20

C2, 20 C3, 20 C4, 21 C4, 20

C1, 22 C2, 21 C3, 21 C4, 22 C5, 21

Figure 2. The ordered labeled reduced clausal tree

Adding the labels of the even levels and subtracting the
labels of the odd ones, we obtaindetV (F ) = 24− (22+ 21+
21+ 22+ 21)+ (20+ 20+ 21+ 20)− 20 = 6. According to
Theorem 3.1,F is satisfiable with6 truth assignments.

In [13], it is mentioned that the algorithms for counting truth
assignments have something in common: the more variables
have both negated and unnegated occurrences, the better is
the performance of the algorithms on clausal formulae. This
is approximately equivalent to say thatCTred will have much
fewer nodes thanCT (because many nodes in the full tree
will have their difV labelled by0). So, the computation of
the determinant will be faster in this case.

Reconsidering the problem of railroad crossing described
in Section I, we get thatdetV1(F1) = 0, and 91 nodes are
generated forCTred(F1), whereV1 = {A1, ..., A7}.

IV. I NCREMENTAL COMPUTING OF THEDETERMINANT

SinceCTred(F ) may have an exponential number of nodes
depending on the number of clauses ofF , whenever a new



clauseC is added, it is better to computeonly the nodes which
containC and not the whole treeCTred(F ∪ {C}). But, the
clausal treeCTred(F ) attached toF = {C1, ..., Cl} cannot
be used directly for incremental computing ofdetV (F ) since
the most recent clause (that isCl) is spreaded as a leaf in all
clausal sub-trees ofCTred(F ). Therefore, we need a procedure
to move the nodes ofCTred(F ) such thatCl appears as a
label only in the most recent clausal sub-tree, and to use the
(old) value ofdetV (F ). Next, the increment of a given clausal
formula F with an arbitrary clauseC is defined.

Notation 4.1: If F = {C1, ..., Cl} is an arbitrary clausal
formula overV and C is an arbitrary clause overV , then

incV (C, F ) =
l∑

s=0
(−1)s+1 · ∑

1≤i1<...<is≤l

difV (C, Ci1 , ...,

Cis
) is called theincrement of F with clauseC.

It returns an integer number representing the number of
truth assignments which have to be added or substracted
from the previous value of the determinant. Similar to the
determinant, the increment of any clauseC and any clausal
formula F = {C1, ..., Cl} over V can be represented by
an ordered labelled clausal incremental tree. The full clausal
incremental treeCIT (C, F ) = (N, E) associated withC
andF may be inductively constructed:

1) the first level contains the clauseC as root, labelled with
(C, difV (C));

2) for a given nodev on the levelk, wherek ≥ 1, labelled
with (Cik

, difV (C, Ci1 , ..., Cik
)), the levelk + 1 has the

following direct descendants in this order, from the left to the
right: (Cik+1, difV (C, Ci1 , ..., Cik

, Cik+1)), ...,(Cl, difV (C,
Ci1 , ..., Cik

, Cl)).

The number of nodes of the full clausal incremental tree
CIT (F ), is the total number of elements of the sum which
occur in incV (C, F ), that is1+ (l

1)+ (l
2) + (l

l) = 2l.
Again, the nodes whosedif are 0 need not be generated

anymore. In other words, at step 2) of the above inductive
construction, only the nodes labelled with(Cik+1, difV (C,
Ci1 , ..., Cik

, Cij )) are generated, wherej ∈ {k + 1, ..., l}
anddifV (C, Ci1 , ..., Cik

, Cij ) 6= 0. We call this tree without
these nodes theordered labelled reduced clausal incremental
tree associated withC and F and denote it asCITred(C,
F ) = (Nred, Ered).

Before presenting the main result of this section, a result
which allows the permutation of the arguments ofdifV , detV
and incV is necessary.

Lemma 4.1:(permutation lemma) LetF = {C1, ..., Cl},
be a clausal formula overV and (i1, ..., il) an arbitrary
permutation of{1, ..., l}. ThendifV (Ci1 , ...,Cil

) = difV (C1,
..., Cl), detV (Ci1 , ..., Cil

) = detV (C1, ..., Cl) and incV (C,
Ci1 , ..., Cil

) = incV (C, C1, ..., Cl), whereC is an arbitrary
clause overV .

In the following, the main result is presented. It allows the
computation of the determinant of a new clausal formula using
the already computed determinant of the old clausal formula.

Theorem 4.1:(incremental computing) LetF = {C1, ...,
Cl} be a clausal formula overV and let F ′ = {Cl+1, ...,
Cl+k}, k ≥ 1, be a clausal formula overV . Then:
a) the following identity holds:

(1) detV (F ∪ F ′) = detV (F )+ incV (Cl+1, F )+
incV (Cl+2, F ∪ {Cl+1})+ ... +incV (Cl+k, F ∪ {Cl+1}∪ ...
∪{Cl+k−1}).
b) let us denote byN , N ′ the number of nodes of the
reduced clausal trees corresponding todetV (F ), detV (F∪F ′),
respectively, and byNl+1, Nl+2, ...,Nl+k the number of nodes
of the reduced clausal incremental trees corresponding to
incV (Cl+1, F ), incV (Cl+2, F ∪{Cl+1}), ..., andincV (Cl+k,
F ∪{Cl+1}∪ ...∪{Cl+k−1}), respectively. Then the following
identity holds:

(2) N ′ = N+ Nl+1+ Nl+2+ ... +Nl+k.

Because of the efficiency reasons, the incremental comput-
ing theorem is better to be applied only if the clauses from
F ′ are new, that isF ′ ∩ F = ∅.

Similarly to Theorem 4.1, the decremental computing of the
determinant can be proved.

Corollary 4.1: (decremental computing) LetF = {C1,
..., Cl} be a clausal formula overV and F ′ = {Ci1 ,
..., Cis} be any subset ofF . Then detV (F − F ′) =
detV (F )− incV (Ci1 , F −F ′)− incV (Ci2 , F −F ′∪{Ci1})−
... −incV (Cis , F − F ′ ∪ {Ci1}∪ ... ∪{Cis−1}).

The addition of a new clauseC to a given clausal formula
F over the same set of variablesV will decrease the number
of true assignments, i.e.incV (C, F ) ≤ 0. The next corollar
points out some situations when the computation of the
increment can be speed up.

Corollary 4.2: Let F = {C1, ..., Cl} be a clausal formula
over V . Then:
a) if A is an atomic variable,A /∈ V , then incV ∪{A}({A},
F ) = incV ∪{A}({A}, F ) = −detV (F );
b) If V ′ is an alphabet such thatV ⊆ V ′ andC an arbitrary
clause overV , thenincV ′(C, F ) = 2|V

′|−|V |· incV (C,F );
c) If C1 ⊆ C2 then incV (C2, {C1, C3, ..., Cl}) = 0 and
detV (C1, C3, ..., Cl) = detV (C2, C3, ..., Cl)+ incV (C1,
{C2, C3, ..., Cl});
d) If detV (F ) = 0 and C an arbitrary clause overV , then
incV (C, F ) = 0.

In the following, we put together all the previous results,
by providing AlgorithmB which is able to compute the value
of the determinant in an incremental manner.

Algorithm B

Input: F = {C1, ..., Cl} a clausal formula (overV );
Output: detV (F ) computed in an incremental way and
“No/Yes” corresponding to (un)/satisfiability ofF .
Method:
main() {
1. det = 1; Fold = ∅; Vold = ∅;
2. for (int i = 1; i <= l; i++) {
3. if ( Ci == ) {
4. det = 0; printf( “No, F is unsatisfiable.”);Exit}
5. Fnew = Fold ∪ {Ci}; Vnew = Vold ∪ V(Ci);
6. if ( Vnew != Vold) det = det∗ 2|V(Ci)−Vold|;
7. det = det− difVnew(Ci);
8. if ( i > 1 && Cj 6⊆ Ci, ∀ j ∈ {1, ..., i− 1})

inc( i,[Ci],2);
9. Fold = Fnew; Vold = Vnew; }



10. if ( det > 0) printf( “Yes, F is satisfiable and has ”,
det, “ truth assignments.”);

11. else printf( “No, F is unsatisfiable.”); }

void inc(int i, list_of_clauses lc, int level) {
12. for (int j = i− 1; j > 0; j--)
13. if ( difVnew

(lc, Cj) != 0) {
14. if odd(level) det = det− difVnew(lc, Cj);
15. else det = det + difVnew

(lc, Cj);
16. inc( j, [lc, Cj ], level + 1) } }

Let us point out (informally) the correctness and finiteness
of Algorithm B. First, the value ofdet is 1 and the set of
clauses will be processed one by one according to thefor
statement between lines2 and9. The lines3 and4 underline
item a) of Lemma 3.1. If the new clause contains more
variables, thendet will be multiplied with 2|V (Ci)−Vold| at line
6 (this is due to item b) of Lemma 3.1). Then, at lines7 and8,
we add theincrement at the old value of the determinant (this
is correct due to Theorem 4.1). Actually, line8 corresponds
to item c) of Corollary 4.2.

The procedureinc (i, lc, level) computes theincrement
value of the corresponding clausal sub-tree with rootCi,
starting from the currentlevel. The correctness follows from
Notation 4.1 (lines12 to 16) and Remark 3.1 (line13).
The second argument (i.e.lc) is needed for keeping the path
between the root and the current clause. In general, this list
is [Ci, Cj1 , ..., Cjs ], where jk ∈ {i − 1, ..., 1, 0} for any
k ∈ {1, ..., s} (the cases = 0 corresponds to the list [Ci]).
We denoted the list data structure using square brackets, so,
[lc, Cj ] means the list obtained by catenating the listlc with
[Cj ].

The finiteness of the recursive procedureinc() is also
obvious, knowing that it corresponds to a depth-first traversal
of a finite tree. Actually, by joining all the clausal sub-
trees corresponding to the execution ofinc() , we get an
isomorphic tree withCTred(F ). This is due to Lemma 4.1
which allows the re-arrangement of the nodes ofCTred(F ).
That is, the direct descendants of a node will not be labelled
in the ascending order (i.e.C1, C2, ..., Cl) like in CTred(F ),
but in the descending order. This is actually thekey ingredient
of the incremental computation of the determinant of a clausal
formula.

V. I NCREMENTAL APPROACH FOR THEVERIFICATION OF

A REAL-TIME SYSTEM

According to our notations, the condition ofwhile statement
of Algorithm A can be rewritten asdetV (SPk ∧ ¬SAk) > 0.
This condition can be efficiently evaluated in an incremental
way using AlgorithmB, based on the value ofdetV (SPk−1∧
¬SAk−1), for any k > 1. The steps3, 4, 5 of Algorithm A
can be done by analysing the old and new constraints graphs,
according to the new clauses ofSPk ∧ ¬SAk.

In order to see how incremental computing is used, we
suppose that new events can be added to a given real-time
system. For our study-case, let us consider two new events:
CarCrossingLeft andCarCrossingRight (denoted shortly
asCCL andCCR), with the following additional behavioral
specification: “A car crossing from the leftor right needs

at most 10 seconds to cross the railroad” and at the safety
assertion: “If the train starts crossing the railroad crossing,
there were no cars crossing neither from leftnor from the
right in the last 5 seconds”. In path RTL, this is expresses as:
∀z1 @(↓CCL, z1)− 10 ≤ @(↑CCL, z1) ∧ ∀z2 @(↓CCR,
z2)− 10 ≤ @(↑CCR, z2). The other sentence is translated
into: ∀v1 @(↓CCL, v1)+ 5 ≤ @(↑TrainCrossing, u) ∧ ∀v2

@(↓CCR, v2)+ 5 ≤ @(↑TrainCrossing, u).
This time we denote the newly obtainedSP∧¬SA with F2.

As we can see from Figure 3, the new constraint graph has the
same positive cycles as the one from Figure 1. Summarizing,
F2 = { {A1}, {A2}, {A3}, {A4}, {A5}, {A6, A7, A10, A11},
{A8}, {A9}, {A2, A4, A6}, {A4, A5, A6, A7}, {A1, A3, A5,
A7} } over the set of variablesV2 = {A1, ..., A11}.
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Figure 3. Railroad crossing constraint graph (2)

To illustrate the idea of incremental computing of the deter-
minant, we would like to computedetV2(F2) usingdetV1(F1).
It is obvious that, compared toF1, the formulaF2 has four
more variables, two new clauses, and one clause modified.
We may choose to do first either incremental computing or
decremental computing. For simplicity, we apply first Corol-
lary 4.1 and then Theorem 4.1. It follows thatdetV2(F2) =
detV2(F1)+ incV2( {A8}, F1)+ incV2( {A9}, F1∪ {{A8}})+
incV2( {A6, A7, A10, A11}, F1∪ {{A8}}∪ {{A9}})− incV2(
{A6, A7}, F1∪ {{A8}}∪ {{A9}}∪ {{A6, A7, A10, A11}})

Instead of calling procedureinc() , Corollary 4.2 will be
applied:

b1) From item c) of Lemma 3.1, it follows thatdetV2(F1) =
0. Now, applying one of the items a) or d) of Corollary 4.2,
it follows that incV2( {A8}, F1) = 0 and incV2( {A9}, F1∪
{{A8}}) = 0;

b2) Because{A6, A7} ⊆ {A6, A7, A10, A11}, according
to item c) of Corollary 4.2, it follows thatincV2( {A6, A7,
A10, A11}, F1∪ {{A8}}∪ {{A9}}) = 0;

b3) We call procedureinc() only for incV2( {A6, A7},
F1∪ {{A8}}∪ {{A9}}∪ {{A6, A7, A10, A11}}) getting−3
(generating267 nodes in the associated clausal tree).

SodetV2(F2) = 3, which means thatF2 is satisfiable, hence
the real-time system is unsafe. In our attempt at a systematic
debugging of the real-time system, it is easy to see that:



1. It is good to have at least one more negative clause, so
these correspond to at least one more positive cycle;

2. This cycle have to contain some of the new literals,
namely fromV2 − V1.

Looking at Figure 3, the constraint graph has six new
nodes (two pairs of nodes can be considered single nodes due
to the unification process of the first-order logic). In order
to minimize the determinant, some (negative) clauses should
be discovered, i.e. these new nodes should be involved in a
positive cycle. For instance, the starting node of the positive
cycle can be considered as the one labelled withh1(U). It
must be possible to continue the path from the nodes labelled
with η1(z1) andη3(z2), respectively. Going back to the safety
assertion, we may add “If the gate starts to go down, then no
car from the leftand the right will start to cross the railroad”.
In path RTL, this is equivalent to saying:@(↑CCL, v1) ≤
@(↑DownGate, t) and@(↑CCR, v2) ≤ @(↑DownGate, t).
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Figure 4. Railroad crossing constraint graph (3)

With the two new negative clauses, two new positive cycles
(Figure 4) will be generated, namely:C14 = {A2, A3, A4, A9,
A11, A13} and C15 = {A2, A3, A4, A8, A10, A12}. Let us
denoteC12 = {A12}, C13 = {A13}, andV3 = {A1, ..., A13},
and the new clausal formulaF3 = F2∪ {C12, C13, C14, C15}.
This time, only incremental computing theorem is used since
we have only added some clauses. Applying Theorem 4.1, we
get detV3(F3) = detV3(F2)+ incV3(C12, F2)+ incV3(C13,
F2 ∪{C12})+ incV3(C14, F2∪ {C12}∪ {C13})+ incV3(C15,
F2∪ {C12}∪ {C13}∪ {C14}). According to item c) of Lemma
3.1, because|V3| = |V2|+ 2 (two new variables were added),
it follows that detV3(F3) = 22 · detV3(F2) = 12. Computing
the four increments involved, we getdetV3(F3) = 12− 6−
3− 2− 1 = 0. This means thatF3 is unsatisfiable, and hence
the safety of the revisited solution.

VI. EXPERIMENTAL RESULTS OFALGORITHM B

This subsection is devoted to an efficient implementation, as
well as the experimental results of our incremental approach.

Item b) of Theorem 4.1 says that the incremental computa-
tion of the determinant of a formula containing new clauses
is optimal. That is, no new nodes are created in the new

incremental clausal trees, except the ones which would have
been created in the non-incremental approach. However, in the
worst case, addition a new clause can double the number of
new nodes corresponding to the incremental tree. For instance,
considerF = {{A1}, {A2}, ..., {An}} over V = {A1, ...,
An}, then CITred({An+1}, F ) has2n nodes. On the other
hand, if F is {C1, ..., Cl}, the best case for incremental
algorithm to computeinc(C, F ) will be when ∀ i ∈ {1,
..., l}, ∃ Li ∈ C, such thatLi ∈ Ci. In this case, the tree
CITred(C, F ) has only one node, that is the one labelled with
(C, difV (C)).

The practical efficiency of the algorithm can be improved
by adopting the numerical coding. First, we will not actually
“create” any node of the trees, but all the computations needed
to get the determinant will be done using the same memory.
The second improvement is that the computations of powers
of 2 can be avoided, by considering just its exponents. For
instance, the boolean formula associated to the X-38 system
has about50 variables and100 clauses [6]. So, the variabledet
can be implemented as an integer or boolean array, knowing
that its value is between0 and2|V | (details in [14]).

The improvements of AlgorithmB can be considered:
a) Algorithm B refers to the addition of only one clause at

a time. According to Theorem 4.1, it is possible to deal with
the new clauses in parallel (by treating all of new clauses at
the same time, and not sequentially).

b) Algorithm B works only for adding clauses, but not for
their removing. However, AlgorithmB can be easily adapted
to deal with the removal of the clauses using Corollary 4.1.

The clausal formulaF = {C1, ..., Cl} is said to be
uniformly random generatedwith the probabilityp = (p1, p2,
1− p1− p2) if in any clauseCi, any literalL appears positive
or (exclusive) negative, with the probabilityp1, respectively
p2, or does not appear inCi with the probability1− p1− p2.

We have implemented the determinant and the increment
computation algorithms. We did some experiments on the time
spend by the incremental computing of the determinant. For
simplicity, we considered only the addition of two new clauses
to the initial clausal formulaF = {C1, ..., Cl} over the same
set of variablesV = {A1, ..., An}. Moreover, we suppose that
the probability of the literals in the clauses equals to( 1

10 , 1
10 ,

8
10 ). For short, we denoteCTred(F∪ {Cl+1}∪ {Cl+2}) by
CTnew

red , CITred(Cl+1, F ) by CIT 1
red, andCITred(Cl+2, F∪

{Cl+1}) by CIT 2
red. Our testing instances refer to different

values for(n, l).

CTnew
red CTred(F )

(n, l) Number Time Number Time
of nodes (sec.) of nodes (sec.)

(10, 20) 28831 0.16 12655 0.06
(15, 25) 70255 0.37 17799 0.13
(20, 40) 136714 3.32 99671 2.48
(25, 45) 78468 2.18 49800 1.50
(30, 60) 178531 7.70 141663 6.03
(40, 75) 150693 11.64 111837 8.77
(50, 100) 312276 39.26 268790 33.57
(100, 200) 2258144 2147 2080358 1992

Table 1. The non-incremental approach



CIT 1
red CIT 2

red

(n, l) Number Time Number Time
of nodes (sec.) of nodes (sec.)

(10, 20) 1760 0.01 14416 0.05
(15, 25) 17800 0.11 34656 0.21
(20, 40) 19832 0.39 17211 0.41
(25, 45) 6258 0.16 22410 0.71
(30, 60) 12700 0.83 24168 1.28
(40, 75) 13667 1.42 25189 2.19
(50, 100) 3701 0.67 39785 5.66
(100, 200) 165867 144 11919 30.48

Table 2. The incremental approach

For example, looking at the first lines of the tables, (n =
10 and l = 20), we may validate item b) of Theorem
4.1, namely28831 = 12655+ 1760+ 14416. Moreover, the
time needed for computingdetV (F∪ {Cl+1}∪ {Cl+2}) is
approximately equal to the time consumed by the computation
of detV (F∪ {Cl+1}), incV (Cl+1, F ), and incV (Cl+2, F∪
{Cl+1}) altogether. For the first line, we may see that0.16 ≈
0.06+ 0.01+ 0.05. One to memory caching, the time needed
for the incremental method may be even better than the non-
incremental method. The incremental algorithm can be said
to be efficient since the experimental work “shows” that the
time complexity of our approach is “in tandem” with the space
complexity (item b of Theorem 4.1).

VII. R ELATED WORK

As stated in [15], the SAT problem has a special interest in
the artificial intelligence community because of its relationship
to deductive reasoning. The#SAT problem is a valuable
approach for evaluating techniques in an effort to avoid
computational difficulties, such as the constraint satisfaction
and the knowledge compilation.

Model checking ( [16], [17]) is an important technique
for verifying sequential design. In model checking, the spec-
ification of a design is expressed in temporal logic and
the implementation is described as a finite state machine.
Model checking using ordered binary decision diagrams [18],
denoted by OBDDs, is called symbolic model checking (
[19], [20]). With the introduction of bounded model checking
[21], efficient propositional decision procedures for symbolic
model checking begin to appear. In bounded model checking,
only paths of bounded lengthk are considered. A comparison
between BDD and SAT solvers has been done in [22] and
to our counting strategy in [14]. Briefly, if a given problem
requests not only the number of truth assignments, but also
the assignments themselves, then OBDDs may be more useful
than the determinant ofF. On the other hand, for a given
clausal formulaF , there is only oneCTred(F ) and even if
the clauses are re-ordered, the size of the associated clausal
tree is the same [14]. In constrast, for a givenF , there may be
many (i.e. an exponential number depending on the number
of variables) associated OBDDs, and the problem of finding
the best reordering for representingF as an OBDD is coNP
[18].

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we embedded the incremental computation
of the determinant of a clausal formula in the verification of
timing constraints of a real-time system. We considered the
well-known example of the railroad crossing. The debugging
of the new specification can be done manually. An open
problem is to do this process in an automatic way when
analysing the constraint graph.

We thank to the unknown referees for their very useful
remarks, suggestions and comments which improved the paper.
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