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Abstract
Background—Adaptive and innate immunity play important roles in atherogenesis. Invariant
chain (CD74) mediates antigen presenting cell (APC) antigen presentation and T cell activation.
This study tested the hypothesis that CD74-deficient mice have reduced numbers of active T cells
and resist atherogenesis.

Methods and Results—In low-density lipoprotein receptor-deficient mice (Ldlr−/−), CD74
deficiency (Ldlr−/−Cd74−/−) significantly reduced atherosclerosis and CD25+ activated T cells in
the atheromata. While Ldlr−/−Cd74−/− mice had decreased levels of plasma IgG1, IgG2b, and
IgG2c against malondialdehyde-modified LDL (MDA-LDL), presumably due to impaired APC
function, Ldlr−/−Cd74−/− mice showed higher levels of anti-MDA-LDL IgM and IgG3. After
immunization with MDA-LDL, Ldlr−/−Cd74−/− mice had lower levels of all anti-MDA-LDL
immunoglobulin (Ig) isotypes compared with Ldlr−/− mice. As anticipated, only Ldlr−/−

splenocytes responded to in vitro stimulation with MDA-LDL, producing Th1/Th2 cytokines.
Heat shock protein-65 (HSP65) immunization enhanced atherogenesis in Ldlr−/− mice, but
Ldlr−/−Cd74−/− mice remained protected. Compared with Ldlr−/− mice, Ldlr−/−Cd74−/− mice had
higher anti-MDA-LDL autoantibody titers, fewer lesion CD25+ activated T cells, impaired release
of Th1/Th2 cytokines from APC after HSP65-stimulation, and reduced levels of all plasma anti-
HSP65 Ig isotypes. Cytofluorimetry of splenocytes and peritoneal cavity cells of MDA-LDL- or
HSP65-immunized mice showed increased percentages of autoantibody-producing marginal zone-
B and B-1 cells in Ldlr−/−Cd74−/− mice compared to Ldlr−/− mice.

Conclusion—Invariant chain deficiency in Ldlr−/− mice reduced atherosclerosis. This finding
was associated with an impaired adaptive immune response to disease-specific antigens.
Concomitantly, there occurred an unexpected increase in the number of innate-like peripheral B-1
cell populations, resulting in increased IgM/IgG3 titers to the oxidation-specific epitopes.
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INTRODUCTION
Antigen presenting cells (APC) and T cells, key regulators of innate and adaptive immunity,
may participate in human atherogenesis. Accumulating data suggest that atherosclerosis
involves aspects of autoimmunity.1 Indeed, autoimmune diseases (e.g., systemic lupus
erythematosus [SLE] or rheumatoid arthritis) may accelerate atherosclerosis. SLE patients
have a four- to eight-fold higher risk of developing atherosclerosis than those who do not
have SLE.2 Patients with rheumatoid arthritis also have enhanced risk of atherosclerotic
events.3 In general, T cells that mediate adaptive responses appear to play a pro-atherogenic
role, and in some experimental models, T cell deficiency produces up to an 80% reduction
of atherosclerosis.4 However, emerging evidence also suggests that certain T cell
populations, such as T regulatory subtypes, may confer atheroprotective properties.5 In
contrast, B cells appear to play an overall atheroprotective role, at least in part by secreting
antibodies to disease specific antigens (or “self-antigens”). Among such antigens, oxidized
LDL (oxLDL), heat shock proteins (HSP), and β2-glycoprotein-1 appear prominent.6 For
example, B cell deficiency7 or splenectomy,8 which associate with absent levels of
antibodies to oxLDL, leads to acceleration of atherosclerosis, which B cell replacement can
reverse in the case of splenectomy. Furthermore, immunization of low-density lipoprotein
receptor-deficient (Ldlr−/−) rabbits and mice9–11 or apolipoprotein E-deficient (Apoe−/−)12

mice with malondialdehyde-modified LDL (MDA-LDL) suppressed atherogenesis.
Although other mechanisms may also function, current data suggest that the reduced
atherosclerosis in MDA-LDL-immunized animals stems from increased production of
atheroprotective oxLDL autoantibodies.9–12 Among these, innate IgM natural antibodies
against “oxidation-specific” epitopes of oxLDL appear prominent.13 Evidence to support
this derives from studies of the natural antibody E06, an anti-oxLDL IgM cloned from
Apoe−/−mice. Such natural antibodies derive in large part from B-1 cells. Furthermore, in
contrast to activation of B-2 cells, activation of B-1 cells occurs independently of cognate T
cell help. E06 binds to the phosphocholine (PC) head group of oxidized phospholipids
(oxPL), as found on oxLDL but not on native LDL. It bears the T15 idiotype, which binds
the PC moiety present on the cell wall of Streptococcus pneumoniae, as shown previously.14

Indeed, immunization of cholesterol-fed Ldlr−/− mice with heat-inactivated S. pneumonia
led to a near monoclonal increase in plasma E06/T15 titers and atheroprotection.15 In
Apoe−/− mice, treatment with an IgM with the T15 idiotype reduced vein graft
atherosclerosis.16 In a recent study, Ldlr−/− mice deficient in serum IgM were shown to have
substantially larger and more complex atherosclerotic lesions, suggesting that IgM
antibodies as a class possess anti-atherogenic properties.17 Indeed, plasma IgM antibodies to
oxLDL correlate inversely with carotid and coronary atherosclerosis in humans.14,18,19 In
contrast, the role of IgG isotypes generated by adaptive immune responses to oxidation-
specific epitopes is more complex. In general, in epidemiological studies in humans, IgG
isotypes to OxLDL appear to correlate positively with manifestations of cardiovascular
diseases,14,18 whereas immunization with oxLDL epitopes in murine models that generate
elevations of IgG, particularly IgG1, usually associate with atheroprotection. Such IgG1
usually associates with Th2 help and whether the benefit results purely from the antibodies
themselves or from the associated Th2 cytokine help generally regarded as atheroprotective
remains unclear. The antibodies might influence atherogenesis by their ability to inhibit
uptake of oxLDL by macrophages, attenuation of proinflammatory effects of oxidized lipids,
or conceivably activation of the inhibitory Fcγreceptor IIb. In contrast, immunization with
other disease-related epitopes, such as HSP65, has associated with a mixed IgG response
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and worsening atherosclerosis. Interpreting such immunization studies can prove difficult
because they involve not only changes in adaptive humoral immunity, but also major
changes in T cell function, which in turn profoundly modulate lesion formation.

Adaptive immunity to disease-specific antigens and associated APC antigen presentation
and T cell activation may directly play detrimental roles in atherosclerosis.4 Within APC,
antigens must undergo full processing and presentation by major histocompatibility class II
(MHC-II) molecules to CD4+ T cells. In human APC, this process requires the involvement
of a 45-kDa type II transmembrane protein (41-kDa in mice) called invariant chain (CD74).
CD74 is usually synthesized in excess over the MHC-II, ensuring that in the endoplasmic
reticulum all MHC-II Aαand Aβ heterodimers associate with invariant chains. In the
endoplasmic reticulum, CD74 functions as a chaperone to assist the MHC-II complex to fold
properly, to prevent the early binding of peptides to MHC-II, and to determine the targeting
and transport of MHC-II complexes to the appropriate organelles (lysosome/endosome),
where CD74 molecules are proteolytically removed and antigenic peptides are loaded onto
class II molecules.20 If CD74 is incompletely processed due to the inhibition or absence of
protease activities, MHC-II will fail to present antigens to the APC surface. These APC will
fail to activate T cells and mice will produce fewer antibodies against immunogens; even the
total T or B cell numbers are not affected.21 In the case of complete absence of CD74
(Cd74−/−) in C57BL/6 mice, MHC-II Aαb Aβb is predominantly expressed as free Aαb and
Aβb chains in APC, confirming that Aαb Aβb assembly also depends strongly on CD74 co-
expression.22 As a result, Cd74−/− mice have greatly reduced levels of thymic and
peripheral CD4+ T cells. Concomitantly, the thymi or peripheries of Cd74−/− mice often
have greater CD8+ T cell numbers than those of wild-type control mice.23–25 Although
Cd74−/− mice have fewer peripheral mature B cells than wild-type control mice, double
mutation of CD74 and MHC-II resulted in no difference in number of mature B cells
compared to wild-type control mice, suggesting that B cell development requires neither
CD74 nor MHC-II.26 CD4+ cells comprise the predominant T lymphocyte type in human
and murine atherosclerotic lesions,27,28 and their activation contributes to experimental
atherogenesis. In mice, absence of CD4+ T cells significantly reduced atherosclerosis.29

Adoptive transfer of CD4+ T cells isolated from atherosclerotic Apoe−/− mice into T cell-
deficient Apoe−/−/scid/scid mice restored the atherosclerosis phenotypes.30,31 In Apoe−/−/
scid/scid mice, reconstitution of antigen (oxLDL)-specific CD4+ T cells yielded even more
atherosclerosis than in mice that received naive CD4+ T cells,31 an observation of particular
interest since nearly 10% of the T cell clones from human atherosclerotic plaques responded
to oxLDL.32 Thus, both APC and T cells modulate human and mouse atherogenesis.

This study tested the hypothesis that APC lose their antigen presentation activity in the
absence of CD74, thereby rendering them unable to activate T cells, and that impaired
antigen presentation and defective T cell activation attenuate atherogenesis in Ldlr−/− mice.

METHODS
Mice and atherosclerosis model

Cd74−/− mice (C57BL/6)26 were crossbred with Ldlr−/− mice (C57BL/6, Jackson
Laboratories, Bar Harbor, ME) to generate both Ldlr−/−Cd74−/− and Ldlr−/− mice. Male
Ldlr−/−Cd74−/− and Ldlr−/− littermates consumed an atherogenic diet for 12 to 26 weeks
(D12108, Research Diet, New Brunswick, NJ) starting at 8 weeks of age. At the end of each
experiment, mouse plasma was collected for lipoprotein and Th1 and Th2 cytokine
measurements, aortic arches were harvested for frozen section preparation and lesion
characterization, and thoracic-abdominal aortas were harvested for lipid deposition analysis.
Aortic arch lesion grade, intima area, thoracic-aortic en-face preparation and oil red-O
staining and lesion area calculation, lesion macrophage (Mac-3) and smooth muscle cell (α-
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actin) staining were performed as we previously reported.33 Lesion total CD4+ T cell
enumeration used anti-CD4 monoclonal antibody (1:90, Pharmingen) immunostaining, and
detection of lesion-activated T cells used an anti-CD25 monoclonal antibody (1:70,
Pharmingen). Lesion CD8+ T cells, NK1.1 T cells, CD1d+ cells, and dendritic cells were
detected using rat anti-mouse CD8 monoclonal (1:100, Pharmingen), mouse NK1.1
monoclonal (PK136, 1:250, Novus Biologicals, Littleton, CO), mouse CD1d monoclonal
(1:100, AbD Serotec), and hamster anti-mouse CD11c (1:50, Pharmingen), respectively. All
murine studies were pre-approved by the Institutional Animal Care and Use Committee of
Harvard Medical School.

Immunogen preparation
Human LDL and MDA-LDL were prepared as previously described34 and contained <1.5
ng lipopolysaccharides/mg protein (ApoB). MDA modification of bovine serum albumin
(MDA-BSA) was carried out similarly to that for MDA-LDL, except the reaction continued
for 24 hrs instead of 3 hrs. Recombinant Mycobacterium bovis HSP65 was expressed in E.
coli and purified to >95% as fully described previously.35

MDA-LDL immunization
Eight-week-old Ldlr−/− and Ldlr−/−Cd74−/− mice received intrainguinally the primary
immunization with 50 μg human MDA-LDL in 50 μl PBS emulsified in an equal volume of
complete Freund’s adjuvant (CFA, Sigma). Mice were boosted intraperitoneally with 25 μg
of antigen in incomplete Freund’s adjuvant (IFA) after 2 and 4 weeks. CFA (or IFA)/PBS
and PBS alone were used for separate immunization controls. Mice then received a recall
boost intraperitoneally with 25 μg of antigen in PBS. Three days after the recall boost,
plasma samples were collected for antigen-specific antibody titer measurement and
splenocytes isolated for antigen recall assay.11

HSP65 immunization
Eight-week-old Ldlr−/− and Ldlr−/−Cd74−/− mice were fed a Western diet while immunized
with 25 μg of HSP65 in 12.5 μl PBS to the hind footpad emulsified in an equal volume of
IFA. Mice were boosted twice with the same amount of antigens to the alternate hind
footpad 3 and 6 weeks following the primary immunization. Twelve weeks after the first
immunization, aortic arches were harvested for atherosclerotic lesion characterization and
splenocytes and lymph node cells collected for antigen recall assay as described previously.
21,35 IFA and PBS immunizations served as experimental controls.

Plasma lipoprotein and cytokine determination
Plasma lipoproteins, including total cholesterol, LDL, high-density lipoprotein (HDL), and
triglyceride, were determined using enzymatic assay kits according to the manufacturer’s
instructions (Pointe Scientific, Inc.). Plasma cytokines, including interleukin-2 (IL2) (BD
Biosciences), IL4, IL5 (Pierce Endogen), IL10, and interferon-γ(IFN-γ) (PeproTech Inc.),
were measured using ELISA kits according to the manufacturer’s instructions.

Plasma antibody isotype determination
Plasma antibody titers to native LDL, MDA-LDL, MDA-BSA, and HSP65 were determined
by chemiluminescent ELISA as previously described.11,15 In brief, 96-well MicrotiterR
plates (Thermo Labsystems, Franklin, MA) were coated with various antigens at 5 μg/mL.
The plates were blocked with 1% BSA in PBS, serially diluted plasma was added, and the
plates incubated for 1.5 hrs at room temperature. Bound plasma Ig isotypes were detected
with various anti-mouse Ig isotype-specific alkaline phosphatase conjugates, LumiPhos 530
(Lumigen, Southfield, MI) solution, and a Dynex Luminometer (Dynex Technologies,
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Chantilly, VA). The following goat alkaline phosphatase-conjugated secondary Ig isotype-
specific antibodies were used: anti-mouse IgM (μ chain specific) (Sigma) and anti-mouse
IgG1, IgG2b, IgG2c, and IgG3 (Jackson ImmunoResearch Laboratories, West Grove, PA).
Data were expressed as relative light units counted per 100 milliseconds (RLU/100 ms).

Antigen recall assay
Splenocyte and lymph node cell preparation and antigen recall assays were performed as
described previously.21 Splenocytes from Ldlr−/− and Ldlr−/−Cd74−/− mice immunized with
MDA-LDL, CFA/PBS, or PBS were plated on a 96-well plate (8×105 cells/200 μl/well) with
human native LDL or MDA-LDL at various concentrations in RPMI for 3 days followed by
determination of sentinel Th1 and Th2 cytokines in the medium. Splenocytes and lymph
node cells from HSP65-immunized Ldlr−/− and Ldlr−/−Cd74−/− mice were stimulated with
different concentrations of purified HSP65 for 3 days followed by cytokine measurement as
above.

FACS
At time of sacrifice, peritoneal cavity cells and splenocytes were prepared and resuspended
in a staining buffer containing PBS and 1% BSA. After blocking with an anti-Fcγreceptor
monoclonal antibody for 15 min at 4°C, 106 cells were stained with antibodies (Pharmingen)
specific for various surface markers [FITC-anti-CD11b/Mac-1, PE-anti-CD5, PerCP-Cy5.5-
anti-CD19; PE-anti-mouse CD43, FITC-anti-mouse IgM (II/41)], or APC-anti-mouse CD21
in 100 μl staining buffer for 30 min at 4°C. More than 0.5×105 cells per sample were
analyzed. Peritoneal B-1 cells were identified as CD19+/CD11b+/CD5lo-to-int and B-2 cells
as CD19+/CD11b−/CD5−. Splenic B-1 cells were identified as CD19+/IgM+/CD43+,
marginal zone (MZ)B cells as CD19+/CD21+/CD23−, and follicular B cells as CD19+/
CD21−/CD23+.

Statistical analysis
Unpaired student t test and nonparametric Mann-Whitney U test were used to examine the
statistical significance, depending on the normality of the data sets. P<0.05 was considered
statistically significant. Bonferroni post-hoc correction was used when multiple comparisons
were made in order to minimize Type I error; the corrected P value is indicated in the
respective figures. Data from antibody titers, are presented in a descriptive way without
performing statistical significance tests.

RESULTS
Reduced atherosclerosis and CD25+ activated T cell numbers in CD74-deficient mice

T cell activation by disease specific antigens may enhance atherogenesis. We tested the
hypothesis that a deficiency of CD74 would impair APC antigen presentation and T cell
activation, and therefore attenuate atherogenesis. Remarkably, after 12 or 26 weeks of an
atherogenic diet, Ldlr−/−Cd74−/− mice developed significantly smaller atherosclerotic
lesions than did Ldlr−/− mice. In the aortic arches, Ldlr−/−Cd74−/− mice had reduced lesion
grade (Figure 1A) and intima area (Figure 1B) compared with Ldlr−/− mice at both time
points. In thoracic-abdominal aortas, oil red-O staining demonstrated that Ldlr−/−Cd74−/−

mice had significantly smaller aortic lipid depositions or lesion areas than did Ldlr−/− mice
at the 26-week time point (Figure 1C). Ldlr−/−Cd74−/− mice had significantly reduced
several lesion inflammatory cell contents, including Mac-3+ macrophage-positive area and
CD4+ T cell numbers and absence of NK1.1+ T cells, compared with Ldlr−/−mice at either
12-week or 26-week time point (Figure 1D-F), although we did not detect significant
changes of CD1d-positive area, CD8+ T cells, or lesion dendritic cells (Figure 1G-I).
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Consistent with our hypothesis, Ldlr−/−Cd74−/− mice had greatly reduced lesional content of
CD25+ positive cells, most likely consistent with decreased presence of activated T cells
compared with Ldlr−/− mice (Figure 1J).

Plasma lipid levels often associate with atherosclerotic lesion progression.33 On a chow diet,
Ldlr−/−Cd74−/− mice had plasma total cholesterol levels similar to Ldlr−/− mice, though
LDL cholesterol levels were slightly lower (Suppl Table 1). After 12 and 26 weeks of an
atherogenic diet, the two groups had significantly elevated yet equal levels of total and LDL
cholesterol. However, Ldlr−/−Cd74−/− mice had significantly lower plasma triglyceride
levels at both time points but also lower HDL cholesterol at the 26-week time point. It is
possible that reduced plasma triglyceride levels in Ldlr−/−Cd74−/− mice were secondary to
attenuated atherosclerosis of these mice.

Plasma cytokine ELISA did not reveal significant differences in IFN-γ, IL5, and IL10 levels
between Ldlr−/−Cd74−/− and Ldlr−/− mice at both the 12- and 26-week time points.
However, Ldlr−/−Cd74−/− mice had higher plasma IL4 levels than Ldlr−/− mice at both time
points (Suppl Figure 1), suggesting a Th2 bias in atherosclerotic CD74-deficient mice.

Plasma anti-MDA-LDL antibody isotypes
In humans and mice, plasma IgG antibodies against oxLDL often correlate positively with
lesion development, whereas IgM antibodies correlate negatively.11,18,36 We anticipated
lower titers of adaptive anti-MDA-LDL IgG1, IgG2b, and IgG2c levels in Ldlr−/−Cd74−/−

mice than in Ldlr−/− mice. Consistent with this hypothesis, Ldlr−/−Cd74−/−mice had lower
anti-MDA-LDL IgG2b and IgG2c titers than did Ldlr−/− mice at both the 12- and 26-week
time points (Figure 2). Ldlr−/−Cd74−/− mice also had lower IgG1 titers at the 12-week time
point, although overall both groups of mice had much lower levels of IgG1 than IgG2b or
IgG2c. The reduced plasma anti-MDA-LDL IgG titers would correspond with impaired
antigen presentation in CD74-deficient mice.26 To our surprise, at both time points we
observed higher titers of IgM to MDA-LDL in Ldlr−/−Cd74−/− mice and, similarly, higher
titers of IgG3, although no statistical test was performed (Figure 2). In uninfected mice, IgM
are largely considered to represent natural antibodies generated by innate-like B-1 and MZ B
cells, the production of which is believed to occur independently of antigen-specific T cell
help. Such B-1 cells/MZ B cells also secrete IgG3. Thus, these data suggested an unexpected
stimulation of B-1/MZ B cells. Notably, elevated IgM titers to epitopes of oxLDL play a
role in atheroprotection.15,16

MDA-LDL immunization and antibody production
The reduced titers of anti-MDA-LDL IgG2b and IgG2c in hyperlipidemic Ldlr−/−Cd74−/−

mice suggested reduced humoral adaptive responses due to impaired antigen presentation,
while in contrast, the increased anti-MDA-LDL IgM and IgG3 titers indicated enhanced
B-1/MZ cell activation, consistent with enhancement of innate-like responses. To examine
whether such phenotypes associated solely with the atherogenic diet or the development of
atherosclerosis, we immunized Ldlr−/−Cd74−/− and Ldlr−/− mice with MDA-modified
human LDL without feeding them an atherogenic diet. We have previously shown that the
adaptive response to MDA-LDL is MHC-Class II restricted.11 Before immunization,
Ldlr−/−Cd74−/− mice had similar adaptive anti-MDA-LDL Ig levels but higher innate IgM
and IgG3, compared to Ldlr−/− mice. However, after MDA-LDL immunization,
Ldlr−/−Cd74−/− mice had lower titers of all anti-MDA-LDL IgG isotypes than Ldlr−/− mice.
For example, IgG1 titers showed a robust increase in response to immunization in the
Ldlr−/− mice (Figure 3A, left panels) as previously reported,10,11 but Ldlr−/−Cd74−/− mice
showed no increase at all (right panels). Similarly, IgG2b, IgG2c and even IgG3 showed no
response to immunization above that seen in response to the CFA/IFA or PBS control,
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although we did not perform statistical analysis (Suppl Figures 2–4). In contrast, in response
to immunization, IgM titers to MDA-LDL showed a modest increase in the Ldlr−/− mice
(Figure 3B, left panels), which was also observed in the Ldlr−/−Cd74−/− mice (right panels).
We also tested responses to human LDL (the heterologous carrier) and to MDA-BSA (the
hapten), and identical IgM and IgG isotype antibody responses, as described above to MDA-
LDL, were noted (data not shown). These data affirm an important role of CD74-mediated
antigen presentation to disease specific antigens (i.e., MDA-LDL) in atherogenesis, and
again document higher IgM levels, supporting the hypothesis that CD74 deficiency
enhances activation of innate-like B-1 and/or MZ B cells.

CD74 deficiency not only led to impaired adaptive antibody production in vivo, but also
resulted in reduction of Th1 and Th2 cytokine production in vitro. Although we did not
detect significant differences in plasma Th1 (IFN-γ) and Th2 (IL4, IL5, IL10) cytokine
levels between MDA-LDL-immunized Ldlr−/−Cd74−/− and Ldlr−/− mice (data not shown),
we did detect lower medium Th1 and Th2 cytokine levels (IL2, IFN-γ, IL4, IL5, and IL10)
in splenocytes from MDA-LDL-immunized Ldlr−/−Cd74−/− mice than those from Ldlr−/−

mice in an MDA-LDL recall assay (Figure 4). Even when native human LDL served as a
stimulus, Ldlr−/− splenocytes released more IL2 and IL5 than those of Ldlr−/−Cd74−/− mice
(Figure 4). These observations with the male Ldlr−/−Cd74−/− mice appear different, at least
with respect to IL5, from what we observed previously in immune-competent mice
following immunization with murine MDA-LDL,11 in which absence of IL5 enhanced
atherosclerosis in female Ldlr−/− mice and atheroprotective immunization of female Ldlr−/−

mice with MDA-LDL increased serum IL5 levels. However, the atheroprotective
phenotypes in Ldlr−/−Cd74−/− mice, either immunized with MDA-LDL or not, did not
accompany concomitant increase of serum IL5 (data not shown). Although the exact cause
of these unexpected observations remains unknown, gender differences between the studies
may have influenced the outcomes.

CD74 deficiency reduced atherosclerosis after HSP65 immunization
Previous studies have suggested that animals or humans exposed to infectious agents may
develop antibody responses to bacterial HSPs that then cross-react with human HSP
expressed on the cell surface of cells undergoing stress, such as endothelial cells, which can
lead to arthritis and exacerbation of atherosclerosis. Indeed, in human populations, increased
levels of plasma anti-HSP65 antibody correlate with intima thickening37 and lesion
calcification,38 and atherosclerotic plaques contain activated CD4+ T cells against human
HSP60.39 In contrast to reduced atherosclerosis in Ldlr−/− or Apoe−/− mice after
immunization with MDA-modified homologous LDL,10–12 immunization of hyperlipidemic
Ldlr−/− mice and rabbits40–42 with heterologous Mycobacterial HSP65 aggravated
atherosclerosis. In rabbits, plasma titers against HSP65 have been shown to increase rapidly
after initiation of an atherogenic diet43 and increased HSP65 expression in intimal cells and
the presence of HSP65-specific T cells in blood and in atherosclerotic lesions have been
documented,42 consistent with exacerbation of lesion formation as a consequence of an
adaptive response to HSP. Therefore, we predicted that the enhanced atherosclerosis seen
with HSP immunization in Ldlr−/− mice would be attenuated in Ldlr−/−Cd74−/− mice.
Consistent with this hypothesis, Ldlr−/−Cd74−/− mice immunized with HSP65 developed
significantly smaller lesion grade and intima sizes than those of Ldlr−/− mice (Figure 5A/B).
Ldlr−/−Cd74−/− mice also had fewer lesion CD4+ T cells and CD25+ activated T cells than
did Ldlr−/− mice (Figure 5C/D). Notably, HSP65 immunization increased significantly
lesion grade, as was originally reported,41 and lesion CD4+ T cells in Ldlr−/− mice were also
more than those immunized with PBS (Figure 5B/C). In contrast, HSP65 immunization did
not change these lesion parameters in Ldlr−/−Cd74−/− mice. In HSP65-immunized mice, we
did not detect any significant differences in plasma lipoprotein levels (total cholesterol,
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LDL, HDL, and triglyceride) (Suppl Table 1) and Th1 (IFN-γ) or Th2 (IL4, IL5, IL10)
cytokine levels between the two groups of mice (data not shown).

Consistent with impaired antigen presentation and atherogenesis, Ldlr−/−Cd74−/−mice had
greatly blunted IgG isotype responses to HSP immunization compared to Ldlr−/−mice
(Figure 6). Non-immunized mice had extremely low titers to HSP65 for all Ig isotypes. To
affirm impaired antigen presentation and reduced adaptive immunity in Ldlr−/−Cd74−/−

mice, we prepared splenocytes and lymph node cells from Ldlr−/−Cd74−/−mice and
stimulated these cells with Mycobacterial HSP65. In this antigen recall assay, cells from
Ldlr−/−Cd74−/− mice had significantly reduced production of both Th1 and Th2 cytokines
compared with those from Ldlr−/− mice (Figure 7).

CD74 deficiency leads to increased autoantibody-producing B-1 cells
In uninfected mice, plasma IgM – and IgG3, to an extent – are largely considered as
products of B-1/MZ B cells.44 Thus, we hypothesized that the increased IgM and IgG3 in
Ldlr−/−Cd74−/− mice occurred as a result of expanded B-1/MZ B cell populations. To test
this hypothesis, we utilized FACS to analyze cell preparations from the spleens and the
peritoneal cavities, which are rich in B-1 cells.44 Although the spleens of
Ldlr−/−Cd74−/−mice had fewer B cells than did Ldlr−/− mice (Suppl Table 2), they had a
significantly higher percentage of both B-1 cells and MZ B cells than did those from Ldlr−/−

mice, regardless of whether mice were immunized with PBS, MDA-LDL, or HSP65 (Figure
8A/B). These data coincide with the observations of enhanced plasma IgM anti-MDA-LDL
natural antibodies (Figures 2/3). In contrast, Ldlr−/−Cd74−/− mice had fewer follicular B
cells than Ldlr−/− mice, consistent with the impaired T cell activation in
Ldlr−/−Cd74−/−mice after MDA-LDL (Figure 3) or HSP65 (Figure 6) immunization.
Similar to the spleen, peritoneal cavities in Ldlr−/−Cd74−/− mice contained significantly
higher B-1 cells and lower B-2 cells than those in Ldlr−/− mice under all tested
immunization conditions (Figure 8C/D).

DISCUSSION
There is now considerable data that once established, adaptive immune responses
significantly modulate atherogenesis. In particular, APCs play a key role in processing
antigens for delivery by MHC-II molecules to enable CD4+ T cell activation, a central
mediator of both cellular and humoral adaptive immune responses. The invariant chain,
CD74, is essential to intracellular MHC-II trafficking and antigen presentation.21 Therefore,
we predicted that the absence of CD74 would attenuate atherogenesis. We now demonstrate
that diet-induced atherosclerosis was reduced in CD74 deficient Ldlr−/−mice, which reflects
the importance of “endogenous” disease-specific antigen (e.g. MDA-LDL) presentation, and
subsequent T cell activation in the pathogenesis of atherosclerosis. We further show that
such antigen presentation was also rate limiting in response to an “exogenous” disease
related antigen, bacterial HSP65. These data affirm the important role that CD74 plays in
presenting both endogenous and exogenous disease-specific antigens leading to T cell
mediated activation of adaptive immune responses that adversely impact atherosclerosis.
Because immune responses to HSP are activated in cholesterol-fed animals even in the
absence of exogenous immunization with HSP,43 these data strongly emphasize the
importance of adaptive immune responses to endogenous disease-specific antigens in the
pathogenesis of atherosclerosis.

Although the mechanisms by which absence of CD74 and subsequent impairment of CD4+

T cell activation reduced atherosclerosis are likely to be complex, our data point to a number
of contributing mechanisms.
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First, the absence of CD74 clearly restricted MHC-II antigen presentation and T cell
activation. This is evidenced by decreased expression of MHC-II (I-Ab) on APC of splenic
cells, markedly decreased CD4+ cells in the spleen, blunted antigen-specific Th1/Th2
cytokine production in splenic cultures, and greatly blunted or absent IgG responses to
MDA-LDL (an MHC-II restricted antigen).11 Previously, it has been reported that in the
absence of CD74, there were reduced peripheral CD4+ T cell numbers and heightened Th1
immune responses, although the CD4+ T cells from CD74-deficient mice were not
intrinsically impaired, as they proliferated no differently than those from wild-type mice in
responding to immunogens.26,45 In our study, not only was there a marked reduction in the
percentage of CD4+ T cells in the spleens of Ldlr−/−Cd74−/− mice (Suppl Table 2), but
importantly, we also noted significantly reduced CD4+ T cells in the atherosclerotic lesions
of Ldlr−/−Cd74−/− mice, concomitant with reduced expression of CD25, most likely
reflective of decreased CD4+ T cell activation. CD4+ T cells constitute the main T
lymphocytes in human and mouse atherosclerotic lesions,27,28 and previous studies have
demonstrated an overall proatherogenic role for such CD4+ T cells.29–31 NK1.1+ T cells are
also essential to atherogenesis and their activations are CD1d-dependent. Mice lacking
CD1d demonstrate restricted NK1.1+ T cell activation and impaired glycolipid α-
galactosylceramide-induced atherosclerosis.46 We have previously shown that CD74-
deficiency not only affects CD1d-mediated antigen presentation, but also exhibits defective
thymic NK1.1+ T cell positive selection,47 which may explain the absence of NK1.1+ T cells
in atherosclerotic lesion from Ldlr−/−Cd74−/−mice (Figure 1E), although a mechanism by
which CD74 controls NK1.1+ T cell maturation in thymus remains untested. In addition to
impaired antigen presentation and T cell activation, lack of NK1.1+ T cells in
Ldlr−/−Cd74−/− mice may also contribute to reduced atherosclerosis in these mice.

Second, changes in APC content and activities in Ldlr−/−Cd74−/− mice also likely
contributed to attenuated atherosclerosis. Cytofluorimetry of splenocytes from
Ldlr−/−Cd74−/− mice revealed a reduction of peripheral total B220+ B cell numbers
compared with those from Ldlr−/− mice, although the reduction of B cells was not as
profound as that of CD4+ T cells. Splenic cell MHC class II (I-Ab) expression, found on
professional APCs (such as dendritic cells, macrophages and B cells), also fell significantly,
consistent with reduced B cell number (Suppl Table 2) as well as enhanced MHC class II
retention within the intracellular organelles due to CD74 deficiency.23 This would lead to
decreased CD4+ T cell activation, and explain the impaired splenic Th1 and Th2 cytokine
production from both MDA-LDL (Figure 4) and HSP65 (Figure 7) immunization antigen
recall assays. In turn, this would explain the absent generation of plasma IgG1, IgG2b, and
IgG2c titers against MDA-LDL (Figure 3 and Suppl Figures 2/3) and HSP65 (Figure 6) in
the antigen-immunized Ldlr−/−Cd74−/− mice compared to the increases observed in the
Ldlr−/− mice. Presumably, this also explains the greatly blunted IgG responses to MDA-
LDL in the cholesterol-fed Ldlr−/−Cd74−/− mice as well.

Third, it is not clear what role such IgG titers to epitopes of oxLDL might play, as their
impact may be complex as noted in the Introduction. IgG titers to oxidation-specific
epitopes have in general been found to be positively correlated with atherosclerosis in both
murine models and humans, but immunization of mice with oxLDL or models of oxLDL are
also associated with marked increases in Th2 biased IgG1 titers and atheroprotection.
4,14,18,27 Further, some studies have shown that direct infusion of such antibodies is
associated with atheroprotection.48 In contrast, there is considerable data that IgM titers,
which in large part represent innate natural antibodies, are associated with atheroprotective
properties in both murine models and humans as also discussed in the Introduction.
11,13,14,19 IgM, as well as IgG3, are generated by innate-like B-1 cells and splenic MZ B
cells. Because activation of these cells is independent of cognate T cell help, it was not
anticipated that their levels would be decreased by CD74 deficiency. Surprisingly, however,
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we found that IgM, as well as IgG3 titers to MDA-LDL were actually increased in the
Ldlr−/−Cd74−/− mice, likey indicative of enhanced innate-like activity of B-1 cells, which
might also contribute to the reduced atherosclerosis observed in the Ldlr−/−Cd74−/− mice.15

Therefore, the current study is consistent with the notion that increased circulating IgM
protect mice from atherogenesis.14

In non-infected mice, plasma IgM are thought to predominantly represent the products of
innate-like B-1 cells and MZ B cells.49 IgG3 are also products of these cells though it is not
clear how much they contribute to basal titers. In our study, both IgM and IgG3 increased
even as other IgG isotypes decreased to disease related oxidation epitopes. Consistent with
this, CD74 deficiency was associated with increased percentage of peritoneal B-1 cells and
splenic MZ B cells as a percent of B cells (Figure 8). The reasons for the increased innate-
like B-1 cell populations in CD74 deficient mice are unknown. The defect of adaptive
immunity caused by CD74 deficiency appears to have promoted compensatory mechanisms
leading to augmented innate-like B-1 cell compartment. Such compensatory mechanisms
may also explain why Ldlr−/−Cd74−/−mouse spleens had increased percentages of CD8+ T
cells, compared to those in Ldlr−/−mice (Suppl Table 2). Similar phenomena occur in other
mutant mice.50 The mechanisms by which reduced B220+ B cells and CD4+ T cells
apparently led to increased percentages of B-1 cells and CD8+ T cells and the role of CD74
deficiency in the augmented innate immune responses merit further investigation.

Besides reduced atherosclerosis, Ldlr−/−Cd74−/− mice differed from Cd74−/− single
knockout mice in Th1/Th2 cytokine production by lymphocytes. Topilski et al45 reported
that mice lacking CD74 develop preferential Th1 immune response after keyhole limpet
hemocyanin immunization, i.e., CD4+ T cells from Cd74−/− mice released high amounts of
IFN-γ, but not IL4, after antigenic stimulation compared with those from wild-type control
mice. However, Ldlr−/−Cd74−/− mice immunized with MDA-LDL (Figure 4) or HSP65
(Figure 7) developed opposite phenotypes. Following either immunization protocol,
splenocytes and/or lymph node cells from Ldlr−/−Cd74−/− mice responded poorly to MDA-
LDL, native LDL, or HSP65 in IL2 and IFN-γproduction. In contrast, splenocytes from
Ldlr−/−Cd74−/− mice responded to MDA-LDL or LDL by releasing IL4 (Figure 4) and
responded to HSP65 by producing IL4, IL5, and IL10 (Figure 7). One explanation asserts
that HSP65, like human HSP60, induced preferentially B-2 cell activities, which activated
more Th2 cells.51 The same held true in MDA-LDL-immunized Ldlr−/− mice, which
resulted in a very strong Th2 bias and was associated with reduced atherosclerosis.11

Preferential Th2 response and reduced atherosclerosis in Ldlr−/−Cd74−/− mice also concurs
with prior studies that pro-inflammatory Th1 response favors atherosclerotic plaque
formation, whereas the Th2 response and enhanced IgG1 humoral immunity was associated
with reduced atherogenesis.52 Altered Th1/Th2 balance toward Th2, such as in Balb/c
genetic background atherosclerosis-prone mice, also attenuated plaque formation.53

In conclusion, CD74 deficiency decreased adaptive immune responses to endogenous and
exogenous disease-specific antigens, which led to attenuation of atherosclerosis.
Surprisingly, CD74 deficiency also led to enhanced immune responses by innate-like B-1
and MZ B cell populations and consequent natural antibody IgM and likely IgG3
production, which may have contributed to atheroprotection as well. The mechanisms by
which such enhancement of B-1/MZ B cell activation occurs are unclear and will be the
subject of future investigation.

Clinical Perspective

CD4+ T cells are the main T cell subtypes in human atherosclerotic lesions and their
activations require antigen presentation from antigen-presenting cells. Major
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histocompatibility class II (MHC-II) molecules mediate this process in which their
folding, intracellular trafficking, and peptide loading require the chaperones from
invariant chains, called CD74. This current study tested the hypothesis that mice lacking
CD74 have reduced atherosclerosis due to altered T cell activation. Using an atherogenic
diet-induced mouse atherosclerosis model in low-density lipoprotein receptor-deficient
mice (Ldlr−/−), we found that mice lacking CD74 (Ldlr−/− Cd74−/−) had protection from
atherosclerosis. While Ldlr−/− mice had enhanced atherosclerosis after immunization
with pro-atherogenic heat shock protein-65 (HSP65), Ldlr−/− Cd74−/− mice remained
resistant, suggesting an important role of CD74 in adaptive immunity. To our surprises,
Ldlr−/− Cd74−/− mice had higher serum autoantibody levels (IgM and IgG3 against
autoantigen malondialdehyde-modified LDL, MDA-LDL) than those from Ldlr−/− mice,
even without antigen immunization, suggesting enhanced innate-like immunity in mice
lacking the invariant chain. Indeed, absence of CD74 led to increased numbers of
marginal zone B cells in the spleens and B1 cells in the peritoneal cavity, where B1 cells
are enriched. These cells provide the predominant sources of autoantibodies. Given the
findings that pro-atherogenic antigen immunization promotes atherogenesis, increased
autoantibody production after autoantigen vaccination reduces atherogenesis, and
deficiency of CD74 impairs adaptive immunity but enhances innate-like immunity, this
study provides clinical implications that regulation of invariant chain expression or
processing can directly affect the progression of atherogenesis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors thank Mrs. Eugenia Shvartz for technical assistance and Joan Perry for editorial assistance.

SOURCES OF FUNDING

This study is supported by NIH grants HL60942, HL81090, HL88547 (GPS); HL83154 (MLI), HL56985 (PL),
HL086559 (JLW), P01 HL088093 (JLW), and Established Investigator Award 0840118N (GPS) and Scientist
Development Grant 0630228N (KH) from American Heart Association and by the Foundation Leducq (JLW).

References
1. Rose N, Afanasyeva M. Autoimmunity: busting the atherosclerotic plaque. Nat Med 2003;9:641–

642. [PubMed: 12778153]
2. Abou-Raya A, Abou-Raya S. Inflammation: a pivotal link between autoimmune diseases and

atherosclerosis. Autoimmun Rev 2006;5:331–337. [PubMed: 16782558]
3. Libby P. Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am J Med

2008;121:S21–S31. [PubMed: 18926166]
4. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev

Immunol 2006;6:508–519. [PubMed: 16778830]
5. Mallat Z, Gojova A, Brun V, Esposito B, Fournier N, Cottrez F, Tedgui A, Groux H. Induction of a

regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-
knockout mice. Circulation 2003;108:1232–1237. [PubMed: 12912803]

6. Hansson GK, Robertson AK, Söderberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev
Pathol 2006;1:297–329. [PubMed: 18039117]

7. Major AS, Fazio S, Linton MF. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-
null mice. Arterioscler Thromb Vasc Biol 2002;22:1892–1898. [PubMed: 12426221]

8. Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried
by B cells of hypercholesterolemic mice. J Clin Invest 2002;109:745–753. [PubMed: 11901183]

Sun et al. Page 11

Circulation. Author manuscript; available in PMC 2010 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



9. Palinski W, Miller E, Witztum JL. Immunization of low density lipoprotein (LDL) receptor-
deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc
Natl Acad Sci U S A 1995;92:821–825. [PubMed: 7846059]

10. Freigang S, Hörkkö S, Miller E, Witztum JL, Palinski W. Immunization of LDL receptor-deficient
mice with homologous malondialdehyde-modified and native LDL reduces progression of
atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative
neoepitopes. Arterioscler Thromb Vasc Biol 1998;18:1972–1982. [PubMed: 9848892]

11. Binder CJ, Hartvigsen K, Chang MK, Miller M, Broide D, Palinski W, Curtiss LK, Corr M,
Witztum JL. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and
protects from atherosclerosis. J Clin Invest 2004;114:427–37. [PubMed: 15286809]

12. George J, Afek A, Gilburd B, Levkovitz H, Shaish A, Goldberg I, Kopolovic Y, Wick G,
Shoenfeld Y, Harats D. Hyperimmunization of apo-E-deficient mice with homologous
malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis
1998;138:147–152. [PubMed: 9678780]

13. Chou MY, Fogelstrand L, Hartvigsen K, Hansen LF, Woelkers D, Shaw PX, Choi J, Perkmann T,
Bäckhed F, Miller YI, Hörkkö S, Corr M, Witztum JL, Binder CJ. Oxidation-specific epitopes are
dominant targets of innate natural antibodies in mice and humans. J Clin Invest 2009;119:1335–
1349. [PubMed: 19363291]

14. Hartvigsen K, Chou MY, Hansen LF, Shaw PX, Tsimikas S, Binder CJ, Witztum JL. The role of
innate immunity in atherogenesis. J Lipid Res 2009;50 (Suppl):S388–S393. [PubMed: 19106070]

15. Binder CJ, Hörkkö S, Dewan A, Chang MK, Kieu EP, Goodyear CS, Shaw PX, Palinski W,
Witztum JL, Silverman GJ. Pneumococcal vaccination decreases atherosclerotic lesion formation:
molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 2003;9:736–
743. [PubMed: 12740573]

16. Faria-Neto JR, Chyu KY, Li X, Dimayuga PC, Ferreira C, Yano J, Cercek B, Shah PK. Passive
immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated
vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 2006;189:83–90.
[PubMed: 16386745]

17. Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin M is
required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice.
Circulation 2009;120:417–426. [PubMed: 19620499]

18. Tsimikas S, Brilakis ES, Lemnon RJ, Miller ER, Witztum JL, McConnell JP, Kornman KS, Berger
PB. Relationship of IgM and IgG autoantibodies to oxidized low density lipoprotein and
apolipoprotein B100-immune complexes with angiographically determined coronary artery disease
and cardiovascular events. J Lipid Res 2006;48:425–433. [PubMed: 17093289]

19. Karvonen J, Päivänsalo M, Kesäniemi YA, Hörkkö S. Immunoglobulin M type of autoantibodies
to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis.
Circulation 2003;108:2107–2112. [PubMed: 14530200]

20. Pieters J. MHC class II-restricted antigen processing and presentation. Adv Immunol 2000;75:159–
208. [PubMed: 10879284]

21. Shi GP, Villadangos JA, Dranoff G, Small C, Gu L, Haley KJ, Riese R, Ploegh HL, Chapman HA.
Cathepsin S required for normal MHC class II peptide loading and germinal center development.
Immunity 1999;10:197–206. [PubMed: 10072072]

22. Bikoff EK, Germain RN, Robertson EJ. Allelic differences affecting invariant chain dependency of
MHC class II subunit assembly. Immunity 1995;2:301–310. [PubMed: 7697546]

23. Bikoff EK, Huang LY, Episkopou V, van Meerwijk J, Germain RN, Robertson EJ. Defective
major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T
cell selection in mice lacking invariant chain expression. J Exp Med 1993;177:1699–1712.
[PubMed: 8098731]

24. Kenty G, Bikoff EK. BALB/c invariant chain mutant mice display relatively efficient maturation
of CD4+ T cells in the periphery and secondary proliferative responses elicited upon peptide
challenge. J Immunol 1999;163:232–242. [PubMed: 10384121]

25. Viville S, Neefjes J, Lotteau V, Dierich A, Lemeur M, Ploegh H, Benoist C, Mathis D. Mice
lacking the MHC class II-associated invariant chain. Cell 1993;72:635–648. [PubMed: 7679955]

Sun et al. Page 12

Circulation. Author manuscript; available in PMC 2010 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



26. Maehr R, Kraus M, Ploegh HL. Mice deficient in invariant-chain and MHC class II exhibit a
normal mature B2 cell compartment. Eur J Immunol 2004;34:2230–2236. [PubMed: 15259020]

27. Frostegård J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK.
Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory
(Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999;145:33–43. [PubMed:
10428293]

28. Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis. CD4+
T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol 1996;149:359–366.
[PubMed: 8701976]

29. Reardon CA, Blachowicz L, White T, Cabana V, Wang Y, Lukens J, Bluestone J, Getz GS. Effect
of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice.
Arterioscler Thromb Vasc Biol 2001;21:1011–1016. [PubMed: 11397712]

30. Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravates
atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000;102:2919–
2922. [PubMed: 11113040]

31. Zhou X, Robertson AK, Hjerpe C, Hansson GK. Adoptive transfer of CD4+ T cells reactive to
modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol
2006;26:864–870. [PubMed: 16456097]

32. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human
atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A
1995;92:3893–3897. [PubMed: 7732003]

33. Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M, Kodama T, Tsimikas S, Witztum
JL, Lu ML, Sakara Y, Chin MT, Libby P, Shi GP. Deficiency of cathepsin S reduces
atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003;111:897–906. [PubMed:
12639996]

34. Palinski W, Yla-Herttuala S, Rosenfeld ME, Butler SW, Socher SA, Parthasarathy S, Curtiss LK,
Witztum JL. Antisera and monoclonal antibodies specific for epitopes generated during oxidative
modification of low density lipoprotein. Arteriosclerosis 1990;10:325–335. [PubMed: 1693068]

35. George J, Afek A, Gilburd B, Shoenfeld Y, Harats D. Cellular and humoral immune responses to
heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor
deficient mice. J Am Coll Cardiol 2001;38:900–905. [PubMed: 11527651]

36. Bui MN, Sack MN, Moutsatsos G, Lu DY, Katz P, McCown R, Breall JA, Rackley CE.
Autoantibody titers to oxidized low-density lipoprotein in patients with coronary atherosclerosis.
Am Heart J 1996;131:663–667. [PubMed: 8721636]

37. Xu Q, Willeit J, Marosi M, Kleindienst R, Oberhollenzer F, Kiechl S, Stulnig T, Luef G, Wick G.
Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet
1993;341:255–259. [PubMed: 8093914]

38. Zhu J, Katz RJ, Quyyumi AA, Canos DA, Rott D, Csako G, Zalles-Ganley A, Ogunmakinwa J,
Wasserman AG, Epstein SE. Association of serum antibodies to heat-shock protein 65 with
coronary calcification levels: suggestion of pathogen-triggered autoimmunity in early
atherosclerosis. Circulation 2004;109:36–41. [PubMed: 14662717]

39. Benagiano M, D’Elios MM, Amedei A, Azzurri A, van der Zee R, Ciervo A, Rombolà G,
Romagnani S, Cassone A, Del Prete G. Human 60-kDa heat shock protein is a target autoantigen
of T cells derived from atherosclerotic plaques. J Immunol 2005;174:6509–6517. [PubMed:
15879154]

40. George J, Shoenfeld Y, Afek A, Gilburd B, Keren P, Shaish A, Kopolovic J, Wick G, Harats D.
Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65.
Arterioscler Thromb Vasc Biol 1999;19:505–510. [PubMed: 10073950]

41. Afek A, George J, Gilburd B, Rauova L, Goldberg I, Kopolovic J, Harats D, Shoenfeld Y.
Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock
protein 65 (HSP-65) promotes early atherosclerosis. J Autoimmun 2000;14:115–121. [PubMed:
10677242]

42. Xu Q, Kleindienst R, Waitz W, Dietrich H, Wick G. Increased expression of heat shock protein 65
coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits

Sun et al. Page 13

Circulation. Author manuscript; available in PMC 2010 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



specifically responding to heat shock protein 65. J Clin Invest 1993;91:2693–2702. [PubMed:
8514876]

43. Ghayour-Mobarhan M, Lamb DJ, Tavallaie S, Ferns GA. Relationship between plasma cholesterol,
von Willebrand factor concentrations, extent of atherosclerosis and antibody titres to heat shock
proteins-60, -65 and -70 in cholesterol-fed rabbits. Int J Exp Pathol 2007;88:249–255. [PubMed:
17696906]

44. Herzenberg LA, Kantor AB. B-cell lineages exist in the mouse. Immunol Today 1993;14:79–83.
[PubMed: 8447936]

45. Topilski I, Harmelin A, Flavell RA, Levo Y, Shachar I. Preferential Th1 immune response in
invariant chain-deficient mice. J Immunol 2002;168:1610–1617. [PubMed: 11823488]

46. Tupin E, Nicoletti A, Elhage R, Rudling M, Ljunggren HG, Hansson GK, Berne GP. CD1d-
dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 2004;199:417–422.
[PubMed: 14744994]

47. Riese RJ, Shi GP, Villadangos J, Stetson D, Driessen C, Lennon-Dumenil AM, Chu CL, Naumov
Y, Behar SM, Ploegh H, Locksley R, Chapman HA. Regulation of CD1 function and NK1.1(+) T
cell selection and maturation by cathepsin S. Immunity 2001;15:909–919. [PubMed: 11754813]

48. Schiopu A, Frendéus B, Jansson B, Söderberg I, Ljungcrantz I, Araya Z, Shah PK, Carlsson R,
Nilsson J, Fredrikson GN. Recombinant antibodies to an oxidized low-density lipoprotein epitope
induce rapid regression of atherosclerosis in apobec-1(−/−)/low-density lipoprotein receptor(−/−)
mice. J Am Coll Cardiol 2007;50:2313–2318. [PubMed: 18068040]

49. Allman D, Pillai S. Peripheral B cell subsets. Curr Opin Immunol 2008;20:149–157. [PubMed:
18434123]

50. Nakagawa T, Roth W, Wong P, Nelson A, Farr A, Deussing J, Villadangos JA, Ploegh H, Peters C,
Rudensky AY. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus.
Science 1998;280:450–453. [PubMed: 9545226]

51. Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, Mor F, Carmi P, Zanin-Zhorov A, Lider O,
Cohen IR. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol
2005;175:3594–3602. [PubMed: 16148103]

52. Hansson GK, Libby P, Schönbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis
of atherosclerosis. Circ Res 2002;91:281–291. [PubMed: 12193460]

53. Schulte S, Sukhova GK, Libby P. Genetically programmed biases in Th1 and Th2 immune
responses modulate atherogenesis. Am J Pathol 2008;172:1500–1508. [PubMed: 18467709]

Sun et al. Page 14

Circulation. Author manuscript; available in PMC 2010 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Atherosclerotic lesion characterizations in Ldlr−/− and Ldlr−/−Cd74−/− mice that consumed
an atherogenic diet for 12 and 26 weeks, including aortic arch lesion grade (A), intima area
(B), thoracic-abdominal aorta lipid deposition with representative aortas shown to the right
panels (C), lesion Mac-3+ macrophage-positive area (D), NK-1.1+ T cell number (E), CD4+

T cell number (F), CD1d-positive area (G), CD8+ cell number (H), CD11c+ dendritic cell
number (I), and CD25+ activated T cell number (J). Mann-Whitney U test. P<0.05 was
considered statistical significant. The number of mice in each group is indicated in
parentheses.
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Figure 2.
Anti-MDA-LDL antibody titers (mean ± SE) in Ldlr−/−Cd74−/− and Ldlr−/− mice that
consumed an atherogenic diet for 12 and 26 weeks. The number of mice in each group is
indicated in parentheses. No statistical test was performed.
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Figure 3.
Plasma IgG1 (A) and IgM (B) titers that bound to MDA-LDL in Ldlr−/−Cd74−/−and Ldlr−/−

mice pre- and post-immunization with MDA-LDL, IFA, or PBS. Each data point is mean ±
SE of six mice. No statistical test was performed.
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Figure 4.
Culture medium cytokine levels after stimulation with MDA-LDL or native LDL in
splenocytes from MDA-LDL-immunized Ldlr−/−Cd74−/− and Ldlr−/− mice. Each data point
is mean ± SE of six mice. No statistical test was performed.
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Figure 5.
Aortic arch lesion grade (A), intima area (B), lesion CD4+ T cell number (C), and CD25+

activated T cell number (D) in Ldlr−/− and Ldlr−/−Cd74−/− mice immunized with PBS or
HSP65 while consuming an atherogenic diet for 12 weeks. The number of mice in each
group is indicated in parentheses. Mann-Whitney U test followed with Bonferroni post-hoc
correction. P < 0.016 was considered statistical significant.
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Figure 6.
Antibody levels to HSP65 in Ldlr−/−Cd74−/− (n=6) and Ldlr−/− (n=11) mice pre-(8 weeks
old) and post-HSP65 immunization (mean ± SE). All mice consumed an atherogenic diet for
12 weeks after initial immunization and before harvesting. No statistical test was performed.
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Figure 7.
HSP65 antigen recall assays of splenocytes and lymph node cells from HSP65-immunized
Ldlr−/−Cd74−/− (n=6) and Ldlr−/− (n=10) mice. Data are presented as mean ± SE. Unpaired
student’s t test followed with Bonferroni post-hoc correction. P < 0.0125 was considered
statistical significant.

Sun et al. Page 21

Circulation. Author manuscript; available in PMC 2010 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Flow cytometry analysis for CD19+ splenocytes and peritoneal cavity cells from Ldlr−/− and
Ldlr−/−Cd74−/− mice immunized with PBS, MDA-LDL, or HSP65. A. Percentages of
IgM+CD19+ CD43+ B-1 cells, CD19+CD21+CD23− marginal zone-B cells (MZ-B), and
CD19+CD21−CD23+ follicular-B cells (FO-B) in spleen. B. Representative flow cytometry
analysis of splenocytes from MDA-LDL-immunized Ldlr−/− and Ldlr−/−Cd74−/− mice. C.
Percentage of CD19+ cells in peritoneal cavity: CD11b+ B-1 and CD11b− B-2 cells. The
number of mice in each group is indicated inside the bar, and data are mean±SE. Student t
test, P<0.05 was considered statistical significant. D. Representative flow cytometry scans
of peritoneal cavity cells from PBS-immunized Ldlr−/− and Ldlr−/−Cd74−/− mice. Total B-1
cells (CD5+ (B-1a) and CD5− (B-1b)) are counted.
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