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Abstract— Modeling and simulation permeate all areas of
business, science and engineering. With the increase in the scale
and complexity of simulations, large amounts of computational
resources are required, and collaborative model development is
needed, as multiple parties could be involved in the development
process. The Grid provides a platform for coordinated resource
sharing and application development and execution. In this paper,
we survey existing technologies in modeling and simulation, and
we focus on interoperability and composability of simulation
components for both simulation development and execution.
We also present our recent work on an HLA-based simulation
framework on the Grid, and discuss the issues to achieve
composability.

Index Terms— Modeling and simulation, Grid computing,
interoperability, composability.

I. I NTRODUCTION

M ODELING and simulation provide a low cost and safe
alternative to real-world training, experiments, analy-

sis of natural phenomena, etc. The High Level Architecture
(HLA), approved by US Department of Defense (DoD) in
1995, provides an architecture for interoperability and reuse
in distributed simulation [16], and it was adopted as an open
standard through the IEEE Standard 1516 in September 2000.

A simulation, or afederationin HLA’s terminology, consists
of a set of logically related simulators, calledfederates.
Federates communicate with each other through theRun-Time
Infrastructure(RTI). HLA defines the rules and specifications
to support reusability and interoperability amongst the simu-
lation federates. The RTI software supports and synchronizes
the interactions amongst different federates that conform to
the standard HLA specification [16].

With the increase in the complexity of simulations, large
amounts of computational resources are needed, and col-
laborative model development is needed, as multiple parties
could be involved in the development process. Interoperability
and composability of simulators have become two of the
most important factors in simulation model development and
execution [17], [34].

• Interoperability refers to the capability that components,
i.e. models in our case, can communicate with each other
meaningfully. This requires standard ways to develop
models not only at the syntax level, but also how semantic
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information can be shared among models. The underlying
infrastructure should also support such communications.
Moreover, other practical issues are involved as well, such
as human factors, security, etc.

• Composabilitydeals with the selection and assembly of
shared models in various combinations into a complete
and validated environment to satisfy user requirements
meaningfully. Model developers should be able to reuse
existing shared models as sub-models to form composite
models collaboratively using the infrastructure. When
models are being executed, individual sub-models’ con-
straints such as quality of service (QoS) have to be satis-
fied to make the composite models work properly. When
certain sub-models’ constraints cannot be met during
execution, they should be replaced by other sub-models
dynamically. To achieve composability, interoperability is
a must.

The concept of “Grid” computing was proposed by Ian
Foster as secure and coordinated resource sharing and prob-
lem solving in dynamic, multi-institutional virtual organiza-
tions [20]. Much effort has been made in the area of Grid
computing since 2001. A number of national and international
Grid infrastructures have been set up, such as [6], [13].
Many systems and middleware for Grid computing have been
proposed in the past few years, and Globus [21] is becoming
the de facto standard middleware for Grid computing. The
third version of the Globus Toolkit [23] is based on the concept
of Grid Services, which is defined by the Open Grid Services
Architecture (OGSA) [22], and is specified by the Open Grid
Services Infrastructure (OGSI) [36]. The Grid provides a
platform for scalable and coordinated resource sharing and
collaborative application development and execution.

In this paper, we first review the fundamentals of HLA-
based distributed simulation in Section II. Then, we survey
existing technologies in modeling and simulation, and focus on
interoperability and composability of simulation components
for both development and execution in Section III and IV
respectively. In Section V, we present a general architecture
and our recent work on an HLA-based simulation framework
on the Grid, called HLAGrid, to support model execution. The
design and preliminary experimental results of the HLAGrid
are described in Section VI. In Section VII, we draw brief
conclusions and discuss future work.

II. HLA- BASED DISTRIBUTED SIMULATION

In HLA-based distributed simulations, the Run-Time Infras-
tructure (RTI) provides common services during the execution
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of a HLA simulation by implementing the HLA interface
specification [16]. The RTI consists of the RTI Executive
process (RtiExec), Federation Executive process (FedExec)
and the libRTI library, as illustrated in Figure 1.

The RtiExec manages multiple federation executions with
different names within a network. The FedExec manages
multiple federates within a federation execution, and there
is one FedExec instance per federation. LibRTI is a library
that provides HLA services to federates. More specifically,
all requests made by a federate on the RTI take the form
of a method call to the objectRTIambassadorwithin libRTI,
and the federate code should implement the abstract class
FederateAmbassadorto provide callbacks functions. Figure 2
shows how federate codes communicate with the libRTI.

HLA uses the object oriented model, in which each federate
has objects, which are instances of classes with attributes, and
are specified in the Simulation Object Model (SOM). Data
can be communicated between federates via the change in
attributes of objects that federates own. The federate who
offers the attributes to otherspublishesthe attributes and the
federates that need the attributessubscribeto the attributes.
Another way for inter-federate communication is in the form
of interaction, which is a transient communication and is not
stored.

III. I NTEROPERABILITY

Interoperability of systems is a complex issue which in-
volves two main aspects: conceptual and practical. From the
conceptual point of view, interoperability must bemeaningful:
the system should support component-based development.
From the practical point of view, interoperability must be

manageable: the system should enable components to be used
in a secure, flexible and coordinated manner.

We extend the five-level model for conceptual interoperabil-
ity described in [35], and propose a two-dimensional model,
shown in Figure 3.

The vertical axis consists of five layers of conceptual
interoperability [35]:

• Level0 - System Specific data: data is used in a propri-
etary manner.

• Level1 - Documented data: data is documented in a tem-
plate or protocol, such as HLA’s Object Model Template.

• Level 2 - Aligned Static data: data is documented using
a static reference model based on a common ontology.

• Level3 - Aligned Dynamic data: data is used within the
component as defined by standard methods such as UML.

• Level 4 - Harmonized data: besides the implementation
and documentation, additional information are required
to achieve interoperability.

Though simulation components can be conceptually inter-
operable, they may not work with each other in reality, because
of security policy, human factors and so on. We introduce three
levels on the horizontal axis:

• Level0 - Cluster: components are within a single cluster,
and they are managed by a single administrator.

• Level1 - Organization: components could be physically
located across the internet, and they are managed under
different cluster-administrators, but they typically belong
to the same organization with an overall administrator
who coordinates all the cluster-administrators in the or-
ganization.

• Level 2 - Grid: components are managed by different
administration domains, and they belong to different
virtual organizations (VOs) [20].

There has been some progress along the vertical axis to
build more conceptually interoperable systems for distributed
simulations, such as the HLA, which belong to Level 1 “Doc-
umented data”, and several other proposed projects [3], which
belongs to level 2 for conceptual interoperability. However,
the effect of practical interoperability along the horizontal line
has been largely neglected, with not enough attention paid
to it in the design of earlier systems, such as the HLA. It
can be demonstrated from many industrial applications that
the HLA is very successful at the level of “Organization”,
yet very little success has been shown about how HLA
could support the level of “Grid”. Besides various technical
obstacles, there are several important practical factors which
restrict the interoperability of existing HLA applications:

• Firewall: HLA requires specific ports to be open for fed-
erates to communicate with the RTI and other federates,
which may be very difficult or even impossible at the
Grid level.

• Multicasting: in HLA simulation applications where a
significant amount of multicast streaming is involved,
the current internet infrastructure may not be sufficient,
because Internet Service Providers (ISPs) may not enable
multicast at the IP level, which is out of the range of
simulation policy. There is some ongoing research [29]
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Fig. 3. Two-dimensional model for Interoperability.

to address this issue.
• Distributed Denial of Service: similar to the multicasting

issue, ISPs have low incentive to adopt any anti-DDoS
measures to protect federates and RTIs.

• Trust: no trust model exists for HLA to allow different
virtual organizations to collaborate on simulations. The
impact of lacking trust between the organizations would
simply prevent collaborations from happening.

• Accounting: compared with the organization case, the
Grid requires more coordination among domains for
accounting.

Issues along the horizontal axis cannot be resolved solely
by advances in technology, because they fundamentally require
common understanding and management policy to be estab-
lished to allow any technically-sound interoperable compo-
nents to be practical. Likewise, the next phase of the Semantic
Web [12] holds the promise that applications can more readily
interact without human involvement, but there is still a gap for
a technically-viable semantic web to be deployed in practice,
which involves human coordination and management issues.

IV. COMPOSABILITY

Composability is the capability to select and assemble
shared components in various combinations into a complete
and validated environment to satisfy specific user requirements
meaningfully. A component includes not only the software,
but also a precise specification of the functionality it provides
with all dependencies (hardware, software, version and other
components). Composability is desirable, because it makes
creation of a composite system easier by reusing existing
models, it helps in understanding complex systems, and it
simplifies the testing and maintenance of systems as well [17].
But, composability is difficult to achieve, because it requires
efforts in both the modeling itself and the development of the
infrastructure where models are being composed and used.

• Modeling: The system to be modeled could be very
complex. Depending on the objective of the modeling
(e.g. analysis, daily-routine simulation), the process of
modeling with composability could be very time con-
suming, especially for modeling of large scale systems.

• Infrastructure: Many factors of the infrastructure are
involved: network, fault tolerance, human factors, etc.

Recently, the Model-Driven Architecture (MDA) [32] has
been proposed to promote the concept of a common sta-
ble meta-model, which is language-, platform-, and vendor-
neutral. The main idea is that even if the underlying in-
frastructure shifts over time, the meta-model remains stable,
and the only changes are the tools to bridge the meta-model
and infrastructure. The core of the MDA includes SOAP,
UML, XML with related XML Metadata Interchange (XMI)
specification, and so on.

Tolk [34] proposed a framework to merge the existing
simulation standard, the HLA, into the MDA, and the potential
of composing simulation models is huge. A thorough study
of composability of modeling and simulation in the context
of defense systems is presented in [17], and many research
issues have been pointed out.

In the web service community, the issue of composition has
received a lot of attention as well. Grønmo, et al. [25] propose
a model-driven web service development process, where web
service descriptions are imported into UML models; integrated
into composite web services; and the new web service descrip-
tions are exported. Liang, et al. [27] propose a semi-automatic
approach to composite web service discovery, description and
invocation. Their main approach makes use of a registry
with constraint matching capabilities to support composite
service discovery and description. A user interface is provided
for interactive composing of a service request, and a search
algorithm is used to construct a composite service template. A
composite service processor is designed to execute composite
services by invoking the component service operations of
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various service providers. In [14], [26], a composite service is
modeled as a structure of “sub-services” using a service flow
language such as the Web Service Flow Language and the
Business Process Execution Language, but these compositions
are manual. Some ongoing research efforts use rule systems
to deduce a composite service from register services [33]
dynamically. There are also ongoing efforts [15], [28] from
the AI community, and they interpret service composition as
a planning or reasoning task with its execution.

V. GRID-WIDE FRAMEWORK FORMODELING AND

SIMULATION

A. Overview

The Grid-wide framework for modeling and simulation
should support the whole life cycle of any simulation model,
which involves model development, deployment, sharing, exe-
cution, analysis and validation. Figure 4 shows the relationship
between the four main steps in the life cycle of simulation
models.

Thebuilding, andanalysis & validationsteps are simulation
specific, while thedeployment & sharingand executionis
dependent on the underlying infrastructure.

B. Current Work

Our recent work focuses on the interoperability issue and
present a distributed simulation framework to extend the prac-
tical interoperability of the existing HLA from “organization”
to “Grid”. The framework addresses several important issues
involved in the extension of the HLA, such as heterogeneity,
federation discovery, security, and performance. The frame-
work achieves interoperability between different simulators
(federates) by using a Federate-Proxy-RTI architecture, in
which a remote proxy acts on behalf of the federate in
interacting with the RTI. It hides the heterogeneity of the simu-
lators, simulators’ execution platforms, and how the simulators
communicate with the RTI. Moreover, different RTI services
can be exposed as Grid services, which provides more secure,
scalable and coordinated management. RTI services’ internal
data are exposed as Grid service data elements, which allows
both pull andpushkind of access by other Grid services. All
interfaces used in the framework comply with the standard
HLA interface specification, which provides reusability to
simulators. A prototype of the framework is implemented
using DMSO’s RTI 1.3NG version 6 and the Globus Toolkit
Version 3. The DMSO HLA’s benchmark programs have been
converted from C++ to Java, and are used in the testing of the
prototype.

C. Extending HLA’s Practical Interoperability

The interoperability model proposed has set the context of
how modeling and simulation should be carried out in an
interoperable way. This paper focuses on upgrading HLA’s
practical interoperability from “organization” to “Grid”. Issues
that need to be addressed include:

• Heterogeneity: Heterogeneity of simulators, simulators’
execution platforms, how simulators communicate with
the RTI should be considered.

• Federation Discovery: An indexing service for locating
the RTI and federation needs to be provided on the Grid.
The existing HLA does not support dynamic discovery
of the federation.

• Security: The simulation model should run at the client
side, whereas other services should provide simulation
management such as federation management, time man-
agement, etc.

• Performance: Communication over the Grid could incur
overhead due to latency of the network, so performance
should also be considered to justify the tradeoff of the
Grid-enabled HLA.

D. Related Work

In recent literature on the HLA, some researchers [24],
[37] focus on building tools to ease the process of modeling
and simulation using HLA, and some [38] concentrate on
adding auxiliary systems to make HLA more useful in a
wide-area-network (WAN), while others [8], [19], [34], [35]
have a more ambitious objective to reinvent HLA to be
model-driven and composable, or replace HLA with a new
framework, etc. The proposed model for interoperability shows
how much improvement in interoperability a particular work
has achieved, and how a particular work relates to others’
work. The model for interoperability proposed gives an overall
picture of the work that has been done and projects possible
avenues for future work.

Some researchers focus on the extension of conceptual
interoperability, such as [34], [35], in which Tolk, et al.
propose a framework to integrate HLA into the Model-Driven
Architecture (MDA) [32] defined by the Object Management
Group (OMG) to improve interoperability.

Research into improving the practical interoperability in-
cludes [19], [30], [37], [38] . Wytzisk, et al. [37] propose
a solution that brings HLA and the Open GIS Consortium
(OGC) [10] standard together. It provides external initializa-
tion of federations, controlled start up and termination of
federates, interactions with running federates, and access of
simulation results by external processes. Zajac, et al. [38]
propose a system to enable HLA-based simulations on the
Grid, but they focus on migrating federates. The system
also includes discovery, information indexing services, etc.
However, the communication between RTI and federates is
based on the original HLA communication, which requires
predefined ports to be open. Fitzgibbons, et al. [19] present a
distributed simulation framework, called IDSim, based upon
OGSI [36]. It makes use of Globus’s Grid service data
elements as simulation states to allow both pull and push
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modes of access. It also aims to ease the integration and
deployment of tasks through inheritance. Moreover, the dis-
tributed simulation communities initiated a plan, called the
Extensible Modeling and Simulation Framework (XMSF) [8],
which defines a set of Web-based technologies, applied within
an extensible framework, that enables a new generation of
modeling and simulation applications to emerge, develop and
interoperate. Morse, et al. [30] propose an architecture using
Web Services for web based federates communicating with
the RTI. Their approach is based on formatting the RTI calls
via Simple Object Access Protocol (SOAP) [2] and employing
the Blocks Extensible Exchange Protocol (BEEP) [1] commu-
nication layer to enable bi-directional calls and callbacks via
web services. None of these addresses all the issues discussed
in Section V-C for upgrading HLA from “organization” to
“Grid”.

Granowetter [24] identifies the interoperability issue of
different RTI implementations, and compares three possible
approaches for resolving the issues, but these are still within
in the HLA box as shown in Figure 3.

As a separate note, many papers discuss Web-based sim-
ulation, yet none has identified the importance of making
interoperability practical. In fact, whether Web-based simu-
lation is a revolution or evolution is discussed in [31], but the
practical aspect of how interoperability is effected in Web-
based simulation is not discussed either. We believe practical
interoperability forms the basis of all cross-domain systems
including simulation systems, and the related issues discussed
in Section V-C are very critical for the success of distributed
simulation on the Grid.

VI. HLAG RID

A. Design Overview

Ever since the invention of the World-Wide-Web, people
around the world have experienced a new way of sharing
information, but how software components on the Internet
should interoperate to carry out applications is still not known.
To tackle this challenge, there have been many technologies
proposed, such as CORBA [5], RMI [9], DCOM [7], etc.
The emerging Grid computing shares the vision of having the
general public, administrator, decision maker, and organiza-
tions agree on open standards to form Virtual Organizations.
Organizations, countries or even unions of countries (e.g.
European Union) are deciding policies to deploy their Grid
systems to interoperate with each other.

To extend HLA’s principle of interoperability and reusability
to the Grid, we leverage on the Grid infrastructure to extend
HLA’s practical interoperability to a new level. Our proposed
layered architecture is shown in Figure 5. The ideal framework
for distributed simulation sits on top of our HLAGrid and
various other Grid projects, such as Access Grid [4], Semantic
Grid [11], Data Grid [18], etc. A complete design will involve
several aspects of practical interoperability in general, such
as psychological, economic, legal, and philosophical aspects,
which are out of the scope of this paper. We focus on the in-
formation technology aspect, which aims to enable distributed
simulation execution using HLA on the Grid, and our goals
include:

Fig. 5. Proposed layered architecture for distributed simulation on
Grid.

• to provide a standard HLA API, for reasons of interop-
erability and reusability.

• to overcome the limitation of firewalls in traditional
HLA/RTI implementations.

• to support migration of federates, or even the entire
framework.

• to facilitate simulation model composition through Grid
service composition.

The HLAGrid framework includes a Federate-Proxy-RTI
architecture, in which different participants (clients) in the
same simulation run their federate codes at their local sites,
and the RtiExec and FedExec are executed on the remote
resource. A new entity,proxy, is introduced to act on behalf
of the clients’ federate code to communicate with proxies of
other clients through the RTI. Proxies are executed at remote
grid resources. Federate codes and their respective proxies
communicate with each other through Grid services, and a
Grid-enabled HLA API, which provides the standard HLA API
to the federate codes, is implemented to translate the commu-
nications into Grid services invocations. Our framework also
includes additional Grid services to support the creation of the
RTI, discovery of federations, etc.

In this framework, clients can run their simulator anywhere
on any type of machine architecture. This framework hides the
communication over the Grid network, and provides user trans-
parency and simulator reusability. It also facilitates migration
of federates without affecting other parts of the simulation,
and the Proxy-RTI backbone can also be migrated, as it does
not involve any simulation logic. Different RTI services can
be exposed as separate Grid services, which provide stan-
dard state management schemes that are required for service
composition. This framework incurs additional communication
cost and overhead in embedding HLA communication into
Grid service invocations, which will be quantified in the
experiments of our implementation.

B. Detailed Design

The framework consists of two major components: client
and resource (proxy-RTI backbone) together with supporting
Grid services, which are interconnected through the Grid
network, as shown in Figure 6.

1) Client Side:The client side provides the standard HLA
API to the federate code, while allowing communication
through the Grid. We make use of the Globus Grid middleware
as the lower level communication channel, and provide a Grid-
enabled API to translate federate-RTI communication into
Grid service invocations, as illustrated in Figure 6.
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Fig. 6. Architecture of Proxy-based HLA simulation on the Grid.

To translate federate-RTI communication, all the method
calls in theRTIambassadorclass and the callback functions
provided in theFederateAmbassadorneed to be exposed to
Globus. TheRTIambassadormethod calls across the Grid are
achieved using remote Grid service invocations by embedding
the parameters inside invocations. When there is aFeder-
ateAmbassadorcallback from the RTI, the proxy will deliver
the callback through Grid service invocation to the client.
Figure 7 provides the conceptual view of the interactions
between client side and the proxy.

Note that, the proxy decouples the client and RTI, and the
simulation logic is maintained securely at the client side. The
Proxy-RTI only provides mechanisms for simulation manage-
ment, such as federation management, time management, etc.
This architecture facilitates migration of the federate without
affecting other parts of the simulation, because during the
migration of the federate, the proxy could still respond to
the RTI. There is no need for other federates to suspend
their executions, which is required in [38]. Moreover, the
proposed framework also supports migration of the Proxy-
RTI backbone, because in the proposed framework, the Proxy-
RTI backbone does not involve any simulation logic, but more
things need to be done to support such features.

2) Resource Side:At the resource side, theproxy acts on
behalf of the client and communicates with the RTI through the
Local Area Network (LAN), as shown in Figure 8. The proxy
is responsible for translatingRTIambassadorGrid service
invocations into normal federate initiated RTI services, as well
as embeddingFederateAmbassadorcallbacks into Grid service
invocation to the client’sFebAmbGrid service.

3) Other Grid Services:Besides the Grid services to enable
the communication between the client’s federate code and the
remote RTI, other Grid services are required for creating the
RTI, discovering the federation, etc.

• RTI services: a persistent RTI service factory is needed
to create instances of RTI services.

• Indexing services: a persistent indexing service is needed

for maintaining the mapping between federations and
handles of corresponding RTI services instances.

For how these services are created, managed and coordinated
to provide various services for distributed simulation on Grid,
please refer to [39] for more details.

C. HLA Simulation on the Grid Walk-through

We describe the detailed steps involved in a HLA simulation
on the Grid.

• Startup stage: steps 1 to 5
1) Create RTI: the federate code will invoke the per-

sistent RTI service factory to create a RTI service
instance, and use the instance to start the RTI at the
resource side. The newly created RTI instance and
the federation name need to be registered with the
index service, so that other federates in the same
federation will be able to look up the correct RTI
instance. Note that, there is a concurrency issue
involved in creating the RTI and registering the RTI
with the indexing service. It can be resolved using
a reservation table and a reference table, and the
details are in [39].

2) Create federate ambassador and RTI ambassador:
the RTIambassadorand FederateAmbassadorwill
be created at the resource side, so that they will
communicate with the RTI locally.

3) Create and join federation execution: twoRTI-
ambassadormethod calls will be made at the client
side and translated into Grid service invocations to
the resource side.

4) Initialize, publish and subscribe: all simulation set-
tings will be initialized by invoking theRTIambas-
sador at the resource side.

5) Enable time constrained and time regulating if re-
quired as in step 4.

• Main loop: step 6
6) This is the main body of the federate code, which

includesRTIambassadormethod calls andFeder-
ateAmbassadorcallbacks.

• Shutdown: steps 7 to 9
7) Resign from federation: this involves a method call

to the remoteRTIambassador.
8) Destroy federation execution: besides the Grid ser-

vice invocation to destroy the federation, the feder-
ation should be deregistered in the index service.

9) Destroy RTI: this will be done according to the
administrative rules at the resource side.

D. Preliminary Experiments and Results

In order to investigate the overhead incurred in the pro-
posed framework, we converted the benchmark programs from
DMSO’s HLA package into Java programs, and tested them
under different network configurations. We focused on two
main benchmarks, i.e. Latency and Time Advancement.

The latency benchmark program measures RTI performance
in terms of the latency of federate communications. More
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specifically, the benchmark program measures the elapsed time
it takes for federates to send and receive an attribute update.
The benchmark uses two federates, and it works as follows:
one federate sends an attribute update, and upon receiving
this update, the other federate sends it back to the sending
federate. The elapsed time of this communication is calculated
by using the timestamps taken at the sending and reflecting
federates. All parameters used are the default value given in the
DMSO package. There is no queuing of messages involved,
and the communication payload is assumed to be negligible.
The communication protocol used is reliable.

The time advancement benchmark program measures RTI
performance in terms of the rate at which time advance
requests are processed. The benchmark uses two federates with
timestep cycle of 10, all other parameters are the default values
from the DMSO package.

The testing is done using the Linux cluster in the Parallel
and Distributed Computing Center in the School of Computer
Engineering of Nanyang Technological University in Singa-
pore and a Linux workstation in the School of Computer
Science in Birmingham University in the United Kingdom.

There are five components in the experiment:RTI, two
federatesFederate1 and Federate2, two more correspond-
ing proxiesProxy1 and Proxy2 required by the HLAGrid
software. The processesRtiExec andFedExec are executed
in Singapore on machinesMrti. The processesFederate1,
Proxy1, andProxy2 are executed in Singapore on machines
Mfed1, Mproxy1, and Mproxy2 respectively. The process
Federate2 is executed onMfed2-SG in NTU, and onMfed2-
UK in Birmingham as a comparison. All machines in NTU are
inter-connected using Myrinet with connection speed of 1Gbit

per second. There is a connection between machineMproxy2

in NTU to machine Mfed2-UK in Birmingham through
the Grid network. The experiment hardware configuration is
shown in Figure 9. Individual machines’ specifications are
shown in Table I. Figure 10 shows the configuration of the
latency benchmark and the major communication involved.
As a comparison study, the same benchmark programs are
executed in the cluster and Wide-Area-Network (WAN) using
both the DMSO HLA’s implementation and our HLAGrid
prototype.

The experimental results are shown in Table II. The cluster
version of the latency benchmark shows that our prototype
incurs about 40 millisecond of overhead, and this is mainly
due to the use of Globus, and encoding/decoding of param-
eters/result. The latency of the WAN version is much larger
than the cluster version, and the latency in the HLAGrid is
about 3-4 times that of the HLA. We use the Unix command
TCPDUMP to monitor the traffic (SOAP messages) involved
in Grid service requests/responses. We observe that the size
of the SOAP message is around 1-2 KByte per Grid service
request/response, which is much larger than the attribute size
used in the benchmark (128 byte), and the overhead involved
are the namespace information and XML tags. Considering
the additional marshaling and unmarshaling of the SOAP
messages required in a Grid service invocation, the Grid
service communication overhead is much larger than the pure
socket connection in the existing HLA. The time-advancement
benchmark also shows similar results.
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Fig. 9. Experiment hardware configuration.

TABLE I
SPECIFICATION OF MACHINES FOR EXPERIMENTS.

Mproxy2 Mrti, Mfed1, Mfed2-SG Mproxy1 Mfed2-UK
CPU 4xPentiumIII 500MHz PentiumIII 733MHz 2xPentiumIII 733MHz AMD Athlon 1.5GHz

Memory 1 Gbyte 1 Gbyte 1 Gbyte 2 Gbyte
OS Redhat Linux 7.0 Redhat Linux 7.0 Redhat Linux 7.0 Redhat Linux 7.3
gcc 3.0.2 3.0.2 3.0.2 3.0.2

HLA DMSO NG 1.3 V6 DMSO NG 1.3 V6 DMSO NG 1.3 V6 DMSO NG 1.3 V6

Fig. 10. Latency benchmark configuration.

TABLE II
EXPERIMENT RESULTS

HLA HLAGrid

Latency
Cluster 10 millisecond 50 millisecond
WAN 305 millisecond 1200 millisecond

Time Advancement
Cluster 680 grants/second 150 grants/second
WAN 2 grants/second 0.41 grants/second
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VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we focus on two important aspect of mod-
eling and simulation:interoperability and composability. We
propose an interoperability model based on both conceptual
and practical aspects and extend the existing HLA’s practical
interoperability to support Grid-wide distributed simulation.
The HLAGrid framework achieves interoperability between
different simulators (federates) by using a Federate-Proxy-
RTI architecture. This architecture hides the heterogeneity of
the simulators, simulators’ execution platforms, and how the
simulators communicate with the RTI. Moreover, RTI services
are exposed as Grid services, which provides more secure,
scalable and coordinated management. RTI services’ internal
data are exposed as Grid service data elements, which allows
both pull andpushkind of access by other Grid services. All
interfaces used in the framework comply with the standard
HLA interface specification, which provides reusability to
simulators. A prototype of the framework is implemented
using DMSO’s RTI 1.3NG version 6 and the Grid system
runs the Globus Toolkit Version 3 to achieve compatibility
and interoperability. Experimental results show that the our
prototype incurs more overhead than the existing HLA, and is
suitable for coarse-grained applications. Much work remains
to be done for model execution, such as federate migration,
fault-tolerance, integration with security, etc. To support model
composition, a framework that addresses model development,
sharing, and validation is being developed.
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