
 

  
Abstract— Co-training is a semi-supervised learning method 

that is designed to take advantage of the redundancy that is 
present when the object to be identified has multiple descriptions. 
Co-training is known to work well when the multiple descriptions 
are conditional independent given the class of the object. The 
presence of multiple descriptions of objects in the form of text, 
images, audio and video in multimedia applications appears to 
provide redundancy in the form that may be suitable for 
co-training. In this paper, we investigate the suitability of 
utilizing text and image data from the Web for co-training. We 
perform measurements to find indications of conditional 
independence in the texts and images obtained from the Web. 
Our measurements suggest that conditional independence is 
likely to be present in the data. Our experiments, within a 
relevance feedback framework to test whether a method that 
exploits the conditional independence outperforms methods that 
do not, also indicate that better performance can indeed be 
obtained by designing algorithms that exploit this form of the 
redundancy when it is present. 
 

Index Terms— Co-Training, Machine Learning, Multimedia 
Data Mining, Semi-Supervised Learning. 
 

I. INTRODUCTION 

ULTIMEDIA applications are unique in providing many 
different descriptions (such as text, images, audio and 

video) of a single object or event. Quite often, these combined 
descriptions have various amounts of redundancies. 
Consequently information processing methods that take 
advantage of these redundancies may be able to outperform 
methods that do not. 

Co-training [1] is a semi-supervised learning method that 
takes advantage of a particular form of redundancy in data to 
effectively learn the target function based on a few labeled and 
many unlabeled examples. In co-training, it is assumed that 
there are (at least) two distinct views of an object, each of which 
contains enough information to identify the object. 
Furthermore, the two descriptions are conditionally 
independent, given the identity of the object. For example, the 
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co-training assumptions imply that if we have a text description 
and an image of George Bush, then the words and pixels are 
individually enough to identify George Bush, and furthermore, 
the distribution of the pixels is independent of the words once 
we know that the object described is George Bush, and vice 
versa. 

Under the assumption that each view contains enough 
information for identifying the object, an (unlabeled) example 
of the object with two views provides a link between 
descriptions of the two views. Under the conditional 
independence assumption, the probability of a description in 
the first view being linked to a description in the second view is 
just the probability of the description appearing in the second 
view. Hence, with a large enough sampling of unlabeled 
examples, most of the commonly occurring descriptions in the 
two views will be connected together allowing it to be easily 
learned.  

With the explosive growth of the Web, an immense amount 
of multimedia information is becoming freely available online. 
With the prevalence of multiple descriptions of the same 
objects and events, it is desirable to develop methods that can 
exploit the available redundancy.  In this paper, we provide a 
preliminary study of the possibility of exploiting the 
redundancies present in text and images from the same 
webpage. We use a simple setup of using relevance feedback to 
disambiguate ambiguous queries for images. We collected 
images and webpages for five ambiguous queries on a search 
engine. For each of these queries, we use two different 
unambiguous target classes that need to be disambiguated from 
the other images in order to form a total of ten relevance 
feedback tasks.  

We first perform some measurements on the data in order to 
find evidence of conditional independence, which would 
suggest the usefulness of co-training methods for the task. We 
show some evidence that the conditional independence 
assumption is indeed reasonable. This is also supported by the 
results of the relevance feedback experiments. We show that 
the co-training method that exploits the conditional 
independence outperforms other methods that do not. To test 
whether conditional independence is the reason for 
co-training’s superior performance, we construct two artificial 
views of each example by unnaturally splitting of features in 
the following way: one view is composed of the 1st half of the 
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image content features and the 2nd half of the associated text 
features while the other view is composed of the 2nd half of the 
image content features and the 1st half of the associated text 
features. Our measure of conditional independence dropped. 
Similarly, classification performance dropped, supporting the 
hypothesis that co-training works better on the tasks because of 
conditional independence.   

The rest of this paper is organized as follows. In section II, 
we review the co-training method and describe the embedded 
classifiers used. In section III, we propose the quantitative 
measurements for estimating whether the domain is suitable 
for co-training. In section IV, we present the experiments 
within a relevance feedback framework. In section V, we 
survey the related work. In section VI, we give the conclusion. 

 

II. CO-TRAINING 

Co-training [1] is a semi-supervised learning method that 
takes advantage of a particular form of redundancy in data to 
effectively learn the target function based on a few labeled and 
many unlabeled examples. 

For co-training to perform well, there should be a natural 
way to split the features into disjoint subsets called views, such 
that the target function on the views is “compatible” and 
instances from the views are “uncorrelated”. For example, in a 
domain with two views V1 and V2, any example x  can be seen 

as a triple 1, 2, yx x , where 1x  and 2x  are its descriptions 

in the two views V1 and V2 respectively, and y  is its label. 

The “compatible” assumption means that the target concept 

1 2
( , )f f f= , where the domain of 

1
f  is V1 and the domain of 

2
f  is V2, satisfies 

1 2
( 1) ( 2)f f=x x  for all instances 1, 2x x  

drawn from the distribution of instances. Given this 
assumption, the unlabeled examples can be used to eliminate 
functions that are not “compatible”, hence yielding 
information that can help to learn the target function, The 
“uncorrelated” assumption means that given the label of any 
example, its descriptions in different views are conditionally 
independent. This assumption ensures that the labels propagate 
throughout the domain through the unlabeled examples instead 
of being confined to part of the domain.  

There exist two kinds of features for a Web image, its pixel 
content and its associated text, which are possibly redundant. 
We can often tell what an image is about by looking at the 
image itself or looking at only its associated text. That is to say, 
we can use the content features as one view and the text features 
as another. Intuitively these two views satisfy the “compatible” 
and “uncorrelated” requirements. Such a natural split of 
features makes Web image classification a good candidate for 
the application of co-training.  

The co-training algorithm shown in Fig. 1 is adapted from 
[1]. The algorithm iteratively generates more training 
examples for classifiers in both views with the aim of finally 

generating a pair of classifiers that agree on both the labeled 
and the unlabeled examples. 

 

A. Support Vector Machines 

Support Vector Machine (SVM) [2] has good theoretical 
properties as a classifier and has been shown to perform well in 
many practical domains. SVM is well suited for classifying the 
images on the Web using image content or associated text 
features because it can automatically avoid the pitfalls of very 
high dimensional representations. In this paper, we use SVMs 
as the embedded classifiers of co-training. 

SVM is essentially a linear function of the form 

( )f x b= • +w x , where •w x  is the inner product 

between the weight vector w  and the input vector x . The 
SVM can be used as a classifier by setting the class to 1 if 

( ) 0f x >  and to -1 otherwise. The main idea of SVM is to 

select a hyper-plane that separates the positive and negative 
examples while maximizing the minimum margin, where the 

margin for example 
i

x  is ( )
i i

y f x  and { }1,1
i

y ∈ −  is the 

target output. This corresponds to minimizing •w w  

subject to ( ) 1
i i

y b• + ≥w x  for all i . Large margin 

classifiers are known to have good generalization properties 
(see e.g. [3]). 

To deal with cases where there may be no separating 
hyper-plane, the soft margin SVM has been proposed. The soft 

margin SVM minimizes 
: 1 : 1

i i

i i

i y i y

C J ξ ξ
= + =−

• + +
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑w w   

input:  
• two feature sets V1 and V2 
• a set of labeled examples L 
• a set of unlabeled examples U 
• two parameters p and n 
while there exist examples in U do 

C1 teaches C2: 
train classifier C1 based on the V1 portion of L  
classify all examples in U using C1 
remove p positive and n negative examples from U on which C1 
makes the most confident predictions, and then add them with 
their predicted labels to L 
C2 teaches C1: 
train classifier C2 based on the V2 portion of L  
classify all examples in U using C2 
remove p positive and n negative examples from U on which C2 
makes the most confident predictions, and then add them with 
their predicted labels to L 

end while 
train a classifier C*  based on the V1∪V2 portion of the expanded 

set of labeled examples L 
classify all examples in U using C* 
output:  
• the class labels for all examples in U 

Fig. 1. Outline of the adapted Co-Training algorithm used in this paper. 



 

subject to ( ) 1
i i i

y b ξ• + ≥ −w x  and 0
i

ξ >  for all i , 

where C  is a parameter that controls the amount of training 
errors allowed, and J  is a parameter that weights the training 
errors on positive examples over those on negative examples. 

The sign of the SVM output for a test example indicates its 
predicted label. The magnitude of the SVM output for a test 
example can be geometrically regarded as the distance from 
that test example to the classifying hyperplane (decision 
boundary), therefore it can be used to indicate the degree of 
confidence we have on this classification.  

 

III. ESTIMATING APPROXIMABILITY AND UNCORRELATEDNESS 

The co-training algorithm tries to get the two functions on 
both views to agree on their classifications. For it to be 
successful, a good approximation to a compatible target 
function should exist in the function classes used to train on the 
two views. This depends both on the features available in the 
two views as well as on the function classes used. Another 
requirement is that the two views are uncorrelated given the 
label. To find out whether the domain of Web images is suitable 
for co-training, we estimate the approximability and 
uncorrelatedness of the domain. The measurements are done to 
help explain why co-training works (or does not work). 

A. Approximability 

To see whether or not a view (a set of features) is sufficient 
for learning, we use the leave-one-out estimation of F-score as 
computed for SVM in [4]. The F-score [5] is defined as the 

harmonic average of precision (p) and recall (r), 
2 pr

F
p r

=
+

, 

where precision is the proportion of correctly predicted positive 
examples among all predicted positive examples, and recall is 
the proportion of correctly predicted positive examples among 
all true positive examples.  

 We measure the “approximability” assumption of two views 

V1 and V2 by 
A

M , which is defined as the harmonic average 

of 
1V

F  and 
2V

F , 1 2

1 2

2
V V

A

V V

F F
M

F F
=

+
where 

1V
F  and 

2V
F are the 

leave-one-out estimations of F-score in V1 and V2 
respectively. 

B. Uncorrelatedness 

The feature space is usually high-dimensional, making it 
difficult to directly apply the definition of conditional 
independence for measuring “uncorrelatedness”. In [6], the 
“uncorrelatedness” assumption of two views was checked by 
calculating the sum of pair-wise conditional mutual 
information for all pairs of features in different views.  

We take a different approach by calculating the correlation 
between the real-valued outputs of the two SVMs trained on all 
labeled examples in the two views respectively. If the 

correlation between SVM outputs is high, we can confidently 
say that the two views are not conditionally independent. 
Otherwise we feel more confident that the two views are 
conditionally independent even though we are unable to 
ascertain that they are. 

We measure the “uncorrelatedness” of two views V1 and V2 

by 
U

M , which is defined as 
(1 ) (1 )

2
P N

U

R R
M

− + −
= , 

where PR and 
N

R  are the conditional correlation coefficients 

of 1 ( 1 )if x  and 2 ( 2 )if x  given that the label 
i

y  is positive and 

negative respectively.  
The standard statistical correlation coefficient R  of a set of 

n  data points ( ),
i i

u v  is defined as follows:  

2

2 uv

uu vv

SS
R

SS SS
= , where 

( ) ( )uv i i
SS u u v v= − −∑ ,  

( )2

uu iSS u u= −∑ , ( )2

vv iSS v v= −∑ , 

i
u

u
n

= ∑ , i
v

v
n

= ∑ . 

The coefficient R  varies between -1 and 1 with 0 indicating 

that the two variables 
i

u  and 
i

v  are totally uncorrelated and 1 

or -1 indicating that they are totally correlated. 

C. Combined Measure 

To give an indication of the suitability of the domain for 
co-training, we define the multi-view quality measure MMVQ as 
the harmonic average of the approximability and 

uncorrelatedness measures, 
2 A U

MVQ
A U

M M
M

M M
=

+
.  

Harmonic average in the above definitions is because the 
harmonic average of two values has the following property: it is 
high when both of these two values are high, and if these two 
values are radically different it is dominated by the smaller one. 

 

IV. EXPERIMENTS 

We conducted experiments on real-world Web image data in 
the relevance feedback framework to evaluate the effectiveness 
of our proposed approach. 

A. Relevance Feedback 

The performance of image retrieval systems is often limited 
by the gap between low-level features and high-level semantic 
concepts. To address this problem, relevance feedback [5] 
techniques can be applied to learn user’s intentions and boost 
the system’s performance. Basically it is to ask the user to give 
some feedbacks on the returned results and try to refine the 
retrieval function based on these feedbacks.  

From the perspective of machine learning, relevance 



 

feedback can be re-phrased as a classification problem: the 
retrieval system trains a binary classifier based on labeled 
examples provided by user’s relevance feedback, then uses the 
learned classifier to classify the unlabeled examples into two 
classes: relevant and irrelevant. 

A typical problem with relevance feedback is the relatively 
small number of training examples. The system can only 
present the user a few images to be labeled as relevant or 
irrelevant. This suggests that it is beneficial to utilize 
semi-supervised learning algorithms for relevance feedback. 

B. Data 

Google (http://images.google.com/) is considered the 
favorite search engine of general users. It provides image 
search function (http://images.google.com/). 

 
We submitted 5 ambiguous queries to the Google image 

search engine and grabbed its search results as data for 
experiments. Only the full-color images would be taken into 
account, and all out-dated images which are no longer 
available online would be removed. For each query, we select 2 
of its major semantic interpretations as target concepts for 
retrieval, thus we pose 5× 2=10 relevance feedback problems 
as shown in Table I. The images corresponding to the target 
concept are labeled as positive and others as negative. These 
problems are very difficult for learning algorithms because the 
positive images are minorities in the extremely unbalanced 
data. This situation is quite common in retrieval applications.  

C. Features 

1) Image Content Features 
In this paper, we choose to use color histograms as image 

content features, because of reasonable performance that can be 
obtained using color histograms in spite of its extreme 
simplicity [7].  

Each particular color can be described as a position in a three 
dimensional color space. The color space HSV (Hue Saturation 
Value) is used instead of RGB (Red Green Blue), because the 
former de-correlates the color components (HS) from the 
luminance component (V) and is argued to be cognitively more 
plausible. Every color component is divided evenly into 16 
bins, so that the dimension of the feature space is 163 = 4096 
[7]. Then an image is considered as a color histogram 

1 2
( , , ..., )

m
h h h=h , where 

i
h  encodes the fraction of pixels of 

the ith color. An obvious advantage of this representation is 
that it is invariant with respect to many operations like scale, 
translation and rotation. To make the image content features 
more linearly separable, a nonlinear map is applied to the color 

histograms 
1 2

( ) ( , , ..., )a a a

m
h h h= Φ =x h , where an appropriate 

value for a is 0.25 [7]. Finally all content feature vectors are 
normalized to have unit length.  

Although this feature extraction technique is a very simple 
low-level method, it has shown good results in practice for 
image classification [7]. 

The content features for each Web image are extracted from 
not the original image but its corresponding thumbnail-image 
in the search results, due to efficiency consideration. 

2) Associated Text Features 
In addition to its content, a Web image can also be described 

by its occurring context, i.e., the text of the webpage which 
contains it. One can often tell what an image is about by only 
reading its associated text.  

The most commonly used feature extraction technique for 
text is to treat a document as a bag-of-words [4]. For each 
document d  in a collection of documents D , its bag-of-words 
is first pre-processed by removal of stop-words and stemming. 
Then it is represented as a feature vector 1 2( , ,..., )mx x x=x , 

where ix  indicates the importance weight of term iw  (the i-th 

distinct word occurred in D ). Following the TF*IDF 
weighting scheme, we set the  value of ix  to the product of the 

term frequency ( , )iTF w d  and the inverse document frequency 

( )iIDF w , i.e., ( , )* ( )i iTF w d IDF w . The term frequency 

( , )iTF w d  means the number of times iw  occurred in d . The 

inverse document frequency is defined as 

( ) log
( )i

i

D
IDF w

DF w

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, where D  is the total number of 

documents in D , and ( )iDF w is the number of documents in 

which iw  occurred. Finally all feature vectors are normalized 

to have unit length. 
3) Both Features 

We can choose to represent a Web image using both content 
features and text features by simply pooling them together. In 
this case, a combined feature vector with unit length is 

constructed for each Web image as ( 1, 2) 2=x x x , where 1x  

and 2x  are the normalized content and text feature vectors 
respectively. 

D. Approximability and Uncorrelatedness 

The approximability and uncorrelatedness measurements for 
the image and text views of the experimental data are listed in 
Table II.  

TABLE I 
 DATA FOR WEB IMAGE CLASSIFICATION EXPERIMENTS IN RELEVANCE 

FEEDBACK FRAMEWORK, n IS THE NUMBER OF ALL IMAGES AND nP MEANS 

THE NUMBER OF POSITIVE IMAGES 
Query Target nP n 
apache helicopter 152 704 
apache landscape 61 704 
apple computer 27 288 
apple fruit 44 288 
jaguar animal 213 726 
jaguar car 191 726 
Madonna saint 434 835 
Madonna singer 214 835 
Venus painting 43 773 
Venus planet 156 773 

 



 

 
In addition, to confirm our speculations that the content and 

text views formed by a natural split of features is ideal for 
co-training, we also design two artificial views formed by an 
unnatural split of features in the following way: the artificial 
“content” view is composed of the 1st half of the content 
features and the 2nd half of the text features; and the artificial 
“text” view is composed of the 2nd half of the content features 
and the 1st half of the text features. The quality estimations for 
the artificial views of the experimental data are listed in Table 
III. 

 
As can be seen in Table III, the uncorrelatedness 

measurements for the natural split of Web image features are 
high. Unfortunately, the approximability scores are not as high. 
This could be because the features are not powerful enough for 
very good classification using linear functions. The small 
number of training examples particularly positive examples 
also contribute to the low scores. For the artificial views formed 
by an unnatural split of features, the approximability scores are 
interestingly higher. However, as expected, the 
uncorreletedness scores are lower resulting in lower average 
overall score. The lower overall score suggests that the 
unnatural split may perform poorer when applying co-training 
even though its approximability score is higher. Indeed, this 
has been observed in our experiments. 

Fig. 2 and 3 illustrate the plot of SVM outputs trained on all 
examples in two views with moderate uncorrelatedness 
(MU=0.464), and high uncorrelatedness (MU=0.916) 
respectively. Fig. 2 is generated using the artificial views from 

the ‘Madonna-saint’ experiment, which are formed by an 
unnatural split of features as mentioned before. Fig. 3 is 
generated using the content and text views from the 
‘Madonna-saint’ experiment.  

 
 

 

E. Algorithms for Comparison 

In this paper, we compare the proposed co-training SVMs 
approach with three other approaches that do not take 
advantage of the conditional independence, namely supervised 
SVM, one-class SVM, and transductive SVM.  

The supervised SVM algorithm is just the regular SVM that 
is trained on labeled examples. It has been applied for 
relevance feedback in image retrieval systems [8]. 

The one-class SVM algorithm [9] is trained using only 
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Fig. 3. Plot of SVM outputs in two views with high uncorrelatedness (MU = 
0.916). 
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Fig. 2. Plot of SVM outputs in two views with moderate uncorrelatedness (MU 
= 0.464). 

TABLE III 
 QUALITY ESTIMATIONS FOR TWO VIEWS FORMED BY AN UNNATURAL SPLIT 

OF FEATURES OF THE WEB IMAGE DATA 
Query Target MA MU MMVQ 
apache helicopter 0.71 0.61 0.66 
apache landscape 0.45 0.78 0.57 
apple computer 0.60 0.80 0.68 
apple fruit 0.49 0.82 0.61 
jaguar animal 0.73 0.60 0.66 
jaguar car 0.71 0.57 0.63 
Madonna saint 0.78 0.46 0.58 
Madonna singer 0.73 0.68 0.70 
Venus painting 0.40 0.81 0.54 
Venus planet 0.78 0.62 0.69 
Average 0.64 0.68 0.63 

 

TABLE II 
 QUALITY ESTIMATIONS FOR THE CONTENT AND TEXT VIEWS OF THE WEB 

IMAGE DATA 
Query Target MA MU MMVQ 
apache helicopter 0.63 0.96 0.76 
apache landscape 0.33 0.98 0.50 
apple computer 0.53 0.89 0.67 
apple fruit 0.43 0.96 0.60 
jaguar animal 0.69 0.93 0.79 
jaguar car 0.65 0.92 0.76 
Madonna saint 0.75 0.92 0.82 
Madonna singer 0.66 0.91 0.77 
Venus painting 0.38 0.87 0.53 
Venus planet 0.66 0.88 0.76 
Average 0.57 0.92 0.70 

 



 

positive labeled examples. It has been applied for relevance 
feedback in image retrieval systems [10], under the assumption 
that positive examples cluster in certain way, but negative 
examples usually do not cluster because they belong to several 
different classes.  

The transductive SVM algorithm [11] is also a 
semi-supervised learning algorithm. It tries to assign labels to 
the unlabeled data in such a way that resulting classifier has 
large margin in both the labeled and unlabeled data. It is 
particularly beneficial in the situations where we do not care 
about good generalization, but rather good classification 
accuracy on a particular test set. 

F. Settings 

For each retrieval problem, we run the learning algorithm 10 
times, using 20 randomly selected examples to simulate the 
user’s relevance feedback at each time. We choose the number 
20 because Google image search engine displays 20 images in 
its first search result page. The standard F-score [5] is used to 
evaluate the retrieval performance. 

An efficient implementation of SVM, SVMlight 
(http://svmlight.joachims.org/), is employed throughout our 
experiments, except that the implementation of one-class SVM 
is from libSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/).  
We always choose the linear kernel as it has been shown that 
SVM with linear kernel works quite well for image 
classification based on color histogram features [7], and for text 
classification based on TF*IDF features [4]. The SVM 
parameter C  is set as its default value, i.e., 1C = ; the SVM 
parameter J  is automatically adjusted to the value 

N P
J n n= , i.e., the ratio of the number of training positive 

examples to the number of training negative examples, in order 
to give equal importance to both positive and negative 
examples. 

The co-training SVMs algorithm is designed to keep 
running while there are enough unlabeled examples. In every 
round of co-training, given that there are p positive and n 
negative examples in the 20 labeled examples provided by the 
user’s relevance feedback, the SVM classifier in either content 
or text view fetches p positive and n negative most confidently 
labeled examples to the training set. That is to say, there are 
about 20+20=40 new examples added to the training set, while 
the proportion of positive or negative examples is forced to be 
consistent with the initial proportion in the user’s relevance 
feedback. At last the enlarged training set is used to train three 
SVMs based on content, text, and both features respectively, as 
the final learned classifiers. 

Since all the above algorithms are based on SVM, we think 
that the leave-one-out estimation of the supervised SVM 
trained on all training and test data with the labels of test 
examples known can be regarded as the performance 
upper-bound. Please note that SVMlight is able to compute 
leave-one-out estimations very efficiently using a clever 
algorithm that prunes away cross-validation folds that do not 

need to be explicitly executed [4]. We have used a faster 
approximate version of pruning (the options “-x 1” and “-o 1”) 
in our experiments. 

G. Results 

The experiment results are summarized in Table IV, where 
the F-score of each learning algorithm for each retrieval 
problem averaged on 10 runs is shown.  

One interesting phenomena revealed by the experiment 
results is that using “both” features is not necessarily better 
than just using the content or text features, i.e., simply pooling 
content and text features together may not work. 

The supervised SVM algorithm works poorly due to the lack 
of enough training examples. The one-class SVM algorithm is 
even worse, because it totally neglects the valuable knowledge 
provided by the labeled negative examples. The performance of 
the supervised SVM algorithm is actually the starting point of 
the co-training SVMs algorithm. Comparing the performances 
of the SVM classifiers before and after co-training, we see that 
co-training really can boost the classification performances of 
its embedded classifiers.  

The semi-supervised learning algorithms, including 
co-training SVMs and transductive SVM, appear to be 
beneficial when there are only a few labeled examples and lots 
of unlabeled examples as in the relevance feedback case. The 
co-training SVM algorithm behaves better than the 
transductive SVM algorithm, which suggests that leveraging 
the uncorrelatedness of this problem is helpful. The “Unnatural 
Co-Training” column in Table IV records the performance of 
the co-training SVM algorithm with the artificial views formed 
by an unnatural split of features as described in the previous 
section. Although the approximability of the unnatural split is 
better, the overall performance is poorer than the natural split, 
indicating that uncorrelatedness is indeed helpful for 
co-training in this case. 

To better understand the behavior of the co-training SVMs 
approach, we plot its learning curves of one run for the ‘Venus- 
planet’ retrieval problem. At the end of every round, we train 
three SVMs using the ever growing training set based on 
content, text, and both features respectively, and test them 
using the initially unlabeled examples (i.e., the images outside 
of the user’s relevance feedback), their performances changing 
along the co-training rounds are depicted in Fig. 4, 5, and 6. 
One can see that the performance of all these three SVMs keep 
increasing during co-training. 
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Fig. 5. Performance (F-score) of the SVM based on text features at 
Co-Training rounds. 
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Fig. 4. Performance (F-score) of the SVM based on content features at 
Co-Training rounds. 

TABLE IV 
PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR WEB IMAGE CLASSIFICATION 

Query Target Features Upper-bound Supervised 
SVM 

One-Class 
SVM 

Transductive 
SVM 

Unnatural 
Co-Training 

Co-Training 
SVMs 

apache helicopter content 0.56 0.31 0.02 0.47 0.46 0.52 

apache helicopter text 0.73 0.06 0.00 0.52 0.46 0.52 

apache helicopter both 0.79 0.14 0.00 0.49 0.46 0.52 

apache landscape content 0.25 0.06 0.00 0.12 0.16 0.20 

apache landscape text 0.48 0.03 0.01 0.30 0.17 0.19 

apache landscape both 0.48 0.02 0.00 0.15 0.16 0.19 

apple computer content 0.60 0.16 0.00 0.35 0.48 0.46 

apple computer text 0.48 0.05 0.00 0.29 0.49 0.46 

apple computer both 0.67 0.04 0.00 0.41 0.49 0.47 

apple fruit content 0.57 0.24 0.00 0.39 0.41 0.46 

apple fruit text 0.35 0.02 0.00 0.40 0.42 0.44 

apple fruit both 0.51 0.06 0.00 0.47 0.42 0.45 

jaguar animal content 0.64 0.49 0.11 0.54 0.56 0.63 

jaguar animal text 0.75 0.10 0.00 0.61 0.55 0.63 

jaguar animal both 0.78 0.33 0.00 0.55 0.56 0.63 

jaguar car content 0.60 0.41 0.07 0.42 0.41 0.53 

jaguar car text 0.71 0.06 0.00 0.55 0.41 0.52 

jaguar car both 0.78 0.26 0.00 0.44 0.41 0.53 

Madonna saint content 0.68 0.55 0.26 0.56 0.57 0.61 

Madonna saint text 0.83 0.43 0.01 0.60 0.56 0.61 

Madonna saint both 0.79 0.50 0.03 0.56 0.57 0.61 

Madonna singer content 0.60 0.22 0.07 0.30 0.31 0.40 

Madonna singer text 0.75 0.04 0.01 0.41 0.31 0.39 

Madonna singer both 0.79 0.09 0.01 0.30 0.31 0.39 

Venus painting content 0.51 0.21 0.00 0.25 0.23 0.34 

Venus painting text 0.31 0.01 0.00 0.21 0.23 0.35 

Venus painting both 0.52 0.04 0.00 0.32 0.23 0.36 

Venus planet content 0.71 0.32 0.03 0.44 0.52 0.66 

Venus planet text 0.62 0.14 0.00 0.46 0.52 0.57 

Venus planet both 0.81 0.23 0.00 0.48 0.52 0.59 

Average 0.62 0.19 0.02 0.41 0.41 0.47 

 



 

 
 

V. RELATED WORK  

Several successful applications of co-training have emerged 
recently. In [1], co-training is applied to webpage 
classification, where the text of the webpage forms one view 
and the anchor text of links pointing to the same webpage 
forms another view. In [12], co-training is applied to named 
entity classification, where the spelling features of the named 
entity forms one view and the context of the named entity forms 
another view. In [13], co-training is applied to email 
classification, where the text of the email subject forms one 
view and the text of the email body forms another view.  

The conditional independence property which is useful to 
co-training may not hold for many other real-world problems. 
Recent advances in co-training try to cope with this problem. In 
[6, 12, 14-16], refined co-training algorithms under relaxed 
assumptions are proposed. In [17], a meta-learning approach is 
proposed to discriminate between tasks for which the given two 
views are sufficiently/insufficiently compatible for co-training.  
It is interesting to combine co-training and active learning. In 
[18], humans are required to correct inaccurate labels made by 
co-training. In [19], the system asks users to explicitly label 
examples on which the two classifiers of co-training have 
different predictions.  

Semi-supervised learning algorithms such as co-training 
and transductive SVM have gained more and more attention 
from the machine learning community in recent years. In [20], 
it is shown that Expectation Maximization (EM), a popular 
iterative statistical technique for maximum likelihood 
estimation in problems with incomplete data [21], can be 
employed to improve text classification using unlabeled data. 
In [15, 22], the graph mincut algorithm is applied to 
semi-supervised learning. In [23], it is shown that Latent 
Semantic Indexing (LSI) [24] can be employed to improve text 
classification using unlabeled data. In [25], a co-training like 
algorithm is proposed. In [26-28], special semi-supervised 

learning algorithms based on kernel classifiers especially 
SVMs are designed. In [29], a regularization approach to 
semi-supervised learning is proposed. In [6], it is empirically 
demonstrated that co-training outperforms EM even on tasks 
without natural split of features.  

There has been a great increase of interest in Content-Based 
Image Retrieval (CBIR) after the well-known QBIC system 
from IBM [30] appeared. CBIR systems allow the user to find 
image visually similar to a given example image based on 
image content features, such as color, texture and shape. A 
recent article [31] reviewed more than 200 references in this 
ever changing filed. Obviously the image content features used 
in such CBIR systems may also be used in the co-training 
SVMs algorithm to improve on the color histogram used here. 

 

VI. CONCLUSION 

We have performed preliminary measurements that indicate 
the conditional independence which is useful for co-training is 
likely to exist in image and text views of the same concepts on 
the Web. We have also shown that co-training, which exploits 
the conditional independence that is present in the data, 
outperforms other methods that do not exploit conditional 
independence in a relevance feedback task on identifying 
objects with text and image descriptions. 
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