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Abstract

This thesis develops a needs-based framework for behavioral enhancement of conventional
activity-based travel demand models. Operational activity-based models specify activity
generation models based on empirical considerations which are weakly founded in a behav-
ioral theory. This thesis aims to enhance the specification of the activity generation models
by developing the conceptual and analytical relationship between individuals' activity choices
and need-satisfaction.

The theory of needs hypothesizes that individuals conduct activities to satisfy their needs.
Each activity that an individual conducts may satisfy one or several of their needs. Con-
versely, each need may be satisfied by one or several activities. This thesis models an
individual's choice of activity dimensions including frequency, sequence, location, mode,
time-of-travel, etc. as one that maximizes his/her need-satisfaction.

A conceptual model of the relationship between needs and activities is developed based on
inventory theory. Every need is associated with a psychological inventory that reflects the
level of satisfaction with respect to the need. When an activity that satisfies a need is
conducted, the need is satisfied and the corresponding psychological inventory is replenished
by a quantity called the activity production. Over time, this inventory gets consumed and
the need builds up. The choice of activity dimensions is modeled as a psychological inventory
maximizing (i.e. utility-maximizing) problem, subject to time and cost budget constraints.
The framework also accounts for satiation in need-satisfaction.

An analytical model is formulated, solved and empirically estimated for a single need and the
activity that satisfies the need under steady-state conditions. The problem is solved in two
stages, for discrete (location) and continuous (duration and frequency) decision variables.
The properties of the general solution are studied, and then explored for a translog form of
the activity production function. An empirical estimation method that can be applied to
single day travel diary data is proposed and validated using Monte-Carlo experiments. The
model is empirically estimated using standard travel diary data from the Denver metropolitan
area. Estimation results indicate the potential of the needs-based approach to enrich the
specification of activity generation models in conventional activity-based model systems.

A conceptual framework to extend the single need model is discussed. Extensions to mod-
els of multiple needs that capture interactions between different needs are also discussed.



The flexible framework can also be extended to model social interactions including intra-
household activity allocation and joint activity participation by households and social circles.
An extension to a dynamic needs-based activity generation model is also discussed, which
may be integrated with transportation simulators to predict individuals' activity choices in
response to real-time information.
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1 Introduction

This thesis focuses on behavioral enhancements to the conventional activity-based approach

to travel demand modeling. It studies the relationship between an individual's activity

choices and need-satisfaction. Based on the theory of needs, it develops a conceptual frame-

work that describes an individual's activity choices as motivated by the desire to satisfy

human needs. An analytical model is formulated based on this conceptual framework, that

describes an individual's activity choices as motivated by the desire to maximize his/her

need-satisfaction. This framework can be integrated into conventional activity-based travel

demand models to enhance their behavioral realism. This chapter describes the motivation

for this thesis, summarizes the key contributions, and presents the thesis organization.

1.1 Motivation

The travel demand forecasting systems used in urban metropolitan areas in the United States

in the 1950's and 1960's, which served as a support system to aid large infrastructure invest-

ment decisions, were simplistic with few explanatory variables and estimated from aggregate

data. However, as the boom in infrastructure investments subsided, planners focused on

better management of existing systems in response to issues like congestion, pollution, sub-

urban sprawl, etc. The impacts of policy measures proposed to counter the new problems at

hand were predicted poorly by aggregate demand models, which are not sensitive to policy

alternatives. This led to the development of disaggregate models based on utility-maximizing

econometric theory which are estimated using individual or household data and can explicitly
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account for the heterogeneity in individual and household travel choices. The vast amount of

literature about the theory of disaggregate choice modeling for travel demand forecasting is

well documented (e.g. see Ben-Akiva and Lerman, 1985 for an early review, and McFadden,

2000 for a more recent review).

Several methodological improvements were made to the disaggregate travel demand model-

ing approaches through the 1970's and 1980's, and were operationalised in practical model

systems by metropolitan planning organizations. Early disaggregate model systems were

trip-based, and considered a trip - defined as a commute from an origin activity center (e.g.

home) to a destination activity center (e.g. work place) with no stops in between to conduct

other activities - as the basic unit of modeling. Using unlinked trips as the basic unit was

found to be behaviorally restrictive since it did not account for interaction between various

trips conducted by the same individual. As the limitations of the trip-based approach were

realized, researchers and practitioners adopted a tour-based approach, where a tour - defined

as a sequence of trips starting from a location (e.g. home) and ending at the same location

(i.e. home), and consisting of several stops to conduct activities outside the origin - is the

basic unit of modeling. While tour-based models provide a better representation of travel

decisions than trip-based models, they still fail to capture the interactions between different

tours an individual makes on the same day.

As the limitations of tour-based model systems were realized, researchers focused on de-

veloping model systems that capture an individual's travel choices at the level of a day.

These model systems, in a form known as activity-based model systems, are increasingly

being adopted by transportation planning organizations across the world, particularly in the

United States, to forecast travel demand in urban areas. These models are motivated by the

notion that demand for travel is derived from the demand for activities, and therefore, the

latter should be modeled as a component of the activity scheduling decision. Higerstrand

(1970) laid the foundation for the activity-based approach to travel demand modeling, where
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he argues that individuals travel to conduct activities and make these decisions subject to

spatio-temporal constraints. In contrast to conventional trip-based or tour-based travel de-

mand models, activity-based models predict more realistically the human response to changes

in transportation and land-use systems.

Figure 1.1 provides a framework to study the decisions made by households and individuals

relevant to their travel during different timeframes (Ben-Akiva et al., 1996). In the long term,

households and individuals re-evaluate their mobility and lifestyle decisions. For example,

once in every two or three years, individuals may review their level of satisfaction with their

current home location, work location, auto ownership, etc., and re-evaluate these choices in

the context of changing land-use and economic development in the urban area. They then

make new choices on where to live and work, whether to own a car or use public transporta-

tion, etc. Once these choices have been made, they plan their daily activities and travel in

the medium term, subject to availability of time and income. These choices, namely activity

and travel scheduling choices, determine the set of activities that members of a household

participate in, including the allocation of activities among members, the frequency, location,

duration and sequence of activities. They also then plan their travel to participate in these

activities, including departure time and mode. Given a set of lifestyle and mobility choices

made in the long term, individuals change their activity and travel patterns in response to

changes in the transportation system. For example, the introduction of congestion pricing

in an urban area during the peak period is likely to cause individuals to change their ac-

tivity and travel patterns. This could vary all the way from changing the route that they

take to work on a daily basis, or changing the time-of-travel to work to off-peak periods

when there is no congestion price, or reducing the extent of discretionary activities con-

ducted during the peak period that require travel. Finally, when they actually set out to

execute this plan, they may encounter unexpected events both during their travel and while

conducting activities. Consequently, they may reschedule their activity and travel patterns

to adapt to the transportation network conditions in the short term. For example, while
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an individual might have planned to conduct shopping on the way back home from work,

extremely congested traffic conditions might force the individual to cancel the shopping ac-

tivity and return home without conducting shopping. The framework also models the effect

of transportation system performance on land-use patterns and economic development in the

urban area, which in turn affect an individual's mobility and lifestyle choices in the long term.

Land-use and Economic Development --------

Mobility and Lifestyle Long term

Activity and Travel Scheduling Medium term

Activity and Travel Rescheduling "Sort term

Transportation System Performance ------

Figure 1.1: Framework for urban travel decisions (Ben-Akiva et al., 1996)

The focus of this thesis is on the activity and travel scheduling decisions which affect the

demand for transportation services in an urban area. Several operational travel demand fore-

casting systems model these decisions in a form known as the day activity schedule approach.

(Ben-Akiva et al., 1996; Bowman, 1998). The activity schedule approach first generates a

set of activities an individual performs on a day (e.g number of activities performed on tours

and stops by purpose), and then models the travel dimensions including destination, mode,

and time-of-travel for tours and trips, given an activity pattern (see Figure 1.2). Based on

the priority of the primary activity on each tour, tours are classified as primary tour (i.e.

most important tour of the day) and secondary tours. The choices determined by the upper

level models (e.g. activity pattern models) also account for the various alternatives available

at the lower levels (e.g. tour level) by including logsum variables in their utility functions
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(see Ben-Akiva and Lerman, 1985 for logsum variables and nested logit models). This model

system is reviewed in Chapter 2.

Long Term Choices
(residential/workplace locations, auto ownership)

Activity Pattern
primary activity/tour type,

#/purpose secondary tours

Primary Tours
timing, destination

and mode

Secondary Tours
timing, destination

and mode

Figure 1.2: Day activity schedule approach to travel demand modeling (adapted from Bow-
man, 1998)

Several modeling developments have been incorporated into these models over the last

decade, including better representations of household joint decisions (see Chapter 2 for a

detailed review). Yet, the specification of the activity pattern (generation) model in opera-

tional activity-based model systems is weakly founded in a behavioral theory, and combines a

number of socio-economic, demographic, lifestyle, and accessibility variables based on empir-

ical considerations (Abou-Zeid and Ben-Akiva, 2012). The extensions to this framework that

seek to enhance the specification of the activity generation model may broadly be classified

into two groups as econometric and behavioral. The first extension maintains the standard

activity pattern utility specification but adds information about the utility using well-being

measures. By using individuals' self-reported satisfaction levels with their chosen activity

patterns as indicators of the utility of these patterns (through measurement equations), it

is anticipated that the resulting model will be more efficient than one without well-being

measures (see Abou-Zeid (2009), for an example in a mode choice context).
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The second extension aims at enhancing the activity generation models by specifying mod-

els which are more strongly founded in a behavioral theory. Based on the theory of needs

(Maslow, 1943), Chapin (1974) described that individuals make activity choices to satisfy

various needs like survival, social encounters, and ego gratification. Thereafter, several

studies have discussed the conceptual relationship between human needs and activity par-

ticipation, and the role of time and budget constraints in limiting activity participation and

the extent of need-satisfaction individuals attain. The idea of a limiting time constraint has

been formulated in models explaining trip chaining and joint models of multiple dimensions

of activity choice including time-of-travel, sequence, mode, etc. (see Adler and Ben-Akiva

(1979); Eluru et al. (2010))

However, most studies that explore the relationship between needs and activities are con-

ceptual, rule-based, or generally do not develop the needs-activity relationships into an

analytical model (Adler and Ben-Akiva, 1979; Mirki et al., 2011; Nijland et al., 2010; West-

elius, 1972). Arentze et al. (2009b) developed an analytical model of needs and activity

generation where the utility of an activity is affected by the satisfaction of the need and an

activity is performed if its utility exceeds a certain threshold (representing time pressure).

The model predicts which activities are performed on a given day, but not their sequence,

location, duration, start times, and travel modes. A method to estimate the model using

one-day household travel survey data is proposed, which, however, requires knowledge of the

last time an activity was conducted before the survey day, either based on a random draw

(Arentze et al., 2011) or based on an extended travel survey (Nijland et al., 2012).

Given the state of art and practice of activity-based models, there is scope to improve the

specification of the activity generation models, which are critical to the predictive capability

of the day activity schedule approach. To this end, this thesis develops a framework for

needs-based models of activity generation for travel demand modeling. It aims to develop
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analytical models that have greater behavioral realism than conventional activity generation

models, and can be empirically estimated from standard travel diary data.

1.2 Key Contributions

This thesis models the relationship between activity participation and need-satisfaction.

Based on the theory of needs, it describes individuals' activity participation as aimed at

satisfying their needs (e.g. physiological, safety, etc.). Individuals conduct several activities,

each of which satisfies one or more of their needs. Within this framework, it models indi-

viduals' choice of activity dimensions (e.g. frequencies, locations, sequence, durations, etc.)

as one that maximizes their need-satisfaction. This approach draws on ideas from inventory

theory (as in some other studies on needs) to conceptualize the evolution of the need. Ev-

ery need is associated with a "psychological inventory", which is viewed as an indicator of

need-satisfaction, and is replenished, by a quantity called activity production, each time an

individual conducts an activity that satisfies the need; the psychological inventory depletes

over time as the need builds up. A conceptual formulation of a needs-based model of activity

generation is developed. Based on this conceptual formulation, an analytical formulation of

a needs-based psychological inventory maximizing model of activity location, duration, and

frequency is developed. In this thesis, a solution of the model for a single need and the

activity that satisfies the need is presented, and its properties are studied. An estimation

procedure is developed that can be applied to single day travel diary data with no knowl-

edge about the last time an activity was conducted. The model is verified empirically using

standard travel diary data from the Denver Metropolitan Area.

The models developed in this thesis integrate key ideas from consumer choice theory and the

theory of needs to enhance the specification of conventional based models. Several behavioral

enhancements, including heterogeneity in individuals' characteristics (e.g. time availability

to conduct activities, rate of consumption of psychological inventory of need, etc.), resource

constraints (e.g. limited availability of time and money), and satiation (i.e. decreasing
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marginal returns from conducting the activity for longer durations) are incorporated to

improve the behavioral richness. A conceptual framework to extend the single need - single

activity analytical model developed and estimated in this thesis to the general case of multiple

needs for an individual is presented. The framework is extendable to develop models of social

interactions including intra-household activity allocation and joint activity participation.

Moreover, the framework can be extended to develop models of dynamic and real time

activity choices, which can be integrated with transportation and traffic simulators to capture

more realistically the short term activity and travel rescheduling decisions in response to

transportation network performance (as illustrated in Figure 1.1).

The needs-based approach developed in this thesis is promising and has the potential to

improve the behavioral realism of conventional activity-based models.

1.3 Thesis Organization

This thesis is organized as follows.

Chapter 2 reviews the background material to this study. It presents a review of the various

trip-based, tour-based and activity-based approaches to modeling travel demand. It also

reviews econometric advances in the area of discrete choice modeling which have been in-

corporated in activity-based modeling to enhance the specification, including heterogeneity

among individuals, and use of well-being indicators through measurement equations. The

relationship between needs and activities as described in the literature is also reviewed in

this chapter to motivate the needs-based approach developed in this thesis.

Chapter 3 models the relationship between an individual's need-satisfaction and activity

participation. The notion of "psychological inventory" as an indicator of an individual's

level of satisfaction with respect to a need is presented to provide a framework for the ana-
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lytical models developed in this thesis. In this framework, an individual conducts activities

to satisfy his/her needs, and replenishes his/her psychological inventory by a quantity called

the "activity production" each time he/she conducts an activity that satisfies a need. The

individual's needs build up over time, and the psychological inventory depletes when this

happens. A steady-state optimization model is formulated that hypothesizes that individ-

uals choose their activity dimensions (e.g. sequence, location, duration, expenditure, and

frequency) in a way that maximizes their need-satisfaction. A solution procedure is de-

veloped for the case of a single need and the activity that satisfies the need. The solution

properties are studied, and explored for a translog functional form of the activity (inventory)

production function.

Chapter 4 develops an empirical model that can be estimated from standard travel diary

data. A likelihood estimator is developed for the joint choice of activity location, duration,

and frequency. Results from a Monte-Carlo experiment are presented, that show that the

true parameters can be recovered from observable data. Finally, a case study using travel

diary data from the Denver Metropolitan Area is presented. Estimation results indicate

the potential of the needs-based approach to enrich the specification of activity generation

models in conventional activity-based model systems.

Chapter 5 discusses a conceptual framework to extend the model developed in Chapters 3

and 4. Specifically, it discusses enhancements to the single need - single activity model,

and the conceptual issues with respect to extending it to multiple activities and needs un-

der steady-state conditions. It also provides a discussion of the dynamic formulation of the

needs-based model that can be used to model the activity and travel rescheduling decisions

described in Section 1.1.

Chapter 6 concludes the thesis by summarizing the objectives, approach, and key contribu-

tions of this research. It discusses the policy implications and the limitations of the research,
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and directions for future research.

22



2 Literature Review

This chapter presents a review of the literature in the areas of travel demand analysis and

behavioral modeling that are relevant to this thesis. Section 2.1 reviews various disaggregate

travel demand forecasting approaches. Section 2.2 presents a review of a few operational

activity-based demand model systems, which this thesis aims to improve. Recent studies

that have tried to enhance the specification of activity-based models are reviewed in Section

2.3 to provide the context for this thesis. Finally, the state of the needs-based approach,

which is the primary focus of this thesis, is reviewed in Section 2.4. It reviews qualitative

studies and critiques the existing analytical needs-based models. Finally, Section 2.5 con-

cludes the literature review.

2.1 Disaggregate Travel Demand Forecasting Approaches

As described in Chapter 1, the disaggregate modeling approach to travel demand analysis

has been in practice in the United States since the 1970's. This class of models is estimated

using data about individual or household choices, and capture the heterogeneity in indi-

viduals' decision-making process. Through the 1970's and 1980's, several methodological

improvements were made to the disaggregate travel demand modeling approaches, which

were operationalised in practical model systems by metropolitan planning organizations.

While a brief review of the early disaggregate model systems is presented here, the inter-
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ested reader is referred to Bowman (1995) for a detailed review of these systems.

Early disaggregate model systems were trip-based, and considered a trip - defined as a com-

mute from an origin activity center (e.g. home) to a destination activity center (e.g. work

place) with no stops in between to conduct other activities - as the basic unit of model-

ing. While these models shared the basic unit of modeling, the trip, with aggregate model

systems, their strength lied in the fact that they incorporated individual and household

related socioeconomic variables to predict better the impact of policy decisions. However,

since the trips modeled by these models were unlinked, the models were limited in their

predictive power as they failed to capture inter-trip interactions in an individual's decision

making process. The earliest enhancement to this system was provided in the Metropolitan

Transportation Commission (MTC) model system developed for the San Francisco Bay area

(Ruiter and Ben-Akiva, 1978) which modeled trip chains. Horowitz (1980) developed an

integrated trip frequency, destination and mode choice model that enhanced the trip-based

approach by jointly modeling several dimensions of individuals' trips.

With the understanding of trip chaining gaining greater importance, researchers shifted fo-

cus to a tour-based approach, where a tour - defined as a sequence of trips starting from a

location (e.g. home) and ending at the same location (i.e. home), and consisting of several

stops to conduct activities outside the origin - was the basic unit of modeling. The National

Model System for Traffic and Transport of the Netherlands developed by the The Hague

Consulting Group (1992) is an example of a tour-based system. Other tour-based model

systems include the Stockholm tour-based model system in Sweden (Algers et al., 1991), the

Salerno tour-based model system in Italy, and the Italian Transportation System tour-based

model system (Cascetta et al., 1993; Cascetta and Biggiero, 1997).

The tour-based approach, while more comprehensive than the trip-based approach, still fails

to capture interactions between various tours carried out by the same individual. Focus
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shifted to modeling individuals' travel schedules at the level of a day, explicitly capturing

interaction between various tours carried out by the same individual. Complex models of

activity participation, time use and intra-household joint decisions were developed (see, for

example, Adler and Ben-Akiva, 1979; Ben-Akiva et al., 1980, reviewed in the following sec-

tion). As models of daily travel patterns were developed, modeling the motivation for travel,

understanding the role of household and lifestyle conditions on individual decisions, and

the dynamic interaction of travel decisions in response to changing conditions also gained

importance. This led to the development of a modeling approach in which travel decisions

are components of a broader activity scheduling decision bound by time, space and mone-

tary constraints, now commonly referred to as the activity-based approach. A review of the

activity-based modeling approach is presented in the next section.

2.2 Activity-based Approaches

The foundations of activity-based approaches are attributed to Higerstrand (1970), where

he describes the relationship between activity participation and the time-space constraints

that affect transportation choices. The interested reader is referred to Damm (1983), Golob

and Golob (1983) and Kitamura (1988) for a review of the history of activity-based models,

and to Pinjari and Bhat (2011) for a more recent review of the activity-based approach. The

general notion underscored by all these studies is that travel demand is derived from the

demand for activities, and so must be modeled in a larger framework that considers both

activity and travel choices of individuals and households (see, for example, Chapin, 1974;

Jones et al., 1983; Pas, 1984; Goodwin et al., 1990). Since the primary objective of this

thesis is enhancing the activity-based approach to travel forecasting, this section provides a

review of the precursors to activity-based models, and operational and prototype activity-

based model systems. The operational systems are representative of the best current practice

worldwide, while the prototypes demonstrate various aspects of the current frontier in model
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development.

2.2.1 Precursors to Activity-based Models

Among the earliest analytical models to model the relationship between individuals' daily

activity and travel patterns were the two interrelated models developed by Ben-Akiva et al.

(1980). While the first group of models focus on modeling activity duration and time budget-

ing by adults in a household amongst shopping, social and recreational activities, the second

group of models focus on activity scheduling, reflecting the daily pattern of activities of adult

workers over five time periods defined with respect to home and work. Each group of mod-

els treats the participation and duration decisions jointly, using a joint discrete/continuous

choice model. Both groups of models incorporate an accessibility variable from a conditional

mode and destination choice model. This measure of the availability and ease of transporta-

tion to the modeled activity is specific to the worker's home and work locations, as well as

the activity purpose. The model provides a framework to model intra-household activity

participation jointly with time allocation (duration), and incorporates measures of accessi-

bility. However, it is limited to non-work activities on a work day.

Adler and Ben-Akiva (1979) developed a model of daily non-work travel patterns. In this

model, the choice of travel pattern is modeled as a single complex decision, in which many

component decisions together define a day's travel. The model is implemented as a multi-

nomial logit model. Each alternative in the model is defined as a specific combination of

1) number of tours, 2) number of destinations, 3) location for each destination, and 4) the

travel mode for each tour. While this model jointly models the daily travel pattern choice

as a single complex decision, it does not represent activity duration and timing in the travel

pattern decision.
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While these early models successfully modeled a full day's travel pattern, they are consid-

ered precursors to activity-based models, since they did not link activity generation to travel

demand. The next section presents a review of full-fledged activity-based models, which

were motivated by the precursors and are currently used by several metropolitan planning

organizations around the world.

2.2.2 Activity-based Models

Full-fledged activity-based travel demand model systems, with integrated modeling of activ-

ity and travel choices were in development by the 1990's. A general framework that describes

the relationship between activity and travel decisions was provided by Ben-Akiva et al. (1996)

(also see Kitamura et al., 1996 for an alternate framework of a sequenced activity-mobility

simulator). A review of activity-based models and their potential in modeling systems to as-

sist in policy decisions was presented by Axhausen (2000). Over the last two decades, several

operational model systems have been developed, which according to Pinjari and Bhat (2011),

can broadly be classified into one of the following categories: (1) Rule-based model systems,

and (2) Utility maximization based econometric model systems. Several other approaches,

including: (a) Time-space prisms and constraints, and (b) operations research/mathematical

programming approaches have been employed, either in combination with the above or sep-

arately, to develop activity-based model systems. Pinjari and Bhat (2011) also note that

most operational model systems are based on a combination of two or more of these ap-

proaches, rather than exclusively based on any one of them. In this section, a brief review

of the rule-based and econometric models is presented. An approach called the day activity

schedule approach, which this thesis seeks to improve upon, is also reviewed in this section.
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2.2.2.1 Rule-based Model Systems

Girling et al. (1994) defined rule-based model systems as those that specify how a choice is

made based on a set of rules in the form of condition-action (if-then) pairs. This approach

is based on the notion that individuals use heuristics to make decisions about travel and ac-

tivities based on the context, rather than thinking about the choice as an outcome of utility

maximization (Timmermans et al., 2002). Consequently, these models provide an exhaustive

set of rules to specify how decisions are made under different possible contexts. While this

approach is hailed for its simplicity, it is limited by the modeler's ability to determine the

factors that affect activity and travel decisions. Moreover, most model systems based on this

approach consider activity generation to be exogenous (provided by an external source), and

focus only on the scheduling or sequencing of activities. Even for activity scheduling and se-

quencing, it is difficult to enumerate all the decision rules underlying such a complex process.

However, these model systems have been successfully implemented in practice despite these

limitations, and this section reviews three rule-based model systems, namely STARCHILD,

ALBATROSS and TASHA.

1. Simulation of Travel/Activity Responses to Complex Household Interactive Logistic

Decisions (STARCHILD, see Recker et al., 1986a and 1986b) is the earliest example of

a full-fledged rule-based model that provides a unified framework for activity and travel

demand analysis. The model uses an activity program, defined as a set of activities

that an individual wants to conduct in a given timeframe (without a known schedule),

as an exogeneous input. Using this input, the model generates a feasible set of activity

patterns, which includes the activities to be conducted with their sequence, by using

a set of rules. It incorporates time-space, household and transportation system con-

straints in the enumeration of feasible daily activity patterns, and incorporates activity

pattern attributes such as available free time, risk of missing important activities and

availability of family time in the activity pattern choice model. Finally, it employs a
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utility maximizing framework to explain the choice of an activity pattern from this

feasible set. It is the earliest example of a model system that could generate disaggre-

gate travel demand based on an activity program. However, the fact that the model

system assumes an externally supplied detailed activity program, making no provision

for the modeling of activity location or duration, is a weakness.

2. A Learning-BAsed TRansportation Oriented Simulation System (ALBATROSS, see

Arentze and Timmermans, 2004) is a rule-based model system that exploits the notion

of rigid and flexible activities to schedule activities. Based on an activity diary that

describes an individual's characteristics, and activity sequence, purpose, timing and

duration, it generates an activity schedule by combining this information with a set of

constraints, land-use data and transportation system characteristics. It first schedules

rigid activities (e.g. work, school, picking up a child from day care, etc.) and then

goes on to add flexible activities (e.g. shopping, recreation, etc.). Once the activity

pattern is known with the sequence of trips, the model determines timing, trip chaining

patterns, mode choice and destinations. The model allows for resequencing of activities

during the scheduling process, to resolve conflicts. ALBATROSS uses observed data

to derive the heuristics, rather than specifying them based on ad-hoc rules. However,

since there is no theoretical basis for the choice of heuristics, the applicability of the

model is limited.

3. Travel and Activity Scheduler for Household Agents (TASHA, see Miller and Roorda,

2003; Roorda et al., 2008) is an advanced model system that schedules activities with

the objective of conducting "projects". Projects are defined as a set of coordinated

activities performed to achieve a common goal. For example, activities such as shopping

for food, preparing meals, and having a dinner with guests are all tied together by a

common goal, which is to hold a dinner party. For each project, a list of activity

episodes is generated that can potentially be executed in the context of the project.

The model also recognizes and incorporates the idea that activity scheduling is a path-

dependent process and the final outcome of the scheduling process depends on the order
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in which decisions are made. Thus, the agenda is dynamically augmented with further

details (such as add an activity, or delete an activity either because it is executed

or canceled) until the project's purpose is fulfilled. Innovative and intuitive concepts

such as activity precedence and scheduling conflict resolution are utilized to inform the

development of path dependent (or dynamic) schedule planning and adjustment (or

rescheduling) strategies and household-level interdependencies.

While rule-based model systems have been used, their choice of rules based on empirical con-

siderations has repeatedly been questioned. Moons et al. (2005) evaluate existing rule-based

model systems, particularly ALBATROSS, to study the impact of simplifications employed

in rule-based model systems, to conclude that identifying the factors that affect scheduling

decisions is key to good performance of the heuristics chosen. On the other hand, the econo-

metric model systems discussed in the next section are considered superior since they are

based on utility maximizing consumer theory.

2.2.2.2 Utility Maximization-based Model Systems

Based on the theory of a rational utility-maximizing consumer, these models predict ac-

tivity and travel decisions using (discrete and continuous logit type) econometric models.

In addition to the discrete choice models, several model systems employ other econometric

structures, including hazard-based duration structures, and ordered response structures to

model various activity-travel decisions. In all, these model systems employ econometric sys-

tems of equations (most of which are utility maximization-based) to capture relationships

between individual-level socio-demographics and activity-travel environment attributes on

the one hand and the observed activity-travel decision outcomes on the other. Since they do

not impose any externally supplied ad-hoc rules, but rather estimate the model parameters

from observed data, these models are considered superior to rule-based models.

An econometric activity-based travel demand model system was operationalized in an ap-
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proach known as the day activity schedule approach by Bowman (1998) (see also, Bowman

and Ben-Akiva, 2001). This approach has now been adopted by several metropolitan plan-

ning organizations in the United States including Portland (Bowman et al., 1998), San

Francisco (Bradley et al., 2001), New York (Vovsha et al., 2002), and Sacramento (Bowman

et al., 2006). In this approach, an individual's activity pattern is generated for a day, and

then the travel choices to conduct these activities are determined by forming tours and trips.

The later decisions (e.g. travel choices) are conditional upon the earlier decisions (e.g. activ-

ity choices), while the earlier decisions account for the later decisions by including measures

of accessibility. The features of the Sacramento model are described in Section 2.2.3 as an

example of a day activity schedule based model.

Other econometric model systems that have been developed and operationalized since the

day activity schedule approach include the Comprehensive Econometric Microsimulator for

Daily Activity-Travel Patterns (CEMDAP, see Pinjari et al., 2008) and the Florida Activity

Mobility Simulator (FAMOS, see Pendyala et al., 2005).

CEMDAP is a continuous time activity-travel forecasting system that is based on a range

of discrete choice, hazard-based duration, and regression based econometric models. While

similar in hierarchy to the day activity schedule model, CEMDAP additionally provides for

separate frameworks for representing and modeling workers' (and school going children's)

and non-worker's (and non-school going children's) choices. It also models intra-household

interactions between parents and children.

FAMOS is similar to CEMDAP in the explicit recognition of space-time constraints and the

continuous time nature of the modeling system. Higerstrand's space-time prisms are uti-

lized to represent and model the spatial and temporal constraints under which individuals

undertake activities and trips (hence, the name prism-constrained activity travel simulator).

The boundaries (or frontiers) of these space-time prisms, within which the individual activ-
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ity travel patterns must take place, are determined by using stochastic frontier models (see

Pendyala et al., 2002). Subsequently, the activity-travel patterns are simulated within the

boundaries of the space-time prisms.

This section provided a brief review of various activity-based modeling approaches that are

currently in practice. Examples of operational model systems based on the approaches,

broadly classified as rule-based and econometric, were provided. The next section reviews

the day activity schedule approach, which is widely used by practitioners.

2.2.3 The Day Activity Schedule Approach

The overall framework for model systems based on the day activity schedule appoach devel-

oped by Ben-Akiva et al. (1996) is as shown in Figure 1.2. This section presents a review

of the Sacramento model (Bowman et al., 2006), called DaySim, as an example of a day

activity schedule based model system. DaySim consists of an econometric micro-simulation

system with a three-tier hierarchy of: (1) Day-pattern level choice models, (2) Tour-level

choice models, and (3) Trip/Stop-level choice models.

The day-pattern level models consist of the day activity pattern model and the number of

tours model. These models predict: (a) the occurrence (and the number) of home-based

tours (i.e., tours that originate and end at home) by the purpose of the main/primary ac-

tivity on the tour, classified into the following seven activity purposes: work, school, escort,

personal business, shopping, meal, and social/recreational, and (b) the occurrence of addi-

tional stops/trips that may occur for these seven purposes (as 0 or 1+ stops).

The tour-level models predict the primary destination (i.e., the destination of the primary

activity for which this tour is made), travel mode, time-of-travel of travel (i.e., time of arrival

at, and time of departure from primary destination), and the number of additional stops by
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purpose (other than the primary activity) for all tours. Tour-level models also include a

work-based sub-tour (i.e., a tour that originates and ends at work) generation model that

predicts the number (and purpose) of work-based tours for each home-based work tour the

individual undertakes.

The trip-level (or stop level) models predict the trip location (or destination of the stop),

mode, and time-of-travel for each of the trips (to stops other than the primary activity of a

tour) generated in the previous steps. An individual's daily activity and travel plan, which

consists of a list of activities with their purpose, location, and the mode, and time-of-travel

for the trip undertaken to reach these activities, is created by these models, thereby provid-

ing a fully disaggregate representation of travel demand.

The key strength of the day activity schedule approach lies in its ability to provide an inte-

grated representation of activity and travel choices, related in the model framework through

a tree structure with accessibility logsums. This approach has received a lot of attention

over the last decade, and has constantly been enhanced in several ways. The next section

discusses these enhancements.

2.3 Enhancements to Activity-based Approach

This section deals with recent advances in the area of activity-based modeling that have

aimed at improving the approaches reviewed in Section 2.2. The key areas in which these

models have been improved include: (1) modeling intra-household interactions and joint

activity participation, (2) modeling time use and budgeting to account for limited resource

availability, (3) modeling multi-day activity schedules, (4) modeling activity planning, (5)

incorporation of well-being indicators to enhance the econometric specification, and (6) be-

havioral enhancements to activity-based models. The first five enhancements are discussed
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in this section, while the last one is discussed in the next section.

2.3.1 Intra-household Interactions

While early activity-based travel studies and operational models ignored the interactions be-

tween individuals within a household, more recent studies and models have emphasized the

need to explicitly consider such interactions and model joint activity participation within a

household. Bhat et al. (2011) developed a model of intra-household interactions, motivated

by evidence that shows that individuals in a household do not make activity decisions in

isolation (see, for example, Gliebe and Koppelman, 2002). Moreover, there is some rigidity

involved in joint activities, since it involves synchronization of activity and travel sched-

ules of multiple individuals in the household (Timmermans et al., 2002). Finally, there is

also evidence that joint household activities are systematically different from individual ac-

tivities with respect to activity and travel dimensions (Srinivasan and Bhat, 2006; Vovsha

et al., 2003). These studies argue that joint activities typically involve longer trips, activi-

ties with longer durations, using larger and more spacious vehicles. Consequently, modeling

intra-household joint activity participation has received much attention. Simplistic models

include some measure of household interactions in the utility functions (e.g. by including

variables such as presence of children in the household, number of household adults or work-

ers, etc.). Bhat et al. (2011) estimated a household-level activity pattern generation model

that predicts, for a typical weekday, the independent and joint activity participation deci-

sions of all individuals (adults and children) in a household, for all types of households, for

all combinations of individuals participating in joint activities, and for all disaggregate-level

activity purposes. A multiple discrete continuous extreme value model framework is used

(Bhat, 2008), wherein the household's utility from performing several activities is maximized

by determining the optimal allocation of time to different activities. However, it is important

to note that there is a trade-off between the realism added by explicitly modeling household

interactions and the resulting computational and model complexity.
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2.3.2 Time Use and Budgeting

Extensions that deal with time use and budgeting focus on studying how limited time avail-

ability drives activity and travel choices of individuals. The travel pattern model developed

by Adler and Ben-Akiva (1979) is an early example of a model that accounted explicitly

for the relationship between travel choices and time use, by modeling trip chaining behav-

ior. More recently, several studies have modeled explicitly the impact of time budgeting on

activity participation. Using the multiple discrete continuous choice framework developed

by Bhat (2008), Pinjari and Bhat (2010) developed a model of non-worker activity time-use

and time-of-travel choices. Under this framework, an individual is modeled as choosing one

or more alternatives from a choice set consisting of alternatives that are distinguished by

the activity purpose, time-of-travel, and mode. Additionally, activity duration is modeled

as a continuous variable, and is bound by a time constraint that ensures that the total time

spent on all activities, in-house and out-of-house, does not exceed the total time available

on any day. The location choice for these activities is introduced as a nested choice, con-

ditional upon the purpose, mode and time, and is modeled as a multinomial choice model.

While these models capture an important aspect of activity participation, i.e. limited time

availability and time budgeting, they do not attempt to model the underlying behavioral

processes that motivate activity participation and choices.

2.3.3 Multi-day Activity Generation

The importance of modeling activity choices across multiple days is well recognized in the

literature. Kitamura (1988) argued for the importance of modeling multi-day activity choices

and questioned if unbiased representation of travel behaviour is possible at all with one-day

data because of the day-to-day variations. The lack of progress in this direction, however,

has been explained by limited availability of data. Most travel surveys are restricted to single

day travel diary records, and limit the ability to model activity choices (especially frequency

choices) across multiple days.
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However, several modelers have attempted to collect multi-day data and formulate models.

For example, Hirsh et al. (1986) developed a dynamic model of weekly activity pattern. In

this study, an activity program for a fixed time period (e.g. a week), defined as a set of

activities to be conducted without its schedule, is taken as the input to determine the activ-

ity patterns, defined as the activities with a known schedule. The activity schedule choices

are determined by breaking the overall time period (i.e. the week) into smaller time periods

(e.g. a day). Initially, a plan is made for each of the smaller time periods (days), and the

plan for the first time period (day) is executed. After the plan is executed, the plan for the

remaining days is updated and the updated plan for the second day is executed. This process

is iteratively carried out till the end of the week. The model uses a logit structure and allows

for interaction between different days through interaction terms in the utility functions. An

empirical model is estimated for an individual's weekly shopping activities.

A significant study in this direction is the Mobidrive project, which collected travel diary

data for a continuous period of six weeks. The data included detailed activity and travel

information (including locations, durations, expenditures, times-of-travel, etc.) on all days

during the 6-week period (Axhausen et al., 2002). This dataset has been used extensively

to study temporal variation in activity-choices including day-to-day variation, dynamic ac-

tivity frequency choice, etc. (see, for example, Sch6nfelder and Axhausen, 2001; Susilo and

Kitamura, 2005; Chikaraishi et al., 2010).

More recently, interest has been regained in modeling multi-day activity generation in the

context of needs-based approaches. The models that fall under this category are reviewed

in Section 2.4.
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2.3.4 Activity Planning

Recently, research effort has been focused on modeling activity planning decisions. This

body of literature models various dimensions of activity choices and studies the order in

which various dimensions are planned. First, several studies assume that individuals' ac-

tivities may be broadly classified as fixed (e.g. work, school) and flexible (e.g. shopping,

recreational). This notion has been questioned in the context of changing lifestyles with

a greater need for work-life balance, wherein individuals have the option of working from

home with flexible timings. Moreover, conventional model systems determine the order in

which activity dimensions (e.g. location, mode, time-of-travel) are chosen based on rules

or empirically. Activity planning research has focused on modeling this planning process

between planning of activities and their execution.

Doherty et al. (2004) collected data on activity planning by conducting an extended activity

scheduling survey. In this study, respondents were required to record their activity schedule

plans during a 7-day period. On each day, individuals recorded all the activities they planned

to conduct through the week, including the level of detail to which different dimensions had

been decided. For example, an individual could record on Day 1 that he/she would perform

shopping on Day 5 or 6 at a specific location. In this case, the location was determined with

certainty, while the day and exact time-of-travel were not specified exactly. Other decisions

including mode, activity duration, etc. were not made at this point. Similarly, on each day,

the individual updated his/her plan for the remaining week, and additionally reported the

activities that were conducted on that day. At the end of the survey, multi-day travel data

including activity planning and scheduling information were available.

Kourous and Doherty (2006) developed hazard models to predict the duration of time be-

tween planning and execution of pre-planned activities based on attributes of activities and

characteristics of decision-makers. The model was estimated with data collected by Doherty
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et al. (2004). The study reveals that several overriding personal and situational factors,

apart from activity purpose, play an important role in the planning decisions. The extension

of activity-based models to incorporate activity planning decisions is important to enrich the

policy sensitiveness of these models.

2.3.5 Including Well-being and Happiness Indicators

There is evidence in the literature that suggests that activity and travel choices are made

to maintain or enhance well-being (see, for example, Abou-Zeid and Ben-Akiva, 2012). It is

possible to enhance the specification of activity-based models by including explicitly mea-

sures of activity and travel well-being and happiness. There are a large number of studies

that have analyzed commute stress and used quantitative methods to explain happiness as a

function of causes and correlates using regressions. Happiness has also been modeled within

the framework of discrete choice models as an additional explanatory variable in the utility

(Duarte et al., 2008). A detailed review of these approaches may be found in Abou-Zeid

(2009), where a framework is developed to use happiness measures as indicators of utility

in random utility models. The study proposes model frameworks that include additional

happiness indicators, collected through additional questions about decision-makers' happi-

ness and satisfaction with their activity and travel choices asked during a travel survey. A

case study is presented in the context of mode choice models where it is found that adding

happiness indicators results in a gain in efficiency. Abou-Zeid and Ben-Akiva (2012) provide

a framework to apply this approach to enhance the specification of activity-based models.

This section presented a review of enhancements to activity-based models in five key direc-

tions, including: (1) modeling intra-household interactions and joint activity participation,

(2) modeling time use and budgeting to account for limited resource availability, (3) mod-

eling multi-day activity schedules, (4) modeling activity planning, and (5) incorporation of
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well-being indicators to enhance the econometric specification. The next section reviews a

behavioral extension to activity-based modeling approach, which focuses on modeling the

motivation for activity participation.

2.4 Needs-based Approach

A key weakeness of the operational activity-based models, particularly the day activity sched-

ule approach, is in the specification of activity generation (or pattern-level) models. Existing

activity pattern models are specified as utility-maximizing econometric models based on em-

pirical considerations (see Abou-Zeid and Ben-Akiva, 2012). For example, the day activity

schedule approach creates a choice set of activity pattern alternatives based on observed

data. The model is specified and estimated with various socio-economic variables, and a

best model specification is chosen based on statistical significance. A key weakness is in the

choice set generation and the model, which is not founded in a behavioral theory that explains

individuals' activity choices. While models concering time use provide a basic framework

to explain how individuals trade off different activities given a time budget, they do not

explicitly model the drivers of activities. This section deals with recent advances in the area

of activity-based modeling that deal with explaining activity choices based on a behavioral

theory, namely the theory of needs.

As early as the 1970's, Chapin (1974) argued that an individual's activity participation

is driven by basic human desires, such as survival, social encounters and ego gratification,

drawing from the theory of human motivation as proposed by Maslow (1943). More recently,

several other studies including Bowman and Ben-Akiva (2001) also argued that activity de-

mand is also moderated by various factors including, for example, commitments, capabilities

and health. Several studies have discussed the relationship between activity participation

and human need-satisfaction qualitatively, and few studies have attempted to model this

relationship analytically. This section is organized as follows. First, a review of the theory
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of needs and human motivation is presented. Following this, a review of literature from

transportation and behavioral research is presented that discusses the relationship between

needs and activities. Then, recently developed analytical studies that provide a framework

for a needs-based model are reviewed. Finally, the contribution of this thesis is presented in

the context of the state of the art.

2.4.1 Theory of Needs and Human Motivation

Abraham Maslow's seminal paper entitled "A theory of human motivation", provides a

framework to understand human actions (see Maslow, 1943). According to this theory,

individuals perform actions (activities) only as a means to satisfy end goals. To this end, he

classifies the end goals, called needs, into the following five categories: (1) physiological, (2)

safety, (3) love/belonging, (4) esteem, and (5) self-actualization (see Figure 2.1, commonly

known as Maslow's pyramid or hierarchy of needs). He explains the four bottom needs as

deficit needs (D-needs), which may be viewed as obstacles in the way of individuals on the

path to engage in the top level need of self-actualization, also known as benefit need (B-

need). In his theory, an individual satisfies his/her B-need only after all the D-needs are

satisfied.

An important extension of this theory that is relevant in the context of this thesis was

provided by Alferder (1972) in a theory called the Existence, Relatedness and Growth (ERG).

He reclassified Maslow's physiological and safety needs as "existence", love/belonging as

"relatedness", and esteem and self-actualization as "growth". In addition, he hypothesized

that these needs coexist for the same individual at the same time, and identified a transition

process between them. The coexistence of needs, as theorized by ERG, provides a framework

to model multiple needs of an individual, as satisfied by conducting multiple activities.

Another behavioral theory that has received attention in the area of transportation was

provided by Selye (1975). In this theory, Selye defines "stress" as a response to a "stressor"

40



Seif-actualzation

Esteem

Love/belonging
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Figure 2.1: Maslow's hierarchy of needs (Maslow, 1943)

which acts as a stimulus. In this theory, he classifies stress reactions into (1) Eustress that

motivates and enhances physical and psychological reactions, and (2) Distress that is not

resolved through coping or adaptaion, which may lead to anxiety and regression. The two

types of stress may coexist and drive individuals to conduct different types of activities.

In the context of activity-based models, it is important to understand from these theories

of human motivation or needs that activities are conducted to satisfy needs. While activi-

ties are conducted by individuals and are observed, needs are latent and are not explicitly

observed. An activity may satisfy several needs. For example, going out for dinner with

friends satisfies both physiological/existence need for food and love/belonging/relatedness

need for friendship. Conversely, a need may be satisfied by several activities. For example,

the physiological need for food may be satisfied by eating at home, or at a restaurant, with
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friends/family or alone.

Individuals satisfy their needs by conducting different activities periodically. When they do

not conduct activities that satisfy a particular need for a period of time, the need builds

up. Their choice of activities to be conducted is motivated by their desire to satisfy this,

and other unmet needs. However, their ability to conduct activities is restricted by limited

availability of resources such as time, money, etc. Evidence from the marketing literature is

relevant in this context. For example, Ariely (2008) explains, based on empirical evidence,

that individuals' happiness (which is directly related to their satisfaction of needs) is higher

when they conduct activities (referring to purchasing behavior) intermittently, so that their

needs are constantly satisfied. Conversely, if they conducted the activities occasionally with

longer gaps between successive episodes, their level of happiness (need-satisfaction) decreases

considerably by the time the activity is conducted again, thereby affecting their overall state

of happiness (see, for related literature, Kahneman et al. (1993); Ariely and Loewenstein

(2000)).

Based on the theory of needs and human motivation, a framework to model activity gen-

eration may be developed as shown in Figure 2.2. According to this figure, travel demand

(mobility) is derived from the demand for activities; this forms the basis for activity-based

approaches. This framework is extended by explaining activity demand as motivated by

needs. Given this framework, literature in the area of needs-based approaches to activity

generation is reviewed in the next section.

2.4.2 Needs in Activity-based Approaches

Several studies in the travel demand analysis literature have discussed that activities are

conducted to satisfy needs. Most of these are conceptual, rule-based, or generally do not de-

velop the needs-activity relationships into an analytical model (see, for example, Westelius,

1972; Adler and Ben-Akiva, 1979; Nijland et al., 2010; Mirki et al., 2011).
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Needs

Activities

Mobility

Figure 2.2: Needs as motivators of human activites

Two significant attempts at modeling needs as drivers of activities are discussed here. The

first, by Meister et al. (2005), implemented needs into an operational model of activity

scheduling. The second, by Arentze et al. (2009b), developed an analytical utility-maximizing

framework for needs-based activity generation in both single-day and multi-day contexts.

In the context of an activity scheduler used with a dynamic traffic simulation tool, Meister

et al. (2005) operationalize the idea of needs and stress. In this model, activities are modeled

to increase an individual's level of utility. Conversely, travel is modeled as causing disutility

(unless other activities are conducted during travel, which is currently not modeled in the

framework). Therefore, when a decision to conduct an activity is made (i.e. an activity is

chosen to be conducted and scheduled), the difference in utility before and after conduct-

ing the activity is evaluated, and the alternative that provides the maximum increase (or

minimum decrease in case of travel) is chosen. The model also accounts for satiation ef-

fect, by modeling decreasing marginal utility with increasing activity duration. While this

framework is attractive, the choice of feasible activities is determined empirically based on

rules. Moreover, the framework focuses on the scheduling decision and pays little attention
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to activity generation.

The second set of studies formulate a needs-based utility maximizing model of activity

choices. Drawing from inventory theory used in the supply chain management literature,

Arentze et al. (2009b) implement a model whereby an individual's need-satisfaction varies

with time. Every time the individual conducts an activity, the inventory is replenished (need

is satisfied), while the need builds up if the activity is not conducted for a period of time.

A utility maximizing model is formulated, where at any point in time an activity is chosen

if the amount of utility (inventory) generated by conducting the activity exceeds a certain

threshold. The threshold is also considered to be time varying, to account for day-of-week

variation, and to account for the fact that thresholds are expected to be higher if the ac-

tivity was conducted recently and lower if the activity was conducted long ago. A Bayesian

estimation procedure is proposed to estimate the model since it is set in a dynamic con-

text. However, this formulation requires information about the last time the activity was

conducted by the individual. Since conventional travel surveys collect data on a single week

day, the last time an activity was conducted is determined using a random draw to estimate

the model (Arentze et al., 2011). Alternatively, a multi day travel survey is proposed to col-

lect more information about the frequency at which activities are conducted (Nijland et al.,

2010, 2012).

Nijland et al. (2011) also extend the framework to model interaction between multiple ac-

tivities. They model the trade-off between multiple activities. To do so, the utility function

contains interaction terms between different activities. The model explicitly accounts for the

increase or decrease in the need for one activity by conducting another activity. A Bayesian

estimation procedure is adopted similar to the single activity model described earlier, which

requires information about the last time an activity was conducted.

The notion that activity choices are driven by a desire to maximize need-satisfaction has
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also been used to model the quality of urban environments. In urban planning research, the

quality of urban environment is determined by studying the activities an individual conducts.

The hypothesis is that the choice of activities is limited by the availability of opportunities

to conduct activities, and therefore by constructing time-space prisms based on individuals'

observed activity choices, the quality of the urban environment can be inferred. Arentze

et al. (2009a) adopted a needs-based approach to enhance the measurement of the quality

of urban environments. In this study, the extent to which individuals' needs are satisfied

is measured based on the various dimensions of the activities they conducted. The study

reports that greater sensitivity of activity choices to changes in the urban environment is

predicted by the needs-based approach as against conventional techniques.

In summary, while these studies are the best known needs-based analytical models formu-

lated, they are limited in their applicability due to the data requirements to estimate the

models or due to the assumption they make about the last time an activity was conducted.

An objective of this thesis is to develop needs-based models in a stationary context that

do not require information about the last time individuals conducted activities before the

observed day.

2.5 Conclusion

This chapter presented a review of literature in the area of travel demand analysis and

behavioral modeling, including recent advances from behavioral theories. The evolution of

disaggregate models was discussed to trace the development of activity-based approaches

to travel demand analysis. Operational activity-based models were reviewed to present the

state of the practice in activity-based modeling. Recent advances in activity-based modeling

were discussed to identify gaps in research. Specifically, the need for behaviorally enhanced

activity generation models was identified. The theory of human motivation and needs was

reviewed to provide a behavioral framework to describe human activity choices. Studies in
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the transportation literature that have described needs-based approaches and have imple-

mented needs-based models in activity-based model frameworks were also reviewed. Finally,

shortcomings of the existing needs-based analytical models were discussed to motivate the

objectives of this thesis.
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3 Needs-based Model Framework and

Formulation

This chapter develops a conceptual modeling framework of a needs-based approach to ac-

tivity generation. Section 3.1 develops a conceptual relationship between need-satisfaction

and activity participation and defines the terminology used in the analytical model that

follows. Section 3.1.2 formulates a conceptual model for the general case of multiple needs

and activities. Following this, an analytical optimization model to describe the choice of

activity location, duration, expenditure, and frequency is formulated in Section 3.2. Section

3.3 describes the solution procedure and properties of the solution. Section 3.4 concludes

the chapter.

3.1 Needs-based Approach

This section develops a conceptual relationship between need-satisfaction and activity gen-

eration, drawing from and improving upon the literature described in Chapter 2. Section

3.1.1 defines the terms used in the framework and the analytical formualtion. Following this,

Section 3.1.2 defines the problem to be addressed and sets up an optimization framework

to address this problem. A special case of this general framework for a single need - single

activity model is formulated and solved in the remaining sections of this chapter.
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3.1.1 Definitions

1. Needs: According to the theory of needs (Maslow, 1943; Chapin, 1974), human activ-

ities are motivated by a set of different and distinct needs. There is a finite set of needs

that motivate all human activities, and these needs coexist. A need may be satisfied

by several activities, and conversely, an activity may satisfy several needs. Needs are

unobserved or latent; only the activities that satisfy the needs are observed.

2. Psychological Inventory: We associate a need with a "psychological inventory",

denoted as I, which can be interpreted as the level of need-satisfaction at a certain

point in time (see Figure 3.1). When the need is low, the psychological inventory is

high and vice versa. Over time, the need builds up and so the inventory gets depleted.

The inventory is replenished when the individual performs an activity that satisfies

the need. In other words, the level of psychological inventory corresponds to the level

of satisfaction of the needs. A gain in the psychological inventory of a need may be

viewed as being similar to the utility gained by performing activities that satisfy this

need. In Figure 3.1, the individual conducts an activity that satisfies the need at times

T1, T2, T3 and T4 to replenish the inventory. Between these times, the inventory is

consumed as the need builds up.

3. Activity Production: The quantity of psychological inventory generated by per-

forming an activity is referred to as the activity production and denoted as Q. It is a

non-negative function of the various inputs that are expended to perform the activity,

namely, activity duration Ta, activity expenditure Ca, and activity location attractive-

ness A, where a denotes an activity. Attractiveness is measured by how attractive a

location is for the activity being modeled. For example, to model shopping activity

production, measures of attractiveness may include retail employment density, retail

area, etc. Mathematically, the activity production Q is calculated using the activity

production function, denoted as q(Ta, Ca, A). In Figure 3.1, the individual conducts

the activity with varying levels of inputs (duration, expenditure, and attractiveness) at
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times T1, T2, T3 and T4 to generate Q1, Q2, Q3 and Q4 units of inventory respectively.

The following properties are desired for the activity production function:

a) Monotonicity: With a monotonic production function, the extent to which an

individual's psychological inventory is replenished by performing an activity is

greater when more time or money is spent performing the activity, or when it

is performed at a more attractive location (e.g. shopping at a location with

larger retail space). Mathematically, this condition is written as dq(T ,Ca,A) > 07
dq(Ta,Ca,A) > 0 and dq(Ta,Ca,A) > 0

dCa dA

b) Concavity: A concave activity production function has the property of decreas-

ing marginal returns with respect to inputs. Consequently, the additional benefit

(inventory) gained from utilizing extra resources (time, money, attractiveness)

to perform the activity is decreasing. This property captures satiation in ac-

tivity production. Mathematically, this condition is written as d2 q(TaCa,A) < 0,

d 2q(Ta,Ca,A) d2 q(Ta,Ca,A)
dC , dA2

I t

C)
C)

,0

0

C)

C)

0

.0
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0
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Time

T4

Figure 3.1: Evolution of psychological inventory of a need over time
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3.1.2 Formulation

3.1.2.1 Problem Formulation

Given an individual with known socio-economic characteristics and fixed mobility status (e.g.

residential location, vehicle ownership), the problem to be addressed is how the individual

chooses the location, duration, expenditure, and frequency of activities to be performed

such that his/her need-satisfaction over time is maximized. While some activities are rigid

(e.g. work, school, picking up a child from daycare) and need to be performed at fixed

locations with fixed durations, expenditures, and frequencies, other activities are flexible

(e.g. shopping, recreation). However, the choice of location, duration, expenditure, and

frequency available for performing these flexible activities is constrained by the amount of

time and money available after allocating these resources to the rigid activities.

3.1.2.2 Optimization Framework

The individual chooses his/her activity dimensions, including activity frequency, sequence,

locations, durations, and expenditure for all the activities the individual performs such that

his/her need-satisfaction is maximized over time. For every need that the individual seeks

to satisfy, his/her need-satisfaction is measured by a psychological inventory with respect to

that need. The optimization problem maximizes a function of the vector of psychological

inventories with respect to all the needs an individual wishes to satisfy. The choices are

subject to time and monetary budget constraints, that account for limited availability of

time and income. Additionally, the problem can impose constraints on the level of inventory

that can be reached by an individual, to reflect satiation and the need to maintain a minimum

safety stock.
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3.2 Single Need Single Activity Model

This section develops an analytical model of activity choices for a single need and the activ-

ity that satisfies the need. In reality, individuals conduct several activities to satisfy several

needs. However, in the simplistic model developed here, the various needs and activities

are treated as independent. Using this framework, the decision for every activity an in-

dividual conducts is modeled independently as an optimization model that maximizes the

need-satisfaction resulting from the activity.

3.2.1 Assumptions

The following simplifying assumptions are employed in formulating the model.

1. Single need and single activity: The model considers one need and the activity that

satisfies this need. The need is satisfied only by this activity, and conversely the

activity satisfies only this need. Chapter 5 provides a conceptual framework to extend

the model developed in this chapter to multiple needs and activities.

2. Constant rate of depletion: The level of psychological inventory depletes at a constant

rate A, which may vary across individuals. A relaxation of this assumption is discussed

in Chapter 5.

3. Steady-state conditions: The model is formulated for steady-state conditions wherein

an individual performs the activity at a fixed location i for a fixed duration T and

spends a fixed amount of money C, at constant intervals of time. In Firgure 3.2,

which illustrates the evolution of the psychological inventory of a need over time, the

individual conducts the activity at regular intervals at times T 1, T 2, T3 , etc. with the

same level of activity production Q each time the activity is conducted. Clearly, in

reality individuals do not conduct activities at regular intervals, at the same location,

for the same duration and spend fixed amounts of money. However, travel surveys

usually collect data on a random weekday. Therefore, this steady-state model does
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not capture the short term dynamic activity choices, but instead describes long term

stationary patterns to predict the probability of an individual conducting an activity

on a random weekday. Chapter 5 discusses a framework to extend the model developed

in this chapter to a dynamic model.

4. Minimum cycle time: The activity is performed at most once in a day. Consequently,

the cycle time for the activity, defined as the time between successive performances of

the activity, is at least one day. It can be seen from Figure 3.2 that the cycle time is

given by -Q. The average frequency is the inverse of the cycle time, i.e. .

5. Minimum and maximum levels of psychological inventory: The individual performs the

activity when the level of the psychological inventory drops to a minimum threshold

value denoted as Imn, which can be interpreted as a safety stock for the need. The

maximum level of inventory that the individual can attain by performing an activity is

limited to ',at, the satiation limit, beyond which it is not possible for the individual to

increase his/her level of inventory. It is assumed that the maximum level of inventory

is a characteristic of the individual since it reflects satiation, while the minimum level

of inventory is a decision that the individual makes (i.e. when to "restock").

3.2.2 Mathematical Formulation

The individual chooses a location i, activity duration Ta, activity expenditure Ca, activ-

ity frequency, and a minimum level of inventory to be maintained Imin for performing the

activity such that the individual's need-satisfaction, measured by the average level of psy-

chological inventory over time 'ag (see Figure 3.2), is maximized over time. The maximum

level of inventory attained by an individual by conducting an activity is limited to Isat. It is

clear that the variation in the inventory over time, and not just the average level over time,

also affects the individual's need-satisfaction and activity choices (see, for example, evidence

from the psychology literature reported in Kahneman et al., 1993; Ariely and Loewenstein,

2000; Redelmeier et al., 2003). However, under the steady state assumption, the proposed
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Figure 3.2: Psychological inventory of a need over time under steady-state conditions

formulation is equivalent to a model that maximizes the minimium level of inventory, since

the maximum level (Isat) of inventory is fixed (and is reached under the steady state for-

mulation, see Section 3.3.1) and the minimum level (Imin) is a decision variable. Therefore,

this model accounts for the variation in the inventory over time by fixing the maximum level

as a characteristic, selecting the minirnum level as a decision variable, and maximizing the

average level of inventory over time under steady state conditions. In addition, the individ-

ual's choices are also subject to time and monetary budget constraints. Let TTi and TC1

denote the travel time and travel cost, respectively, associated with performing the activity

at location i. The optimization model is formulated as follows for a given individual:

Maximize ag 1(31
IaT=,mmm±+Q(

i, TT, Cim, Imn4
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Subject to:

Qi = q(Ta - To, C, A) (3.2)

Ta + TTi t(Q) (3.3)

Ca + TCi < c(Q) (3.4)

Imin + Qi Isat (3.5)

Constraint (3.2) expresses the activity production Qi at a location i as a function of the inputs

that are invested in conducting the activity. These include the effective activity duration

(Ta - TO), expenditure (Ca) and location attractiveness (Ai). The effective duration that

produces psychological inventory is less than the actual amount of time spent conducting the

activity by a quantity To, referred to as the set-up time. To, a psychological characteristic

of an individual, accounts for the inefficiency involved with starting up the activity each

time it is conducted, and may be viewed as the minimum time an individual must invest in

conducting the activity each time before any inventory is generated. For a shopping activity,

this may include the time spent on billing, walking from and to the parking lot, etc., which

do not contribute to the actual shopping activity production but are necessary to conduct

the activity. Constraints (3.3) and (3.4) ensure that the total amount of time and money that

the individual spends on performing the activity per cycle are at most equal to the amount

of time and money available for this activity, given that the individual has made decisions

about all other activities. Note that the amount of time and money available depends on

the cycle time (i), given the quantity of time (t) and income (c) available (per unit time)

for this activity. Therefore, if the activity is performed less frequently, the amount of time

and money available per cycle is higher (since the cycle time is higher). Conversely, if the

activity is performed more frequently (with a lower cycle time), less time and money are

available to perform the activity per cycle. Constraint (3.5) ensures that the replenished

level of inventory after the activity is performed does not exceed the satiation limit for the

individual.
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The needs-based model formulated in this section for out-of-home activities that require

travel may also be extended to model in-home activities. For example, online shopping may

be modeled by considering it as an alternative in the location choice set. Its attractiveness

may be modeled using a dummy variable (replacing attractiveness Ai in the activity produc-

tion function). whose coefficient can be estimated empirically. While no out-of-home travel

is involved and hence travel time and travel cost are zero, activity set-up time prevents the

individual from conducting the activity too frequently.

3.3 Solution Procedure and Properties

This section describes a procedure to solve the optimization problem formulated in Section

3.2.2. The problem is solved using a two stage optimization process described in Section

3.3.1. The properties of the resulting solution are discussed in Section 3.3.2.1. Finally, a

flexible translog form is considered for the activity production function to study the solution

properties in greater detail in Section 3.3.2.2.

3.3.1 Solution Procedure

For mathematical simplicity, we assume that the budget constraint (3.4) is not binding. In

reality, time is more often a binding constraint that affects the choice of activities and there-

fore the simplification has little effect on the behavioral realism of the model. Therefore, the

decision on activity expenditure and the corresponding budget constraint are ignored here-

after. A simplistic treatment of the cost budget constraint, without ignoring it completely, is

to incorporate it in the generation of location choice alternatives based on a weekly budget

and expected expenditure at different locations. Since the optimization problem has discrete

(location) and continuous (duration, frequency, and minimum level of inventory) decision

variables, a solution may be obtained in two stages. First, conditional upon a location i

(and thus given TT and Al), the optimal value Tai of activity duration T for each location i
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that maximizes the objective function (Iavg,i = Imin + Qi) is computed. Thus, the optimal

values of the activity production, Qi, and the average level of inventory at each location

(Iavg, = Imin + Qi) can be computed. The optimal frequency of performing the activity at

this location is given by -. In the second stage, the location i that has the highest value of

T avgi is found to be the optimal location.

3.3.1.1 First Stage Optimization Model

The first stage optimization model at a given location i can be formulated as follows:

Maximize 1
avgi = Imin + 1Qi (3.6)

Ta, Imin 2

Subject to:

Qi = q(T - To, Ai) (3.7)

Ta + TTi < t( ) (3.8)

Imin + Qi 5 Isat (3.9)

The Lagrangian function can be written as follows, with Qi defined by Equation (3.7):

1 Q-
Li = Imin + 2Qi + p1(Ta+ TTi -t(2-))+ p2(Imin+ Qi - Isat) (3.10)

In Equation (3.10), p1 and 12 are the Lagrangian multipliers of the time and inventory

constraints, respectively. The optimization problem can be solved by writing the first order

conditions of the Lagrangian, along with the Kuhn-Tucker conditions for the constraints. The

inventory constraint (3.9) becomes an equality on applying the first order condition to the

decision variable Imin. The first order condition, along with the corresponding Kuhn-Tucker
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condition, is written as follows:

dLi = 1 + 2 = 0 P2 = -1 (3.11)
dlmin

p2(Imin + Qi - Isat) = 0 ; P2 < 0 Imin = Isat - Qi (3.12)

We may substitute the value of Imin obtained in Equation (3.12) in Equation (3.6) to for-

mulate the optimization problem with the objective as shown below with constraints (3.7)

and (3.8):

Maximize 1
i avg,i = Isat - Qi (3.13)

Ta 2

This new formulation requires Qi to be minimized, in order to maximize ag,i. Intuitively,

this new model may be interpreted as trying to minimize the depletion from the maximum

level of inventory (Isat), thereby maximizing the average level of satisfaction, subject to a

time constraint (3.8). The Lagrangian can now be expressed as:

1 Q-
Li = Isat - -Qi + p1(Ta +TTi -t(2)) (3.14)

2A

As noted earlier, the activity production at any location is a function of the duration and

location attractiveness (Qi = q(Ta - To, A 1)). To find the optimal value of Ta at location i,

the first order condition in Ta is written as:

dL i  dq(T - To, Ai) 1 t

d ( 2 + I,) + p1 = 0 (3.15)
dTa dTa 2 A

The Kuhn-Tucker condition for the time constraint is written as:

p1(Ta + TT - t( o,A) =0; p< 0 (3.16)
11i(TaT~it( A
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Equation (3.16) may be satisfied when either p1 = 0 or the time constraint is an equality.

Each of these cases is considered separately, and the optimal solution to the first stage

optimization problem is obtained.

Case 1: Constraint is not binding and pi = 0 Substituting p1 = 0 in the first order

condition, Equation (3.15), the value of optimal activity duration at location i, denoted by

Tai, is computed by solving the following equation:

dq(T. - To, A) (3.17)
dTa =

The value of duration obtained by solving Equation (3.17) is optimal if the time constraint

for this value of tai is satisfied, and the second order condition of Li is satisfied as:

d2 Li d2 q(Ta - T Ai) 1
dTa dTa (] <0 (3.18)

Equation (3.18) can only be satisfied if dJq(T.-To,Ai) is positive. However, the assumptiondTa2

of concavity of the activity production function with respect to inputs requires the second

derivative (total, not partial) to be negative. Therefore, a solution to this case would max-

imize Qi, and consequently minimize Li. However, a maximum of the objective function is

obtained when Li is maximized, and hence, since the solution to this case minimizes the

objective function, it is rejected.

Case 2: Constraint is binding and pi < 0 In this case, the time constraint is an equality

and is an equation with a single unknown variable. In other words, the value of duration

(Tai) that maximizes Li and the objective function Iavgi at location i is found by solving the

following equation, where the slack in the time constraint for a duration Ta is referred to as

s(T):

g qliai - To, Ai )
s(Tai) = Tai + TT - t( ' ) =0 (3.19)
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For a general function q(T - To, As), this equation is transcendental and does not have a

closed form solution for the duration. However, knowing that the production function is non-

negative, monotonic, and concave in Ta, the generic shape of s(Ta), given the travel time,

attractiveness, time availability and the function q, is as shown in Figure 3.3, which also

illustrates the variation of activity production as a function of activity duration. Note that

depending on the values of the parameters in the constraint equation, the s(T) curve may

always be increasing (i.e. if "T > 0 V T > 0). However, this case is not illustrated sincedT.

it always corresponds to infeasibility of the constraint equation (i.e. s(T = T) > 0, d(Ta) >dTa

0 V Ta > To => s(Ta) > 0 V Ta > TO). Depending on the values of the various parameters in

I- Time Cotvzrirt Slack - Ac*%'ity Poa~

TT+To - - -

To Ta

Figure 3.3: Variation of activity production and the constraint slack with respect to activity
duration

the constraint equation, the actual slack curve may be either shifted upward or downward

from the one shown in Figure 3.3. Consequently, the constraint equation may have two

solutions (as shown in the figure, or when the slack curve shifts down), one solution (when

the slack curve shifts slightly upward), or no solution (when the slack curve shifts further

upward). In each of these cases, the following procedure is used to select the optimal solution:
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1. Two Solutions: In this case, the value of the objective function ,,,g,i is computed

at both solutions and the solution that maximizes Iavg,i is accepted as the optimal

solution. Since maximizing Iavg,i corresponds to minimizing Qi at location i, and since

q is a monotonically increasing function of T, the solution that is selected is one that

has a smaller value of T. Behaviorally, this indicates that by performing an activity

for a shorter duration of time more frequently, an individual maintains a higher average

level of need-satisfaction since the depletion from the satiation limit is minimized.

2. One Solution: In case the constraint equation is satisfied as an equality at exactly one

value of duration, then this value is accepted as the optimal duration.

3. No Solution: When the constraint slack is always positive, the constraint equation

does not have a solution. Given limited availability of time (t) and the inventory

consumption rate (A), there are two situations that lead to infeasibility of the time

constraint. First, if a location is far off (very high TT), the total time spent on

conducting the activity (i.e., the sum of activity duration and travel time) is high, and

is likely to exceed the time available per cycle. Second, when a location i has very low

attractiveness (Ai), the activity production (Qi) at this location is low, and the cycle

time (s) for conducting an activity at this location is also low. Consequently, the

time available to conduct the activity at this location during one cycle (t(Qi)) is low,

and so time available to conduct the activity at this location is likely to be lower than

the time required to conduct the activity at this location. Therefore, locations which

do not have a real solution to the constraint equation are considered infeasible, and

are eliminated from the choice set for the second stage location choice optimization.

Given the nature of the equation, Brouwer's fixed point theorem may be used to obtain a

sufficient condition for the existence of a solution over a range of values of T, say T E (x, y).

If the constraint slack function s(Ta) has different signs at values x and y, then there is at
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least one solution to this equation over this range. Mathematically, this may be stated as:

s(x)s(y) < 0 => 3 Ta E (x, y) such that (s(Ta) = 0) (3.20)

It must be noted, however, that this is not a necessary condition and its ability to discover

a solution is sensitive to the length of the search interval.

At the end of the first stage optimization, the feasibility of every location is determined.

Further, for all feasible locations, the optimal solution may be computed as:

1. Duration (Tai) that satisfies the constraint: Tai + TT - t(q(Tai-'To'A')) ) 0

2. Activity production (Qt) , knowing the activity duration: Qj = q(tf2ai T0 , Aj)

3. Frequency (fi) defined as the inverse of the cycle time: j - A
Qi

4. Average level of inventory (Iav,j), knowing the activity production: a,, = Isat - jQi

3.3.1.2 Second Stage Optimization Model

The second stage optimization model is a discrete optimization problem that finds the op-

timal location. Given a set of feasible locations, and the optimal duration, frequency, and

average level of inventory to perform the activity at each location, the second stage opti-

mization problem selects the solution that maximizes the level of need-satisfaction across all

these locations. Mathematically, this problem may be formulated as:

Maximize ~
Iavg,i = Isat - jQi (3.21)

i

At the end of the second stage optimization, the set of activity dimensions that maximize

an individual's level of need-satisfaction or average level of psychological inventory is given
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by the optimal location (i), duration ( and frequency (1i). It must be noted that sat is

a psychological characteristic of an individual, which may be estimated empirically, subject

to identification normalization.

3.3.2 Solution Properties and the Activity Production Function

In this section, the behavioral properties that are supported by, and desired of this model

are presented. A translog form for the activity production function is verified to support the

desired properties.

3.3.2.1 Solution Properties

Three behavioral properties of the optimal solution are discussed in this section. While the

first property follows from the mathematical derivations presented in Section 3.3.1, the sec-

ond and third properties are desirable. The mathematical conditions desired of the optimal

solution are presented here.

Property 1: Resource constraints dictate activity choices

The optimal solution is one where the peak of the psychological inventory saw-tooth reaches

Isat. This follows from Equation (3.12) and may be visualized as shown in Figure 3.4. At

optimality, an individual chooses to maintain a high level of need-satisfaction by minimizing

the depletion from Iat before performing the activity each time. While theoretically this

could be achieved by performing the activity continuously in very small quantities, this is

not possible due to limited availability of time. Thus, the solution is in line with behavioral

expectation that resource (time, money) constraints limit the level of need-satisfaction that

can be achieved and necessitate an individual to perform activities at discrete intervals of

time.

62



z

C.)

0Q

4-

C)

T, T2 .im T3 T4T1  Time

Figure 3.4: Optimal variation of the psychological inventory of a need over time under

steady-state conditions

Property 2: Given equal travel times, a more attractive location is preferred

Given two locations with the same travel time (TT), we expect that an individual will choose

a location with higher attractiveness. Mathematically, this requires the optimal average level

of inventory at the more attractive location to be higher. Based on Equation (3.13), this

requires the more attractive location to have a lower value of optimal activity production.

Further, since the activity production function is monotonically increasing in the activity

duration, this property is satisfied when the more attractive location has a lower value

of optimal activity duration (Ta). Mathematically, this property may be stated as satisfy

the property -T < 0. Differentiating Equation (3.19), we obtain the following simplified
dA

condition:

d Q dTa
(_+TT - t(-)) = 0 = = A^ < 0 (3.22)

dA A dA dta
A dr.
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Property 3: Given equal attractiveness, a closer location is preferred

Given two locations with the same attractiveness (A), we expect that an individual will

choose a location with lower travel time. Mathematically, this requires the optimal average

level of inventory at the closer location to be higher. Based on Equation (3.13), this requires

the closer location to have a lower value of optimal activity production. Further, since

the activity production function is monotonically increasing in the activity duration, this

property is satisfied when the closer location has a lower value of optimal activity duration,

or conversely when a location that is farther away has a higher value of optimal activity

duration (Ta). Mathematically, this property may be stated as satisfy the property ffT, > 0.

Differentiating Equation (3.19), we obtain:

d Q dT 1
(Ta+TT-t(-))= - a * - - >0 (3.23)

dTT dTT - .1
r dTa

Properties 2 and 3 described above are desired and satisfied by the solution when Equations

(3.22) and (3.23) are satisfied. However, verifying these constraints requires knowledge of

the functional form of the activity production to describe the optimal solutions Ti and Q.
Given the transcendental nature of this solution, a specific functional form is chosen here to

empirically verify these properties.

3.3.2.2 Translog Form of the Activity Production Function

To verify that the optimal solution satisfies the properties described in the preceding section,

it is necessary to choose a functional form for the activity production function. This func-

tional form allows for flexibility in the relationship between Q, Ta, and A (by allowing for

flexible substitution and variable elasticity) and ensures that the activity production function

is non-negative. The translog functional form, which is a commonly used production func-

tion in economic theory, is chosen for the activity production function. The mathematical
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expression for the translog function is as follows:

Q = q(Ta - To, A) (3.24)

= exp(q + qlln(Ta - To) + q2ln(A) + q3ln(T - TO)ln(A) + q4(lin(Ta - To ))2 + q5(lin(A)) 2)

The parameters qo, qi, q2, q3 , q4 and q5 determine the shape and the elasticity of activity

production with respect to the inputs (i.e. effective duration and attractiveness). It may

be noted that while it is possible to impose monotonicity and concavity globally to the

translog function, this greatly reduces the flexibility of the function (Terrel, 1996). Imposing

monotonicity and concavity over the realistic range of values of Ta and A provides a good

trade-off between flexibility of the function and the desired properties (see Terrel, 1996, for a

procedure to impose monotonicity and concavity over specific ranges of values of the inputs

to the translog production function). The realistic range of these variables (e.g. 1 hour to

14 hours for out of home activity durations and 1 to 100 persons per square mile for retail

employment density in the locations for shopping activity) can be scaled without loss of

generality.

For this function q to be monotonically increasing, the first derivative of the production

function with respect to Ta and A should be positive as shown below:

dQ _dq(Ta- To, A) _1

Q - dTa -, Ta = (q1 + q3ln(A) + 2q4ln(T - To))Q > 0 (3.25)
dTa dTa Ta - TO

Q - dq(Ta - T -, A) + ± q3ln(Ta - To) + 2q 5ln(A))Q > 0 (3.26)
dA dA A

Similarly, for the concavity condition to hold, the second derivative of the production function
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with respect to Ta and A should be negative as shown below:

d2 Q _ d2q(Ta - To, A)

dTa dTa2
1

= (T - T) 2 (-q1 - q3 ln(A) - 2q4 ln(Ta - TO) + 2q4 + (q1 + q3ln(A) + 2q4 ln(Ta - To)) 2 )Q < 0

d2Q d2q(Ta-To,A) (3.28)
dA 2  dA 2

1

=- (-q2 - q3ln(Ta - TO) - 2q5lin(A) + 2q5 + (q2 + q3ln(Ta - T) + 2q5ln(A))2 )Q < 0

The optimal duration at a location obtained by solving the time constraint (3.19) using

a translog production function does not have a closed functional form and is analytically

intractable.

Empirical analysis of the optimal solution over a range of values of the parameters of the

model verified that Properties 2 and 3 described in Section 3.3.2.1 are satisfied by the optimal

solution. Figures 3.5 and 3.6 illustrate the variation of the optimal activity duration as a

function of location attractiveness and travel time, respectively. The model parameters used

to plot these curves are documented in Section 4.4, which describes a Monte Carlo experiment

conducted to test the empirical model developed in Chapter 4. Figure 3.5 indicates that the

optimal activity duration decreases with increasing attractiveness (given fixed travel time),

which is consistent with Equation (3.22). Similarly, Figure 3.6 indicates that the optimal

activity duration increases with increasing travel time (given fixed attractiveness), which is

consistent with Equation (3.23).

3.4 Conclusion

This chapter developed a conceptual framework for a needs-based approach to activity gen-

eration for travel demand models. The relationship between need-satisfaction and activity

participation was explained through the idea of "psychological inventory" and "activity pro-
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Figure 3.5: Optimal activity duration as a function of location attractiveness

duction". A general framework for an optimization problem to explain the choice of vari-

ous activity dimensions like frequency, sequence, location, duration, expenditure, etc. was

presented. This formulation was developed analytically to describe the choice of activity

location, duration, and frequency for the case of a single need and the activity that satis-

fies the need under steady-state conditions. A two-stage solution procedure was developed,

which first solved for the optimal duration and frequency at each location, and then solved

for the optimal location that maximizes an individual's need-satisfaction (average level of

psychological inventory). The general solution properties were studied and verified to be in

line with intuition. Finally, a translog functional form for the activity production function

was tested to empirically verify that the expected solution properties are satisfied.
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Figure 3.6: Optimal activity duration as a function of travel time
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4 Emprical Estimation of Needs-based

Model

In this chapter, a method to estimate the needs-based model formulated in Chapter 3 from

standard travel diary data is developed. The data available from travel surveys are described

in Section 4.1. The empirical model, described in Section 4.2, additionally contains stochas-

ticity to account for the various sources of error and heterogeneity, and accounts for the

effect of aggregate representation of location alternatives (e.g. use of Traffic Analysis Zones

instead of shopping malls). Section 4.3 develops a maximum likelihood estimator that can

be applied to single day travel diary data and requires no knowledge about the last time an

activity was conducted. Section 4.4 presents a Monte Carlo experiment conducted to verify

that the estimator can recover the true model parameters from observable data. Section 4.5

presents a case study of an empirical model developed for the Denver Metropolitan Area.

A model of activity location, duration and frequency choices for shopping conducted as the

primary activity of the day is presented. Section 4.6 concludes the chapter.

4.1 Travel Diary Data

In a typical travel survey, respondents record details about the various trips and activities

they conducted on a given day. For a single need - single activity needs-based model,

information relating to one activity is relevant. For the activity of interest (e.g. shopping),
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the following data are available for an individual n. First, an indicator oJ, defined as follows

is available:

1 if the activity was performed on the observed day
Jn = (4.1)

0 otherwise

Additionally, for an individual who performed the activity on the observed day, his/her

chosen location i,, and chosen duration To,,,n are available. While the activity may be

conducted at activity centers (e.g. shopping at a mall), the location in is typically available

at the resolution of the Traffic Analysis Zone (TAZ) in which the chosen activity center is

located. The activity duration is reported in units of time (e.g. hours, minutes).

4.2 Empirical Model

This section presents an empirical model that can be estimated from standard travel diary

data. The empirical model captures various sources of stochasticity in the data, including

heterogeneity of characteristics and error due to unobserved attributes, measurement errors,

optimization errors on the part of the decision-maker, etc. Additionally, it models the effect

of using aggregate location alternatives, by including "size variables" in the model. The

various sources of stochasticity and the inclusion of size variables are described here.

4.2.1 Heterogeneity in the Population

The empirical model captures heterogeneity in the population in three characteristics, in-

cluding (1) rate of consumption of psychological inventory, (2) fraction of time available, and

(3) activity set-up time.
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4.2.1.1 Heterogeneous Consumption Rate

The rate of consumption of psychological inventory A is heterogeneous in the population, and

assumed to be distributed independently and identically with a lognormal distribution, whose

underlying normal distribution has a mean ,\ and variance a-. Therefore, the distribution

of the rate of consumption of psychological inventory An for individual n is given as:

An ~ LN(p, o-,) (4.2)

4.2.1.2 Heterogeneous Time Availability

The fraction of time available t, which is the amount of time available per unit time, is

heterogeneous in the population, and assumed to be distributed with a lognormal distribu-

tion, whose underlying normal distribution has a mean pt and variance or2. Therefore, the

distribution of the fraction of time available t., for individual n is given as:

in ~ LN(pt, or) (4.3)

4.2.1.3 Heterogeneous Set-up Time

The set-up time to conduct an activity, which is the minimum activity duration required

to generate psychological inventory, is heterogeneous in the population, and assumed to be

distributed with a lognormal distribution, whose underlying normal distribution has a mean

pT, and variance o4. Therefore, the distribution of set-up time Ton for individual n is given

as:

Ton~ LN(pT, oi) (4.4)
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4.2.2 Empirical Model Specification

An empirical model of activity location, duration, and frequency choices is presented in this

section. Apart from accounting for heterogeneity in the population characteristics, it also

accounts for errors due to unobserved attributes, measurement errors, optimization errors

on the part of the decision-maker, etc. Additionally, it models the effect of using aggregate

location alternatives by including "size variables" in the model.

4.2.2.1 Location Choice

The observed location is subject to optimization errors on the part of the decision-maker and

measurement errors in recording the chosen location. For individual n with optimal average

level of inventory avg,in at location i, an error term, ein, with an Extreme Value Type I

distribution (i.i.d., with location 0 and scale parameter p) is added to the location choice

optimization model. The location choice model transforms into a logit model under this

assumption. Additionally, since the model aggregates elemental alternatives (e.g. shopping

malls) into aggregate alternatives (Traffic Analysis Zones), a size measure (Min), that reflects

the size of location i for individual n, is included as a sum of weighted non-negative measures

of size (e.g. retail employment, area of TAZ, see Ben-Akiva and Lerman, 1985). The second

stage optimization model described in Section 3.3.1.2 may be rewritten as:

Maximize ~
fIlavg,in + lin(Mi) + fin, ein Extreme Value Type I (0, pt) (4.5)

Min= >1 fixw ; #kI > 0, Xikr, > 0, Vi, k', n; #K' = 1 (4.6)
k'

In Equation (4.6), k' indexes the set of size variables, Xik'n denotes the value of the k'th

size variable of alternative i for individual n, and fk, denotes the parameter of the k'th size

variable. If K' size variables are included in the specification, only K' - 1 parameters are

identifiable (i.e. it is necessary to normalize the coefficient of one size variable, e.g. #K' = 1)-
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Additionally, the first term avg,in is multiplied by a coefficient #3 to account for the scale

of the utility function. It is necessary that #.1 > 0 to ensure that the objective function

maximizes (and does not minimize) the average level of inventory. Further, the value of

Iavg,in may be substituted from Equation (3.21) in Equation (4.5) to rewrite the latter as:

Maximize 1
m #1(Iat,n - -Qin) + 1n(Min) + fin, Ein ~Extreme Value Type I (0, [p) (4.7)

2

In Equation (4.7), Iat,n and Qin denote the satiation limit of the psychological inventory of

the need for individual n and the optimal activity production at location i for individual n,

respectively. It may be noted that since the term (#31sat,n) is constant across all location

alternatives (since #, is a model coefficient and Isat,n is a characteristic of the individual),

it is unidentifiable (since only the differences in the values of the objective function across

alternatives matter). To make the model identifiable, it may be rewritten as:

Maximize~
m #QQin + 1n(Min) + , E ei, ~ Extreme Value Type I (0, p) (4.8)

In Equation (4.8), #q(= j#3) is a positive coefficient that accounts for the scale of the

utility function. Given the set of model parameters including An, tn, To0 , 3Q and 0 (where

0 represents the coefficients in the activity production function), and normalizing the scale

parameter (p = 1), the conditional probability P of individual n choosing location in may

be written as:

_ exp(-#Qi~n + ln(Mi.n))
P(in|An, tn, Ton, #q, y,17 ) =-(4.9)

>j exp(-#QQjn + lin(Mjn))

4.2.2.2 Duration Choice

For individual n, given the set of parameters An, tn, Ton and 0, the optimal duration 'ain,n

at his/her chosen location in is given by one that satisfies the time constraint, Equation
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(3.19), as an equality. The observed duration, however, may contain measurement errors.

To account for the measurement errors, a lognormally distributed multiplicative error term,

whose underlying normal distribution has a mean 0 and variance or2, is introduced into the

model. Since the error term is always positive, the observed duration is also positive. The

observed duration T,,, for individual n who chose location in is written as:

Tobs,n T &aj,nexp(vn) , vn ~ N(o, oV) (4.10)

Therefore, the conditional probability density f of the observed duration T ,for individual

n may be written as:

f (Tobs,nlin, An, tn, Ton, 0) = 1 (l(Tobsn) - l"(Tain)) (4.11)
Tos,nov o-

In Equation (4.11), 4(z) denotes the probability density function of a standard normal

random variable z.

4.2.2.3 Frequency Choice

Under the steady-state assumption, the frequency with which individual n conducts the

activity is given by the inverse of the cycle time. For individual n, given the set of parameters

An, tn, Ton and 0, the chosen location in, the optimal duration Tainn at location in, and hence

the optimal activity production Qinn at location in, the cycle time is given by (Uinn/An). If

the individual conducts the activity once in (Qi mn/An) units of time (e.g. days), then the

probability of observing the individual conduct the activity on a random unit of time (i.e

random day) is given by the frequency (or the inverse of the cycle time). Therefore, the

conditional probability R of observing individual n conducting the activity during a random

day is given by:

R(on = 1|in, An, in, Ton, 0) = ~ (4.12)
Qinn
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In Equation (4.12), o& refers to the frequency indicator defined in Equation (4.1). It must

be noted that the model requires no knowledge about the last time the individual conducted

the activity to predict the activity location, duration or frequency.

The error terms (i.e. es, and vn) introduced in this model and the heterogeneous parameters

(i.e. An, tn and Ton) are assumed to be uncorrelated.

4.3 Maximum Likelihood Estimator

This section incorporates the various elements of the empirical model described in Section

4.2 and develops a maximum likelihood estimator. The maximum likelihood estimator can

be applied to single day travel diary data with no knowledge about the last time the activity

was conducted.

The sample of respondents is divided into two groups of people, based on whether or not

they performed the activity on the observed day. The likelihood functions for these two

groups are developed separately, and then used to write the joint likelihood for a sample.

4.3.1 Likelihood Function for Individuals Who Performed the Activity

on the Observed Day

For the group of individuals who performed the activity on the observed day, their activity

location and duration are known. The joint likelihood for the activity location, duration and

frequency for an individual belonging to this group is written as:

l(6n = 1 in, To,,)

T { f f{R(n = 1|in, A, t, To, )f(To,,lin, A, t, To, 0) (4.13)

P(in|A, t, To, #Q, y, 9)h 1(A)h 2(t)h 3 (To)}dAdt dT
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In Equation (4.13), R, f and P are as defined earlier in Section 4.2.2. The density functions

of the consumption rate A, fraction of time available t, and set-up time To are given by hi,h2

and h3 , respectively.

4.3.2 Likelihood Function for Individuals Who Did Not Perform the

Activity on the Observed Day

For the group of individuals who did not perform the activity on the observed day, no

information is available on their chosen location or duration. Therefore, the likelihood of

not observing the activity is written for an individual belonging to this group as:

l(on = 0)

= 1 - fjj{ {R(on = li,A,t,To, )P(iAt,To,/#qIy, )} (4.14)

hi(A)h2(t)h3 (T0)}dAdt dT

In Equation (4.14), R, f and P are as defined in Section 4.2.2, and hi, h2 and h3 are as

defined in Section 4.3.1. Note that this likelihood is unconditioned on location, since this

information is unknown. Moreover, since the probability of the individual conducting the

activity on the observed day depends only on the chosen location and the optimal duration,

this equation does not uncondition over the unobserved duration. In other words, while

the chosen location and the optimal duration at that location affect the probability of the

individual conducting the activity on the observed day, the unobserved (chosen) duration is

considered to differ from the optimal value only due to measurement errors. Consequently,

the density of the activity duration does not enter the likelihood function, and we do not

uncondition over the unobserved (chosen) duration.
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4.3.3 Likelihood Function for the Entire Sample

The likelihood function over the full sample of respondents can be expressed as:

L* = ](l(on = 1, inTos,n))'n(l(on = 0))'-5n (4.15)
n

This likelihood function may now be maximized to estimate the set of unknown parameters

based on the observed data. It may be noted that in developing this empirical model, no

assumption is made about the last time an activity was conducted before the observed day.

The model relies on the steady-state assumption to develop the relationship between activity

location, duration, and frequency choices and need-satisfaction.

4.4 Monte-Carlo Experiment

The estimator developed in Section 4.3 was tested on a synthetic sample generated using

Monte-Carlo simulation. A sample of 2,000 individuals was created with a choice set con-

sisting of 20 location alternatives (TAZs) for shopping activity. The retail employment in

these zones was randomly generated between 1 to 100 employees per zone, and the area of

the TAZs randomly from 0.1 to 2 mile2 . While the retail employment and area comprise the

size variables that affect location choice, retail employment density, defined as the number

of employees per unit area, was used as a measure of attractiveness in the activity produc-

tion function. The retail employment density is a measure of the opportunities available to

conduct shopping at a TAZ which does not vary by size (i.e. high retail employment density

implies a large number of employees in retail per unit area in the TAZ). The travel times

between these different zones were chosen to be uniformly distributed between 15 mins and

2 hours. Individuals in the sample were randomly assigned a home location from one of the

20 alternatives. The fraction of time available (t) was assumed to be deterministic, while

the rate of consumption of psychological inventory (A) and set-up time (TO) were assumed to

vary in the population. Given the distribution of the rate of consumption of psychological
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inventory (A) and set-up time (TO) in the population, values of A and To were assigned to

every individual by simulating from their respective distributions. Their choice of shopping

activity location, duration, and frequency was generated using the model. The resulting

activity durations were in the range of 10 mins to 2 hours, with cycle times in the range of

3 to 7 days. Second order terms in the translog function were set to true values of zero for

the synthetic data generation process. For each individual, the data contains an indicator

of whether or not the activity was conducted on the observed day, and the location and

duration if the activity was conducted.

Maximum likelihood estimation was performed using R statistical package (R Development

Core Team, 2011). Given a set of parameters, the likelihood function was computed as

follows. For each individual, the optimal duration at each location was first calculated by

solving the time constraint as an equality. To do so, a non-linear equation solver routine

was employed. Once the optimal duration was obtained for all locations, the likelihood

was computed using the expressions developed in Section 4.3. To perform integration by

simulation, 1000 Halton draws of the distributed parameters were used and the average of

the likelihood over these draws was computed for each individual.

Ten parameters were estimated with a log-likelihood of -2677.77 at convergence. Two pa-

rameters, namely q and #Retai1Emp had to be fixed (arbitrary normalization, to their true

values in this case) to make the model identifiable. The estimation results shown in Table

4.1 indicate that the estimates are significantly different from 0 and are not significantly

different from their true values. This shows that the model can estimate true parameters

from observable data.

4.5 Case Study: Denver Metropolitan Area

This section presents a case study of an empirical application of the single need model to

travel diary data from the Denver metropolitan area. A description of the data is provided,

followed by estimation results.
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Table 4.1: Estimation results from Monte Carlo experiment

Parameter True Value Estimate Standard Error t-stat (against 0) t-stat
(against

true value)

g0 0 0 Fixed - -

qi 5.OOOOE-01 4.9149E-01 1.3368E-01 3.68 -0.06

q2 5.OOOOE-01 4.9973E-01 8.0961E-02 6.17 0.01

t 1.0000E-01 1.0164E-02 3.0170E-04 33.69 0.54

pA -5.0000E-00 -5.0013E+00 4.7247E-01 -10.59 0.03

o-, 1.0000E-01 8.8216E-02 1.4576E-02 6.05 -0.81

pT 1.3863E+00 1.3534E+00 5.0066E-01 2.70 -0.06

OT0  1.0000E-01 1.0591E-01 2.1684E-01 0.49 0.03

#8Q 1.0000E+00 1.0043E+00 4.7215E-01 2.13 0.01

#RetailEmp 1.OOOOE+00 1 Fixed - -

f3Area 7.0000E-01 6.3804E-01 1.5092E-01 4.23 -0.41

o_ 2.OOOOE-01 2.1539E-01 1.7039E-02 12.64 0.90

4.5.1 Data

The travel diary data used in this case study was collected by the Denver Regional Council

of Governments (DRCOG) in the year 2009 to develop travel demand model systems for

planning purposes. Complete activity patterns were recorded for 15,323 individuals. Detailed

information is available about the purpose, location, mode, time-of-travel, travel time and

activity duration for each trip and the activity conducted at the destination of the trip.

This case study develops a model of activity location, duration and frequency choices for

shopping conducted as the primary activity of a day. To extract information about shopping

as primary activity of the day, the trips reported in the survey were processed to form tours.

A tour was identified as a set of trip-chains starting and ending at the same location. Based

on whether this location was home or work place, the tour was classified as home-based

or work-based. The primary activity of the tour was then determined based on priorities

assigned to different activity purposes and activity durations. Once the tours were formed,

similary priority rules were employed to identify the primary activity of the day. The activity
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with the highest priority from the list of all primary activities on tours conducted on the

day was marked as the primary activity of the day.

The individuals in the sample can be divided into two groups, including (1) individuals who

conducted shopping as the primary activity of the day on the observed day and reported

their shopping activity location and duration, and (2) individuals who did not conduct

shopping as the primary activity of the day and therefore did not report their shopping

activity location and duration. Out of all the individuals belonging to the second group,

those who conducted work as the primary activity of the day were excluded to account for

differences in their lifestyle that may prevent them from conducting shopping as the primary

activity of a day.

It was found that all shopping activities reported by children below the age of 16 years

were conducted along with an adult in the household. Therefore, observations of shopping

conducted by children were removed. In case of joint shopping activity participation by

several adult members (16 years or over) of a household, only one record per joint activity

was retained in the sample. The efficiency gained by jointly conducting the activity was

modeled by including the number of individuals who conducted the activity together as an

input in the activity production function. For households in which no individuals conducted

shopping as the primary activity of the day but at least one adult did not conduct work as

the primary activity of the day, one observation was included in the dataset. In this case,

the number of individuals who jointly conducted the activity was computed as described

further below.

A total of 5260 observations were obtained, of which 811 correspond to those where shopping

was conducted as the primary activity of the day. For the location choice, a total of 2804

Traffic Analysis Zones were available in the universal choice set. For each individual, a

subset of location alternatives (including the individual's chosen location if the activity was

observed) were sampled without replacement from the universal choice set. For each location

alternative, retail employment density in the TAZ was used a measure of attractiveness, while

retail employment and area of TAZ were used as size variables. Additionally, travel time
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from the individual's home TAZ to each location alternative was extracted from the DRCOG

skim database. This database provided travel time information by mode and time-of-travel.

For individuals who conducted the activity, the chosen mode and time-of-travel were known,

and were used to determine the travel time to different locations. For individuals who did

not conduct the activity, (1) mode was determined as auto if the individual was over 16 years

and the household owned at least one vehicle and as transit otherwise, and (2) time-of-travel

was determined to be off-peak since the activity in question is shopping.

4.5.2 Empirical Estimation

The needs-based model was estimated empirically for shopping as primary activity of the day.

To reduce the computational complexity, the model included only first order terms in the

activity production function. The resulting activity production function may be represented

as:

Q = exp(qo + qlln(T - To) + q2ln(A) + q3 ln(Np)) (4.16)

In Equation (4.16), the number of individuals in the party that conducted the shopping

activity (Np) is included as an additional input to the activity production function. For

observations where the activity was conducted, N, was observed. For observations where

the activity was not conducted, N, was unobserved and was computed in two different

ways, including (1) as the number of adults in the household, and (2) one. To ensure

monotonicity and concavity of the activity production function, the coefficients qi, q2 and q3

were constrained between 0 and 1 by using a logistic transformation as shown below, where

the parameters r1 , r2 and r3 were unconstrained:

q 1 - , k = 1, 2,3 (4.17)
1+ er =
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The coefficient q3 was statistically insignificant, irrespective of whether N, was computed as

the number of adults in the household or one. Therefore, N, was dropped from the activity

production function. Similarly, the coefficient q attained its upper bound and therefore was

fixed to a value of 1 for the purpose of estimation.

The model included heterogeneity in two parameters, including (1) rate of consumption of

psychological inventory, and (2) fraction of time available. Heterogeneity in set-up time

parameter was not included in the model. Two size variables were used, including (1) retail

employment in the TAZ, whose coefficient was estimated, and (2) area of the TAZ, whose

coefficient was normalized to 1.

Estimation of the model on a 100-core cluster computer with parallelized computation of the

likelihood function took 7 days with 1000 Halton draws for randomly distributed parameters.

The model was estimated from multiple starting values to yield different local optima. In

Table 4.2, the best model with estimates that yielded the highest value of log-likelihood across

different starting values is presented. The value of the log-likelihood at these estimates was

found to be -7089.79.

Table 4.2: Denver case study: Estimation results for a model of activity location, duration
and frequency choices for shopping as primary activity of a day

Parameter Estimate Standard Error t-stat (against 0)

qo 0 Fixed

qi 1 Fixed -

q2 3.7543E-07 6.4992E-05 0.01

p-t 3.2088E+00 3.6329E-02 88.33
o-t 4.2362E-02 2.1017E-02 2.02

P A 2.7942E+00 5.2816E-02 52.90
or,\ 8.6140E-02 1.3600E-02 6.33

pTO 3.1096E+00 3.2032E-01 9.71

#8q 7.2452E-02 7.0500E-03 10.28

#3 RetailEmp 2.2685E-03 4.9698E-04 4.56
#Area 1 Fixed -

o_ _ 4.2318E-01 1.4422E-02 29.34
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Estimation results indicate that q2 is insignificant, implying that only the effective activity

duration has an impact on the activity production function. The fraction of time available is

found to have a mean value of 24.77 min/day with a standard deviation of 1.04 min/day. It

may be noted that the average cycle time observed in the sample, computed as the inverse of

the fraction of observations which reported that a shopping activity was conducted, is found

to be approximately 7 days. Therefore, the time availability per average cycle is computed to

have a mean value of 171.43 min and standard deviation of 7.26 min. This result is consistent

with the sample statistics of the total time spent conducting shopping, which indicate a mean

activity duration of 120 min and mean travel time of 50 min approximately. Additionally,

the set-up time parameter is estimated to be 22.41 min, which indicates a mean effective

activity duration of approximately 98 min.

The estimation results presented in Table 4.2 underscore the potential of the needs-based

approach to developing activity-based models. Socio-economic characteristics of households

and travelers must be included in the model to enhance its specification. Further, the model

must be extended by developing models of (1) shopping as secondary activity of the day,

and (2) other activity purposes (e.g. recreation).

Online shopping can also be modeled within the needs-based framework by including online

shopping as an alternative in the location choice set. The attractiveness of this alternative can

be modeled using a dummy variable (replacing attractiveness Ai in the activity production

function). In the Denver dataset, individuals reported the duration for online shopping by

specifying the time at which the previous home-bound trip ended and the time at which

the next trip away from home began. However, the exact duration spent conducting online

shopping is unknown since the individual may have conducted other activites at home during

this duration. Therefore, it is necessary to model the activity duration as a latent variable in

the model. However, since only 24 online shopping observations were recorded in the data,

online shopping was not modeled in this case study.
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4.6 Conclusion

This chapter developed an empirical model of activity location, duration, and frequency

based on the theoretical model for a single need developed in Chapter 3. The empirical

model accounts for (1) heterogeneity in characteristics including fraction of time available,

rate of consumption of psychological inventory, activity set-up time, etc., (2) measurement

errors and unobserved attributes in location choice, (3) measurement errors in duration

choice, and (4) the effect of size variables in the location choice model to account for the use

of aggregate location alternatives (i.e. TAZs instead of actual activity locations like retail

spaces). A maximum likelihood estimator was developed to estimate the model from single

day travel diary data with no knowledge about the last time the activity was conducted. A

Monte Carlo experiment was conducted to verify that the model can recover true param-

eters from observable data. Finally, the model was estimated using standard travel diary

data from the Denver metropolitan area for shopping conducted as the primary activity of

the day. Estimation results indicate that the needs-based approach has great potential to

enrich the specification of activity generation models in conventional activity-based model

systems. However, in light of the long computational time reported for the estimation of

these models, their practical applicability must be studied using larger datasets and more

efficient computational methods.
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5 Conceptual Framework for Extensions

of Needs-based Models

This chapter develops a conceptual framework to extend' the single need - single activity

model developed in Chapters 3 and 4. First, extensions of the single need model are dis-

cussed, including (1) inclusion of mode and time-of-travel choices, and (2) multiple activities

satisfying a single need. A discussion on the extension to a model of multiple needs follows.

Further, the framework can be extended to model social interactions to account for the fact

that activities conducted by an individual may affect not only his/her need-satisfaction but

also that of a household or social circle. Intra-household activity allocation and joint activity

participation are presented as potential directions for extensions. Finally, since the notion of

time varying psychological inventory naturally provides a framework to study temporal vari-

ations in need-satisfaction and activity choices, development of dynamic needs-based models

that can be estimated from multi-day travel surveys is discussed as an extension.

5.1 Single Need Steady-state Model

This section discusses enhancements to the single need model developed in Chapter 3. Two

extensions are discussed, including (1) inclusion of mode and time-of-travel decisions, and

'The ideas presented in this chapter benefited from discussions with Carlos Carrion, Roger Chen and Giulia
Cernicchiaro.
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(2) multiple activities conducted to satisfy a single need.

5.1.1 Inclusion of Mode and Time-of-travel Decisions

The model developed in Chapter 3 describes individuals' activity location, duration and

frequency choices only. The framework can easily be extended to include mode and time-

of-travel decisions for the trips leading to the activities, since these choices enter the model

through the travel time and location attractiveness variables. Clearly, travel time varies by

time-of-travel (e.g. greater travel time in peak period than in off-peak period) and mode

(e.g. greater travel time by transit than by auto). While the attractiveness of a location

does not vary by mode or time-of-travel, these factors affect an individual's location choice

set. For example, a recreational activity like watching a movie at a cinema can only be

performed when the movie is screened at the cinema. During these movie screening hours,

the cinema is available in the individual's choice set. During other times, this location is

unavailable in the individual's choice set.

The model developed in Chapter 3 may be extended to jointly model activity location,

mode, time-of-travel, duration and frequency. While mode choice is a discrete optimization

problem, time-of-travel can also be modeled as a discrete optimization problem with a choice

set created by dividing a day into time periods (e.g. AM peak, PM peak, off-peak, etc.). The

optimization problem is solved in two stages in a manner similar to the solution procedure

proposed in Chapter 3. In the first stage, the optimal duration and frequency are computed

for each location, mode and time-of-travel combination. In the second stage, the combination

of location, mode and time-of-travel that maximizes the objective function (average level of

psychological inventory over time) is determined as the optimal solution to the problem.

To estimate this needs-based model empirically, a nested logit model structure as shown in

Figure 5.1 may be used to model location, mode, and time-of-travel jointly in a discrete choice

framework along with frequency and duration choice models as in the model in Chapter 3.

Different nesting structures must be tested empirically to choose the best specification. The
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systematic utility of each alternative, defined as the combination of the location, mode and

time-of-travel, is given by the optimal average level of inventory computed by solving the

first stage optimization model.

Location

Mode

Time-of-travel

Figure 5.1: Nested logit structure for location, mode and time-of-travel choices

This extension extends the framework to model mode and time-of-travel choices, keeping

the formulation in Chapter 3 intact. However, it must be noted that the choice set for the

discrete choice model might be very large and would require sampling of alternatives for

estimation.

5.1.2 Single Need and Multiple Activities

The assumption of a single activity satisfying one need that was made in Chapter 3 is restric-

tive since several activities can satisfy a single need. For example, the need for recreation

may be satisfied by watching a movie at home, going out to the theater, playing a sport, etc.

This may be explained as variety-seeking behavior of the individual. This section extends

the model formulated in Chapter 3 to the case of multiple activities satisfying a single need.
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Figure 5.2 illustrates the evolution of psychological inventory for the case of two activities

satisfying a single need. In this figure, two activities with activity production of Qi and

Q2 are conducted at times (T1, T 3 ) and (T2 , T4 ), respectively. The psychological inventory

is related to the need and not the activities, and therefore is unidimensional (as against

the multiple needs case, where the inventory is multidimensional). This general formulation

allows for several activities satisfying the same need to be conducted on different days. The

two activities may be conducted on different days, and the lag between the two activities

is an individual's choice which can be modeled as a choice of different minimum levels of

inventory at which each activity is triggered (i.e. Imin,1, Imin,2). Additionally, the individual

chooses the locations, durations, and frequencies of both activities.

- min,2

T, T2  Time T3  T4

Figure 5.2: Psychological inventory of a single need satisfied by two activities

It is important to note that the individual conducts both activities to satisfy the same need,

since doing so provides a greater value of the average level of psychological inventory than

conducting only one of the activities. Therefore, the joint activity production function of the

two activities must account for the frequency at which the activities are conducted. In other

words, the joint activity production of the two activities must be modeled as a function of

the activity productions of the two activities which includes interaction terms between the
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two activities. This is necessary to ensure that the individual's variety-seeking behavior is

modeled.

A special case of this formulation is shown in Figure 5.3, where both activities satisfying

the need are conducted on the same day (such that the depletion of inventory between the

performance of both activities is negligible). In this case, the overall cycle time is (Q.+Q2)

This model can be solved using a procedure similar to the one developed in Chapter 3.

'0
~ !sa~
z
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~
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~, mzn,1
0

T, T,
Time

Figure 5.3: Psychological inventory of a single need satisfied by
on the same day

two activities performed

5.2 Multiple Needs Steady-state Model

In this section, the extension of the single need model to the general case of multiple needs

is discussed. In reality, individuals conduct several activities, each of which may satisfy

several needs. For example, to satisfy the need for nutrition, an individual may eat food

at home with a partner, or go out to a restaurant with friends. While the former activity

additionally satisfies the need for security and intimacy, the latter satisfies the need for

relatedness and social interaction. Therefore, the choice of activities is affected by the desire
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to satisfy multiple needs by performing different activities given limited availability of time

and money.

In modeling interactions between multiple needs and the activities that satisfy them, it is

important to develop an understanding of the relationship between each activity and the

needs it satisfies. It is important to note here that while the activities are observed, the

needs are latent and unobserved. To characterize the impact of different activities on need-

satisfaction, a satisfaction matrix as shown in Table 5.1 may be constructed. Each row in

this table corresponds to a need (e.g. nutrition/nourishment, security and intimacy) while

each column corresponds to an activity conducted to satisfy this need (e.g. eat dinner at a

restaurant, watch a movie at a cinema). The individual conducts A activities to satisfy K

needs. Each element in the matrix represents the contribution of the corresponding activity's

production to the need. In other words, in Table 5.1, if conducting activity 2 generates an

Q2 units of inventory, it contributes Q1 = w12 Q 2 units of inventory to satisfy need 1 and

Q2= W22Q 2 units of inventory to satisfy need 2. In this example, activity 2 does not satisfy

needs 3, ... ,K.

Table 5.1: Satisfaction matrix of needs and activities

I Activity 1 Activity 21... Activity A
Need 1 Wn Wi2 .. A
Need 2 0 W22 .. W2A

0 0 0 _

Need K 0 0 ... WKA

A satisfaction matrix may be constructed either using (1) a confirmatory approach, or (2)

an exploratory approach. The confirmatory approach is one in which the elements in the

satisfaction matrix are prespecified based on apriori hypothesis. For example, if it is known

that going to the movie does not satisfy an individual's recreational need, the corresponding

element in the satisfaction matrix can be set to 0. In an exploratory approach, empirical anal-

ysis of activity diary data is performed to learn about the distribution of activity production
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to different needs. It may be desirable to collect data about individuals' need-satisfaction as

a part of travel survey, to enable better exploratory analysis.

Figure 5.4 illustrates the evolution of an individual's psychological inventory of two needs

over time.

0
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T, T2 Time

sat

z

0

0min.2

. 'in,1

Ti T2

Figure 5.4: Psychological inventory of two needs that are both satisfied by two activities

The individual conducts two activities that satisfy both needs, by choosing the locations,
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durations, frequencies, and minimum levels of psychological inventory for both activities

with respect to both needs. For the first need (1), the two activities produce Qi and Q2
units of inventory, while for the second need (2), the two activities produce Q2 and Q2 units

of inventory.

The objective that the individual maximizes is a function of both inventories with respect

to both needs. In other words, this is an optimization problem with a multidimensional

objective function. A common approach to formulate a multidimensional objective function

is as a weighted sum of the various dimensions. In other words, the objective may be

modeled as the weighted sum of the average levels of psychological inventory with respect to

the different (in this example, two) needs. The weights may be estimated empirically from

activity diary data.

Alternatively, a max-min formulation may be used which tries to maximize the minimum of

average level of psychological inventory across needs. This approach would not involve the

use of potentially arbitarary weights, and would also ensure that the extreme value of the

inventory (i.e. the minimum) is explicitly maximized to account for the effect of variation

of inventory over time in the choices.

A detailed discussion of multi-objective optimization is beyond the scope of this thesis. The

interested reader is referred to Deb (2005) for a review of different approaches to formulate

and solve multi-objective optimization problems.

The model also additionally imposes time and cost budget constraints to reflect limited

availability of time and cost. However, it is important to note that since the optimization

problem models decisions about multiple activities satisfying multiple needs jointly, the

model must include a single time constraint and a single cost constraint that models the

time and money spent on all the activities.
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5.3 Social Interactions and Joint Activity Decisions

The needs-based approach provides a framework to model interactions between individuals

that affect their activity choices. Two main extensions are identified here, which affect

activity choices of individuals and households.

1. Certain household activities like grocery shopping are performed by one or many of

the individuals to satisfy the needs of the household. This may be captured in the

needs-based framework by modeling psychological inventory of households, apart from

that of individuals. In doing so, an individual's inventory may be modeled as affected

by both his/her own inventory and that of his/her household. Under this framework,

the allocation of activities to individuals may be modeled as a choice driven by the

maximization of need-satisfaction of all the individuals in the household, subject to

availability of time and income.

2. Joint activity participation may also be modeled in this framework. First, some activ-

ities require mandatory joint participation of household members, or of members of a

social circle. For example, escorting a child to/from day care is an activity that can

only be carried out by the child with an adult in the household. Joint participation

of this kind may be modeled as constraints in the problem. On the other hand, some

other activities may be conducted jointly with family or friends to (1) satisfy the need

for relatedness and social interaction, and (2) to increase the efficiency with which the

activity is conducted since more human resources are now available to conduct the

same activity. In doing so, the choices of activity location, duration, frequency, etc.

are determined jointly for the social circle that conducts the activity together. This

imposes greater rigidity in the performance and scheduling of these activities since it

involves the coordination of schedules by multiple individuals. Additionally, the model

may capture the effect of social interaction on location choice through the attractive-

ness of locations. For example, an individual is likely to perceive a shopping mall that

his/her friends frequent to be more attractive than other shopping malls, since the for-
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mer also offers the opportunity to satisfy both the need for shopping (sustenance) and

for relatedness and social interaction. In other words, one may formulate the problem

with a more flexible interpretation of the attractiveness variable (as opposed to fixed

measures such as retail employment density) to model the effect of social interactions.

Finally, the effect of increase in efficiency due to joint activity participation may be

captured by including the number of individuals in the party as an additional input in

the activity production function.

Models accounting for joint needs and joint activity participation may draw ideas from the

area of cooperative game theory. In this approach, individuals who jointly perform tasks

try to maximize their individual as well as group needs, by accounting for the trade-offs in

making decisions that either satisfy only individual needs or only group needs. The interested

reader is referred to Chiappori (1988) and Chiappori and Ekeland (2009) for a review of these

approaches. de Palma et al. (2011) studied the balance of power in household decisions and

concluded that in joint household decisions, men have more decision-making power initially,

while women gained greater decision-making power as the decision was being implemented.

They also concluded that men spent greater amount of resources on their individual needs,

while women spent greater amount of resources on satisfying household needs.

It is important, therefore, (1) to account for cooperative game theoretic behavior in joint

decision making by households and social cricles, and (2) to understand the dynamics of

power sharing between different individuals in the group which affects how joint activity

decisions are made.

5.4 Dynamic Needs-based Model

The discussion in this thesis has been focussed on a steady-state formulation that assumes

that individuals conduct activities at the same locations, for the same durations, and at a

constant frequency over time. However, in reality there is a lot of variability in individuals'
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activity choices. The formulation that was developed in Chapter 3 may be viewed as repre-

sentative of long term behavior of individuals, while the variability that is not captured by

the model may be viewed as short term variation in choices. An extension of the needs-based

model to a dynamic context would relax the steady-state assumptions made in Chapter 3

and allow us to model short term variation in activity choices. While the steady-state model

may be viewed as generating activity plans for individuals, the dynamic model is well-suited

to predict individuals' real-time activity choices in response to transportation network con-

ditions. This section discusses three important concepts that are of interest to dynamic

models, including (1) time discounting and preferences, (2) nonconstant rate of consumption

of psychological inventory, and (3) plan and action model.

5.4.1 Time Discounting and Preferences

In the dynamic context, the choices of activity dimensions (e.g. location, duration, frequency,

etc.) are no longer considered to be constant over time. Figure 5.5 illustrates the evolution

of an individual's psychological inventory of a need in the dynamic case, where the individual

conducts activities that satisfy the need at times T 1 , T 2 , etc. with different dimensions on

each occasion (i.e. different location, duration, frequency, etc. to produce different quantities

of inventory on each occasion).

The optimization problem may be formulated as one that maximizes the total level of in-

ventory over time, e.g. over a planning horizon. At the begining of this time horizon, the

individual makes activity choices that maximize his/her need-satisfaction over the planning

horizon. However, it is important to account for time discounting in preferences. Literature

in behavioral economics suggests that individuals weigh the effect of events in the near future

much higher than the effect of events in the distant future. In other words, future events

are discounted and thus play a smaller role in an individual's decision as against immediate

events that have a greater impact on their decisions. The notion of "hyperbolic" discount-
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Figure 5.5: Dynamic model of evolution of psychological inventory of a need

ing, wherein the discount rate is a hyperbolic function of time, has also been studied in the

literature (see, for example, Prelec, 2004). In other words, individuals are more perceptive

to changes in events in the near future, while are affected less by changes in events that

occur in the far future. For a detailed review of the literature on time discounting and time

preferences, the interested reader is referred to Frederick et al. (2002).

5.4.2 Nonconstant Rate of Consumption of Psychological Inventory

In the steady-state single need model developed in Chapter 3, the rate of consumption

of psychological inventory (A) was assumed to be constant over time. Since the temporal

variation in the rate affects the individual's frequency choice, this assumption is restrictive.

For example, if an individual's inventory was recently replenished (and its value is high), it

is likely to deplete at a slower rate than if it was replenished long ago (and its value is low).

It can be relaxed by allowing the rate of consumption of inventory to be a function of the

level of inventory at any point in time (i.e. A = A(I), see Figure 5.6). It is important to

study the shape of the A(I) curve and determine empirically whether the inventory is (1)
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concave, (2) convex, or (3) both concave and convex.
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Figure 5.6: Psychological inventory over time with nonconstant rate of consumption of
inventory

5.4.3 Plan and Action Framework

Further, the dynamic case may be modeled using a plan-action framework which uses a

Hidden Markov Model (see Ben-Akiva, 2010). The time period (e.g. week) for which the

activity choices are modeled is divided into smaller periods (e.g. days). In this framework,

the steady-state model similar to the one developed in Chapter 3 is used to develop latent

"plans" for the individual for the entire week. A dynamic model is then used to execute an

"action", based on the plan for the current time period, which is affected by the previous

plan and the action executed in the previous time period. Consequently, this approach would

allow individuals to choose between different latent plans to execute the one that maximizes

the psychological inventory of needs.
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5.4.4 Trip Chaining Behavior

Individuals form trip chains to conduct multiple activities on a single tour since it provides

greater travel efficiency. Several models of trip chaining behavior have been developed (see,

Adler and Ben-Akiva, 1979 for a model of trip chaining behavior for non-work travel). In

the needs-based model, trip chaining can be modeled as part of a dynamic framework in

which individuals execute their planned activities by forming trip chains to minimize their

time spent on travel and have more time available to conduct activities.

A key requirement for the empirical estimation of dynamic models is the availability of multi-

day activity diary data. With increasing deployment of smart phone based, GPS enabled

travel surveys, the estimation of dynamic models is likely to be feasible.

5.5 Conclusion

This chapter presented directions for future research using the needs-based model. Exten-

sions to the single need model include (1) modeling mode and time-of-travel choices, and (2)

multiple activities satisfying a single need. The extension to multiple needs provides an ac-

tivity generation model system that can be fully integrated with conventional activity-based

model systems. Extensions to model intra-household activity allocation and joint activity

participation by members from a household and a social circle were discussed. Finally, a con-

ceptual framework to develop a dynamic needs-based model was presented, based on which

individuals' activity rescheduling decisions in response to real time transportation network

conditions may be modeled.
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6 Conclusion

This chapter summarizes the motivation for this thesis, research reported in the thesis and

the key contributions. Directions for future research are also suggested.

6.1 Motivation, Summary, and Contributions

The activity generation models in conventional activity-based travel demand model systems

are specified based on empirical considerations, and are weakly founded in a behavioral

theory. This thesis aims to contribute to the body of research that enhances the specification

of activity generation models.

This thesis develops a conceptual framework to study the relationship between individuals'

activity participation and need-satisfaction. The theory of needs hypothesizes that indi-

viduals conduct activities to satisfy their needs. The thesis develops a utility-maximizing

optimization model, which describes the choice of activity dimensions including frequency,

sequence, location, mode, time-of-travel, etc. as one that maximizes an individual's need-

satisfaction. Every need is associated with a level of psychological inventory, which reflects

the level of need-satisfaction at any point in time. As the need builds up, the inventory gets

depleted. Each time an individual conducts an activity that satisfies the need, the inventory

is replenished by a quantity called the activity production, that is a function of the activity

inputs including duration, expenditure, and location attractiveness. Individuals choose loca-

tions, durations, and frequencies of activities so as to maximize their psychological inventory
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of needs subject to time and budget constraints. This thesis develops an analytical model

and proposes a solution procedure for a model of single need and the activity that satisfies

the need under steady state conditions. The solution properties are studied and verified for

a translog functional form of activity production. The solution is found to exhibit desir-

able properties governing the relationships between activity participation and satisfaction

of needs. Based on the theoretical model, an empirical model is developed which can be

estimated using standard one-day travel diary data with no knowledge of the last time the

activity was performed. The empirical model explicitly accounts for heterogeneity in indi-

viduals' characteristics, including availability of time, rate of consumption of psychological

inventory, etc. A Monte Carlo experiment is conducted to verify that the model can recover

true parameters from observable data.

A framework for extensions to the single need steady-state model is presented. Two ex-

tensions of the single need model are discussed, including (1) incorporation of mode and

time-of-travel choices, and (2) a model of multiple activities satisfying a single need. Exten-

sion of the single need model to multiple needs is discussed. A discussion on joint household

needs follows, which enables modeling of intra-household activity allocation and joint activity

participation by households and social circles. Finally, extensions to dynamic needs-based

models are discussed, which will allow the development of models of activity rescheduling

choices in response to real-time transportation network information.

A key contribution of this thesis is the development of an analytical framework to develop

behaviorally enriched activity generation models. The needs-based models can be inte-

grated with conventional activity-based model systems to replace the existing models that

are weakly founded in a behavioral theory. The single need model can be developed for all

the activities an individual conducts to independently model the choices for each activity an

individual conducts. This model enhances the state-of-the-art of activity generation models

by explaining the choice of activities based on a behavioral theory, as against existing mod-
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els of activity generation. The framework provided by the thesis may be used to develop a

model of multiple needs and activities to develop enhanced activity generation models which

explicitly model the trade-offs between different needs that an individual wants to satisfy.

The applicability of the modeling approach is greatly enhanced by its ability to incorporate

joint needs of households and social circles. Dynamic needs-based models developed based

on the conceptual framework discussed in this thesis may be integrated with the steady-

state models developed in this thesis to provide a comprehensive behavioral model system

for activity scheduling and rescheduling decisions. These models can then be deployed in

transportation simulators to generate disaggregate travel demand which is sensitive to indi-

viduals' response to real-time information systems.

6.2 Directions for Future Research

This thesis has presented a new approach to model activity choices of individuals for travel

demand analysis. To a large extent, the models developed are preliminary and would benefit

from greater inquiry. The directions for future research, based on the extensions discussed

in Chapter 5, are summarized here.

1. Empirical estimation of single need - single activity model: The estimation results

presented in this thesis are exploratory and may be viewed as a proof of concept. The

model must be estimated with additional activity diary data to verify that the empirical

models satisfy the desired properties. The effect of socio-economic variables on various

latent parameters including activity production, rate of consumption of psychological

inventory, etc. must be explored. Further, different functional forms for the activity

production function must be explored.

2. Extensions of single need model: Two main directions to extend models of single need

were discussed in Chapter 5. These include models with (1) mode and time-of-travel

decisions in the model framework, and (2) multiple activities satisfying a single need.
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3. Extensions to multiple needs model: Models of multiple needs must be developed

that explicitly account for the trade-offs individuals face while making decisions about

multiple activities. Different model formulations are possible since this is a multi-

dimensional optimization problem.

4. Extension to joint needs model: Models of joint need-satisfaction and activity partici-

pation may be developed based on the framework developed here. Two main directions

include modeling (1) intra-household activity allocation, and (2) joint activity partici-

pation by members of a household and a social circle.

5. Dynamic needs-based models: The time varying nature of psychological inventory lends

itself to the extension of these models to a dynamic framework. Models of activity

rescheduling, which consider real-time transportation network conditions and deduce

the opportunities or constraints the real-time scenarios create, may be developed.

6. Incorporation of well-being indicators: The approach proposed by Abou-Zeid (2009)

may be applied to the needs-based model framework to measure and incorporate into

needs-based models, measures of needs, activity and travel well-being, satisfaction and

happiness. The benefits from including these indicators, including gain in efficiency of

estimates, may be verified in the context of needs-based models.

7. Integration with conventional activity-based model systems: A key step in operational-

izing needs-based models is integrating them with conventional activity-based models

based on the day activity schedule approach. Research effort may be directed to iden-

tify how the needs-based models may be integrated with existing models.

8. Integrated Transportation Energy and Activity Modeling (iTEAM): The notion that

individuals conduct activities to satisfy their needs is appealing and can be extended

to model their consumption of other resources including energy. Integrated modeling

of transportation and energy has received great interest in recent times, and may be

enhanced by adopting a needs-based approach (see, for example, Gauche, 2010).

102



6.3 Conclusion

Drawing on the theory of needs, this thesis has contributed to enhancing the behavioral

richness of activity-based models. It has developed conceptual and analytical frameworks

to describe the relationship between individuals' need-satisfaction and activity choices. The

methods developed in this thesis are useful not just to model transportation demand, but

also demand for other resources (e.g. energy).

The results presented in this thesis are exploratory in nature. The models developed here

must be empirically estimated with larger datasets to test their practical applicability and

feasibility.
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