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ABSTRACT

Rocking wall systems consist of shear walls, laterally connected to a building, that are moment-
released in their strong plane. Their purpose is to mitigate seismic structural response by
constraining a building primarily to a linear fundamental mode. This constraint prevents mid-
story failure, and maximizes energy dissipation by activating the maximum number of plastic
hinges throughout the structure. This is a useful response mitigation system, but suffers from
some difficulties, stemming primarily from the considerable mass of the wall. Those difficulties
are notably expensive foundations, and very high inertial forces imparted to the building, with
subsequent need for expensive lateral connectors.

The purposes of this work are to analyze current implementations of rocking wall systems,
present an early reference on their application, present the first systematic methodology for their
design, clarify their analysis, and introduce an alternative structural system that avoids their
difficulties. A quasi-static analysis model is used for predicting the seismic mitigation
performance of rocking walls and rocking columns. The stiffness matrix is generalized for an N-
story building equipped with these structural systems. The model presented enables optimization
of the design parameters, and consequently improved system effectiveness, analytical
tractability, and material usage. The case study is a rocking wall system installed in a building
located in Tokyo, Japan. A software package is developed, providing an illustrative
implementation of the methods derived.

Thesis Supervisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering
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1. Introduction

1.1. Rocking Walls within the Taxonomy of Dynamic Structures

Dynamic structures avoid structural damage by shifting the burden of energy dissipation to

chosen structural elements, preferably non-critical and replaceable elements. Damage that would

result in severe injury, and damage that would prevent future serviceability of the structure, can

be avoided by choosing the manner in which input energy is dissipated.

Dynamic Structures

F Linear Angular
Displacements Displacements

Base Isolation Rocking Walls

Figure 1.1.1. A partial taxonomy of dynamic structures

In addition to preventing loss of life, dynamic structures enable structures to be serviceable after

a seismic event, and as such can be a highly sustainable approach to structural design in

earthquake-prone regions.

1.2. Outline and Purpose of Rocking Walls

A rocking wall is a dynamic structural system that employs one or more stiff structural elements,

moment-released at the base, to force a building that is subjected to dynamic loads to fail in a

near-linear mode. This approach is intended to prevent mid-story failure, which is illustrated in

figure 1.4.1, by maximizing energy dissipation, as discussed in section 2.4. As illustrated in

11



figure 1.2.1, rocking walls are designed to rock only in the strong plane of the wall. This is in

strong contrast to a shear wall that is simply unrestrained at its base.

(a) (b) (C)

Figure 1.2.1. Schematic illustration of a simple unfixed shear wall contrasted with a rocking wall system.
(a) Building with fixed shear wall, (b) Building with unfixed shear wall, (c) Building with rocking wall

All rocking walls have been constructed from reinforced concrete, as far as known at the time of

writing. As a result, the pin and foundations at the base of the wall must be highly substantial, as

illustrated in figure 2.1.2. Additionally, the lateral loads that the rocking wall imposes on the

surrounding structure during an earthquake are found, by an analytical method presented in this

work, to be very high partially due to the large mass of rocking wall, as discussed in section 4.5.

As a result, very substantial lateral supports are required to connect the rocking wall to the

building. All of these issues increase the cost of installation of a rocking wall system

substantially.

The Tokyo case study building, first introduced in section 2.5, was damaged in the

Tohoku earthquake of March 2011. Few buildings in Tokyo were significantly damaged in that

event, since as observed in Tokyo, the accelerations observed were one or two orders of

magnitude lower intensity than those observed nearer the epicenter. In section 5, a finite element

study is presented that supports the theory that the inertial loads from the rocking walls were

very high during the earthquake, and thus a rocking wall was in fact the cause of that damage.

12



In response to these findings, it is suggested that new, higher lateral forces, as discussed in

section 4.5, be considered when designing systems to be installed adjacent to rocking walls.

Additionally, a much lighter steel system, resembling a deep column more than a wall, is

proposed in sections 6-7. To differentiate the two systems, the new structural system will be

referred to as a rocking column. Rocking columns achieve the goals of rocking walls at

considerably less cost, by reducing the strength of additional foundations required, and the

strength of lateral supporting connections that are required, in addition to material costs that are

predicted to be significantly lower, making rocking columns more commercially viable than

rocking walls have been.

Buildings that could be considered for rocking wall retrofit are in the approximate range 3 to 20

stories. The fundamental mode of such buildings is approximately linear.' As a result of this, the

addition of a rocking wall adds a large mass but little stiffness to the fundamental mode. Thus it

is clearly seen that the addition of a rocking wall will tend to decrease the frequency of the

fundamental mode of the building, since frequency is inversely proportional to the root of mass.

However, subsequent modes of such buildings are highly non-linear, as illustrated infigure 1.2.2,

and thus a rocking wall adds a high stiffness to all other modes of the building, tending to

increase those frequencies significantly, since frequency is proportional to the square root of the

stiffness, and this effect is generally stronger than that of the mass in this situation. Thus for

buildings that could be considered for rocking wall retrofit, the addition of a rocking wall tends

to move all natural frequencies further away from the highest energy frequencies of earthquakes.

This is clearly illustrated infigure 1.2.3.

' chopra (2006)
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Figure 1.2.2. A schematic of the first
subsequent modes follow the same trend

three dynamic modes of a typical medium-height building. In general,

As figure 1.2.2 illustrates,
general, exactly linear.

og20-

CI18 -
. 16 -
:14 -

6 --

o2 -

zo 00.0

while the first mode of a building is often near linear, it is not, in

Frequency, Hz

2.0 4.0 6.0 8.0
Figure 1.2.3. Illustration showing how the application of a rocking wall system shifts the natural frequencies of a
building away from the peak frequency range of earthquakes. The seismic data used to produce this figure may be
found in Appendix A.
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1.3. Application of Rocking Walls

For newly constructed buildings, there are many ways to prevent seismic damage, and a number

of ways to apply the benefits of dynamic structures. For example, the entire structural frame

could be allowed to rock, with energy dissipation being performed by replaceable fuses, as

illustrated infigure 1.3.1. However, clearly for existing structures such a solution is not feasible,

and other ways must be found to apply the benefits of dynamic structures.

Aroo~f

Post-
Tensioning

Shear Fuse

Figure 1.3.1. A rocking frame structure.

Rocking wall retrofit projects are limited by the availability of appropriate locations to attach

rocking walls. Most often, such locations will be limited to the exterior of a building. In addition,

for buildings that are large in plan, rocking walls must be spaced at some reasonable distance

throughout the building. Clearly, it is not sufficient to use rocking walls to linearize the response

of a building in one location alone. Rocking walls must be spaced throughout the building to

ensure the whole response of the building is linearized under dynamic loading. This approach

can be seen in the case study introduced in section 2.5, a building which is large in plan, and uses

6 equally spaced rocking walls.
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As will also be seen from that case study, the building to be retrofitted was long and thin, and the

rocking walls were to be installed to the exterior, as would be most common, as illustrated in

figure 2.5.2. This meant that it was only appropriate to install rocking walls in the longitudinal

direction of the building, since if rocking walls were installed to the transverse direction of the

building, the center of the building in plan would be largely unsupported, since the distance

between rocking walls would be very large. This would result in the desired linearized transverse

mode for the thin edges of the building in plan, but the transverse mode for the center of the

building in plan would remain unlinearized.

In general, there is no particular problem with installing rocking walls in both orientations of a

building. But in the case study, although rocking walls were added to the longitudinal direction,

it was decided to stiffen the transverse response by adding conventional transverse shear walls,

rather than add transverse rocking walls.

1.4. Outline History of Rocking Walls

The concept of rocking shear walls, though not in a form that matches current implementations,

was introduced by Ajrab et al.3 The work they presented was built on studies by Housner, who

investigated the free vibration of rigid rocking blocks.4

Mander and Cheng defined an approach to rocking, structural flexibility, and prestressing, as

damage avoidance design.5 The performance objective of the DAD philosophy for a maximum

assumed earthquake (MAE) is simply that the structure remains elastic at all times during ground

2 Deirlein (2010), p3
3 Ajrab et al. (2004)
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shaking. For example, elastic rotations might be defined as rotations of less than 1%, 0.60.

Usually much less is preferred, for example the design criteria for the case study retrofit project

was a peak story drift angle of 1/250 radian (0.4% or 0.230)6. For a maximum considered

earthquake (MCE)7, the structure may yield with limited damage (for example defined as plastic

rotations of less than 0.5%) to the conventional reinforced concrete framing elements8 . Rocking

can achieve these objectives, and are particularly relevant to retrofit applications.

Figure 1.4.1. Mid-story failure of Kobe city hallfrom the 1995 Kobe earthquake.

' Housner (1963)
5 Mander and Cheng (1997)
6 Wada (2010)(2), p 6

7 FE MA (1997), p32
8 Ajrab et al. (2004), p 4
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2. Literature Review

2.1. Rocking Wall Design

The present work proposes that rocking walls are most appropriate for retrofit applications, due

to their relatively high cost and less than ideal architectural characteristics. However, earlier

papers on this subject considered that rocking walls would be applied to new buildings, and play

a significant role in the primary lateral load bearing capacity of the structure.

2.1.1. Design for Resistance to Lateral Loads

There are three central issues that have been considered in rocking wall design. The first is that

adequate resistance to lateral loads must be maintained. Since it was originally proposed that the

moment capacity at the base of walls be removed, this load bearing capacity must be transferred

to three other classes of mechanism, being the moment capacity of shear wall-to-frame

connections, the resistance to overturning of the weight of the wall itself, and to additional

mechanisms, such as bracing, or post-tensioned tendons running through the wall, which are

illustrated infigure 2.1.1. Pekcan et al. suggested that such tendons be draped to match the shape

of the moment diagram induced under the assumed inertial loading.9 Note that the original

rocking wall concept presented is that of a flat base. If the rocking wall is pinned at the base, as

for example in the retrofit at the Tokyo Institute of Technology'0 , then clearly the weight of the

wall itself offers no moment resistance.

9 Pekcan et al. (2000)
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Figure 2.1.1. A non-hinged rocking wall on rigidfoundation, with supplemental supportive tendonsI(adaped)

2.1.2. Damping Design

Secondly, the rocking wall-supported structure must fulfil the primary intent of dynamic

structures by dissipating energy in a chosen, predictable way. Mander et al. conclude that a

tendon-supported rocking structure provides only limited damping, for example 1-2% of

critical. Percassi showed that the addition of damping devices to the tendons themselves would

enhance the damping offered by the system.' 3

2.1.3. Design for Serviceability

The third central issue in rocking wall design, is the degree to which the structure is serviceable

following a seismic event. Kishiki & Wada discuss how following the Northridge and Kobe

earthquakes, many buildings became structurally unviable, leading to a termination of social and

'0 Wada et al. (2009)
1Ajrab et al. (2004), p2

12 Mander et al. (1998)
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industrial activities, and consequently severe economic loss'4 . A flat-based rocking wall as

illustrated infigure 2.1.1 may suffer from toe crushing, and if rigid wall-frame connections are

used, these may also be significantly damaged. Such severe damage invariably requires that the

building be reconstructed, since further seismic performance cannot be predicted. 5 An open pin

design, fabricated from cast iron, at the base of the rocking wall would prevent severe damage to

the wall toes during rocking, as shown infigure 2.1.2.16

Steel strand Steel beam

3
RC Footmg Pmcneto

Figure 2.1.2. A rocking wall may be hinged at the base to prevent toe damage (foundations not shown)

2.2. Lateral Load Bearing Capacity

For a flat-based rocking wall on a rigid surface, and which is otherwise unsupported, it is readily

seen from statics that the lateral load that can be supported is:

W
Vax = (b - h) (2.1)Heff(21

where W, is the weight of the wall, Heff is the point of application of the lateral load, b is half the

width of the wall, h is half the height of the wall, and 0 is the small angle through which the wall

has moved, as in figure 2.1.1.

13 Percassi (2000)
" Kishiki and Wada (2009), p1

' Wada et aL. (2009), p1

1 Wada et aL. (2009), p 7
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Further load-bearing capacity that may be derived is provided by the moment capacity of floor-

wall connections, and frame bracing. Example formulae providing the loading-bearing capacity

offered by floor-wall connections and supportive tendons are derived by Ajrab et al."

Of course in the case of a retrofit application of rocking walls, it will usually be reasonable to

assume that the existing structure has sufficient lateral load bearing capacity, except for seismic

loading, which is addressed as a special case by dynamic structures. All known applications of

rocking walls to date have been retrofit applications.

2.3. Damping of Rocking Wall Systems

The four sources of damping in a rocking wall-supported structure are inherent damping, which

is typically taken to be 5% for concrete structures, radiation damping due to the impact of a flat-

based rocking wall with the ground, hysteretic damping due to plastic behavior within the frame,

and supplemental damping such as dampers attached to the system. Formulae to illustrate

radiation damping and hysteretic damping are given by Ajrab et al.18

Various types of additional damping devices have been proposed, such as the fuse elements in

series with tendons proposed by Ajrab et al., and externally-mounted mild steel material dampers

proposed by Marriott et al.19 and implemented by Wada et al.2 0 Such devices may be installed

with the intent that they be replaced after a seismic event.2 1

7 Ajrab et al. (2006), p2
1 Ajrab et al. (2006), p3
1 Mariott et al. (2008), p2
20 Wada et al. (2009)
2] Wada et al. (2009), p2
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2.4. Ensuring Maximum Energy Dissipation with Linear Deformations

The introduction of rocking wall system to a frame building may be motivated by showing the

benefit of a global failure mode with low rotations as opposed to a local failure mode with high

rotations. Consider for example the simple frame with the three failure modes shown in figure

2.4.1.

Figure 2.4.1. (a) A schematic 3 story frame, (b), (c) its two non-ideal pushover failure modes, (d) its ideal pushover
failure mode

It is readily seen that as the number of plastic hinges increases in the failure mode, so does the

ability of the structure to dissipate energy. The first two failure modes shown have low energy

dissipation, and so the rotations induced will be large, with high potential for loss of life and

severe structural damage. However the final failure mode uses all possible plastic hinges, and

thus has the maximum energy dissipation per unit rotation. Thus in this mode the rotations will

be smaller, and the probability of saving life and further structural serviceability is maximized.

22 Wada et al. (2009), p2
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Hence the focus for seismic retrofit need not be strengthening the individual members which

would deform excessively under seismic loading, but rather the control of the global behaviour

of the structure to prevent damage from weak modes.

Additionally, it may be noted that the non-ideal failure modes are more likely to occur under

higher-mode excitation, since those forms are more congruent with the higher mode shapes, as

illustrated infigure 1.2.2.

Hence, if a rocking wall is designed to be rigid enough to resist the partial failure modes, the

frame will tend to fail in the preferable global failure mode. A rocking wall thus suppresses

higher mode vibrations,2 4 by moving the natural frequencies away from the peak energy range of

earthquakes, as seen infigure 1.2.3.

2.5. Case Study: Retrofit of the G3 Building

To further understand the principles involved in the retrofit of a rocking wall, the retrofit of the

G3 Building at the Tokyo Institute of Technology, as discussed by Wada et al.,5 will be

considered. The case study building was found to be inadequate for modem seismic codes, and

appropriate for retrofit. The design criteria for the retrofit project was a peak story drift angle of

1/250 radian (0.4%, 0.230), to prevent the shear failure of the reinforced concrete frame. 26

23 Wada et al. (2009), p6
24 Wada et al. (2009), pl0
21 Wada et al. (2009)
26 Wada (2010)(2), p6
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Figure 2.5.1. (a) The case study building in the Suzukakedai Campus of the Tokyo Institute of Technologyz,(aapted),
(b) A 3D model of the retrofitted case study building, where yellow represents new structure to be retrofitted".

As is seen from figures 2.5.1(b) and 2.5.2, the design proposed by Wada et al. consists of wide

and shallow rocking walls (14.4ft by 2ft in plan) which rock in the longitudinal direction of the

building. The rocking walls represent an additional 56% of the existing steel reinforced concrete

frame area, in plan. The wall is prestressed to allow for the large vertical tensile forces which

will result from inertial motion, and is designed to remain elastic during severe seismic motion.29

As is seen fromfigure 2.5.2, this retrofit only stiffens the response at six approximately evenly-

distributed locations. The existing floor diaphragm stiffness between the rocking walls is

21 Wada (2010)(2)

24
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intended to ensure that the response throughout the structure is close to the response at the

rocking walls themselves. The cross section-of a rocking wall is seen infigure 2.5.3.

Transverse Static Shear Wall
Rocking Wall Rocking Wall

x Steel Damper Horizontal Brace

Figure 2.5.2. A plan view of the retrofitted case study building. Red represents rocking walls.30(adapied)

As shown infigure 2.5.3, the motion of the rocking walls in the case study building is damped by

the use of steel dampers (type LY22631), such as those shown in figure 2.5.4. These dampers

reduce the story drift further than with the rocking walls alone. As discussed previously, the peak

story drift is already reduced by the rocking wall without any damping by equalizing the drift

burden throughout the structure.

Existing RC column

Steel damper

Rocking wall

Steel strand

-f P. .1 T, 7 374 T, i;1 M I

4

H

a t 0 1

Figure 2.5.3. Cross-section of a rocking Wall. 32,adapledl

28 Wada et aL. (2009)
21 Wada et al. (2009), p6-7
so Wada et al. (2009), p5
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Professor Wada's report on the case study retrofit concludes by discussing that the upper-bound

theorem is not easily applicable for a seismically controlled structure, which makes determining

the ultimate strength and seismic performance of the structure highly difficult.3 3

Figure 2.5.4. Testing of the steel dampers used in the case study retrofit project. 3 4

2.5.1. Response of the Case Study Building to Seismic Loading in the Transverse

Direction

The report on the retrofit of the case study building indicates that both directions of the building

were below a seismic capacity of 0.7, and so were both required to be retrofitted. However the

report does not directly mention the effects of the rocking wall retrofit on the response of the

building in the transverse y-direction, and only explicitly discusses the modeling of seismic

performance evaluation in the longitudinal x-direction 36. However, in a lecture, Professor Wada

3' Wada (2010), p7
32 Wada et al. (2009), p 7

3 Wada et al. (2009), p 11
34 Qu and Wada (2011)
3s Wada et al. (2009), p5
36 Wada et al. (2009), p8
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mentioned the additional static shear walls which were added to the transverse direction3 7, and

which are seen infigure 2.5.1. When a student asked about this issue, Professor Wada remarked

that the retrofitted building is adequately stiff in the transverse direction to resist severe damage,

and that the project is designed for 225% of the code requirements. 38

3 Wada (2010)(2), p7
38 Wada (2010)(1)
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3. Rocking Wall Design

3.1. Problem Statement

Currently, each rocking wall design project requires an entirely new analysis from first

principles, with expert-level oversight. Such high design requirements are prohibitive in the

application of any new system. To aid in future maturation and acceptance of this structural

system, it is required to provide tools that systematize the selection of rocking wall properties,

based on the known parameters of the building to be retrofitted, to reduce the time required for

the analysis phase, and provide a framework for design. This will allow engineers to better

understand the structural system and aid discussion in this area of dynamic structures.

The most critical information to determine is the size of rocking wall that is required for a given

building. Secondly, it is required to determine the lateral loads that the rocking wall applies to

the building under code-determined seismic loading.

3.2. Method

In this work, the process of producing the tools alluded to in the problem statement is started

with the development of a number of analytical models of the rocking wall system, in sections

3.3 - 3.7 and 3.10.

A method is developed which may generate benchmark discretized buildings of any number of

stories, including story stiffnesses and story masses, such that the analytical model of the

discretized building-rocking wall system may be applied to them, as discussed in section 3.11.

28



Seismic loads are applied to the analytical model, and the responses of the model to those loads

are analyzed, as discussed in sections 3.8 - 3.9.

Example software is developed which implements those models programmatically, and returns

the required information, as discussed in sections 3.12 - 3.13.

3.3. Introduction to Analytical Model

For low- to medium-rise structures, which are the primary focus of retrofitting rocking walls,

buildings tend to deform approximately like a shear beam, under environmental loads. If the

building deformation were exactly linear, as shown in figure 3.3.1, then clearly a rocking wall

would add no stiffness to that particular deformation, only mass. In general this is close to the

truth for fundamental mode deformations. Although for all buildings with stiffness profiles that

are not parabolic, there will be some non-linearity in the deformation under seismic loading.39

Figure 3.3.1. Low- to medium-rise buildings tend to deform like a shear beam

The principle of tributary areas can be used to model a low-rise building with an attached

rocking wall as shown infigure 3.3.2.

3 Connor (2003)
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k1 h ki h

Figure 3.3.2. Schematic of a tributary two-story building model with rocking wall (a) without supplemental
damping, (b) with supplemental damping

Initially, the rocking wall will be modeled as rigid. In subsequent models, the wall will be

modeled as having finite rigidity, with the intent that an optimum rigidity will be found that

maintains purely elastic deformation in the structure.

Initially, Lagrange's equation will be solved without taking the ground motion into account.

Assuming deflections are small, a condition which the rocking wall is intended to enforce,

changes in gravitational potential energy may be neglected, and the stiffness of the columns may

be assumed to remain linear.

Three models of the rocking wall-building system are presented, of increasing complexity. First

a model with a rigid wall is presented, then a model with a flexible wall, and finally the complete

analytical stiffness matrix of the system will be presented.
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3.4. Solving an Analytical Model without Rocking Wall

Before the model including the effect of the rocking wall is solved, the model without the

rocking wall attached must be solved, so that the outputs of the two models can later be

compared and contrasted, and so the benefit that the rocking wall has introduced can be clearly

shown.

k, h

ki h

Figure 3.4.1. Lumped model of two-story building without rocking wall attached.

This system is of course trivial to solve,40 with a characteristic equation and fundamental

frequency of:

[ 1  O1 +[kl ±k 2  -k 2  =U 0 (3.1a)
[0 m 2 ji_ 2 [ - k2  k2 ju 2 j

Col2= kI +k2 (.1b
=mi (3.b)

3.5. Solving an Analytical Model with Rigid Rocking Wall

The objective model is a model with ground motion, and flexible wall. But as a first model, the

ground motion, damping, and the flexibility of the wall can be ignored. The kinetic and potential

energies of the structure are thus:

K = %Amiu| + %1m2 U2 + Y2MZI+ %J (3.2)

'0 Chopra (2006)
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V = %k2u 2 + ki(u2 - 2 (3.3)

However, since the rocking wall is initially being modeled as rigid, and small rotations are

assumed, the geometric conditions exist:

u2= 2ui

=

and so without damping:

(3.4)

(3.5)

K = %Am 1u + 2m2d| + %2Mb 2 + %2 h S%(mi + 4M2 + M + )u)

V = %k 2 u, + % kul =(k, + k2)u

= (mi + 4m2 + M+

-l l 0

-(ki + k2)ui

Jv2
hI,)| 

J

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

Thus from Lagrange's equation, the unforced equation of motion and natural frequency of the

structure are shown to be:

J
(mi + 4m2 + M+ )iI + (k, + k 2)ui = 0 (3.11)

(3.12)
m, +4m2 + M + 2h

Thus, assuming an approximately linear mode both with and without the rocking wall, the

rocking wall decreases the fundamental frequency by an amount equal to 1
M+

m, + 4M2
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3.6 Solving an Analytical Model with Flexible Wall, Assumed Modes

This model is somewhat more realistic, but significantly more complex. In addition to a rigid

mode, an appropriate non-rigid mode shall be superposed. It is noted that the first non-rigid

mode and frequency of an ideal pin-ended beam free at the other end are:41

OD1 = (N) (3.17)Q AL2

1sinh cxx ZRt
1 = sin c - asinh (L ere a= 4L

which, asfigure 3.6.1 shows, may be approximated as:

VI ~~-sin x

(3.18)

(3.19)

C1 sin CD

Figure 3.6. 1. The non-rigid trial mode (a) y,=sin ox - Isinh ox (b) Vi sin atc

Clearly, the rigid body mode is:

x
YO =T

Thus, if the following deformation form is assumed:

u = yloqo(t) + yiuqi(t)

(3.20)

(3.21)

' Kausel (2010)
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Lagrange's equation may be applied to this problem, using the assumed modes method.

M2 -+- u' ,,mUp2,

kh h h
M, J m-u;'pA,L mI PI & P2. are

M, EI0 Pi ,, restorative forces

k h h from the building.

-+ ug ug

Figure 3.6.1. Further simplified rocking wall model

A model for the system may be presented as shown infigure 3.6.1. The building may be replaced

by external restorative loads on the wall, which may be found by solving:

p=Kiu (3.22)

where Kb is the stiffness matrix of the building.

The method used to solve the above system is extensive, though programmatically relatively

straightforward. The MA TLAB code that was used to solve the above system using Lagrange's

equations may be found in Appendix C.

3.7. Solving an Analytical Model with Flexible Wall, Assumed Modes, Full

Analysis

A third method to apply the seismic action is to solve the continuous system problem using the

assumed modes method. This method requires a number of modes to be assumed, and increases

in accuracy as the number of assumed modes is increased. This method is not subsequently used

in the final formulation presented in this work, but is included for completeness. This method is

similar to that presented in section 3.6, but does not simplify the problem by modelling the

building force as an external load and requiring a computational solution.
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In this formulation, two modes are considered: a linear mode /o, and a chosen mode y, for

which a good choice would be either of the modes shown in figure 3.6.1. In the following

derivation, u represents the absolute displacement and v the relative displacement to the ground.

Consider the general problem as shown infigure 3.7.1:

Akx

k

xa =aL
mu x:t

k X= cpL

Ug (t)

Figure 3.7.1. The rocking wall problem generalized

Fromfigure 3.7.1, it is observed that:

u(x,t)=v(x,t )+ug , i, ( =u(x,,,t)= u(aL,t), (3.23)

u, (t) = u(x,,t ) =u(8L,t) (3.24)

Now define:

K (aL) yj, , ,8L )= V1,,, (3.25)

then:

K k -ILl2 pAdx + _m'1d +_jm Zd2 2JuP1wTma 2m16 13

{ (Q+d,) 2 pAdx+m, (9,, + dg) + m,(9, +d, )2 (3.26)

L=j(4 +y,4,+tdg) pAdx+m,(a4)0 +yIa.4,+ig):+m,{(I340+y,14 ,i+d
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=pA (L 4 +± , ++ , &)dx+m aaa4 + .4,+dg]mI 8[840 + Y,4, +d,

=PA x2 dx + IIxdx+ fxdx +a2m+2m,) 4o (3.27)

+(ama + pm,y 1 0 ) 4 +(maa + mp)ii

= pA (4 + 4 + )V,+dx +may/,,(a 40 + yi+d,m + ,, + i,

=pA x 1 dx+ j dx+dL I Idx] + (aV,,ma + PIm)4 0  (3.28)

+/2 Ma + iy1m, )4, +(VIama + yIflmf dg

Hence differentiate these to find:

d BK ( pAL+a2ma +/2mp)ijo
dt 84 0  

3  
(3.29)

+ jpA yxdx+a may,,a + /my 1, ij, + ({ pAL + maa + m,,p)fig

[±pA xy 1 dx+ayIma +fym, (

+[pA. dx+y2ma +V 2 mf 4 + pA, dx+yima+ym fig

Also:

V ={ Ev"2 d+k. (va -v_ +jk,v,v2+ EI (vf) dx + ( -)2 ++ (3.31)

= j EIj(y"q1)2 dx+{ ka ((a -,0)qO +(yfa -y2ifl)qI) +jk,8 pq0 +yI,6qI)

=k a a- 8)(a - )q O+ ( - Y ,)q l+ k ,6,8 qo + ,( .2q,)
aqO (3.32)

=[(a - 0)2k k,2k, IqO +(a -18)(Via - V ,0 )k, + pY1Igk, q,
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av q

(3.33)
= [(a - V/)(yi , - y/i, )ka + PytIk, Iq 0 + [EI N(yidx+(VIa - Y, ) 2 k, + Y2 k q,

Finally, applying Lagrange's equations:

M + Kq = -muig

where:

= pAL +a2 ma +/J2 m

{±pA fx y1, dx +a Iama + 6VI,,,m,

IpA Vy,xdx+amaylia

pA y / dx + y/ m, + Y/2 M

+I#myiyf

J (3.34)

(3.35)
(a -p) 2 k" +,8 2k,

K-=

(a -p8)(y/l -YI11)ka +py/,,pk,

Sp AL+maa+mp
M= , q= {qO (3.36)

pA yK, dx + y!,my/lfm, qJ

Thus using the above formulation, the ground acceleration "g may be set to be the maximum

ground acceleration Sa for a certain considered earthquake, and the system solved for that case.
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3.8. Applying Seismic Action to the Analytical Model

Applying seismic action to a model can be achieved a number of ways. To solve discrete

systems, the mass and stiffness matrices of the whole system M & K may be found, and the

system solved for an earthquake ground acceleration flg:42

MV+ Cv + Kv = -Meig (3.37)

where e is the unit constant rigid body vector, and v is the relative displacement:

v = u- eug (3.38)

However, in order to model the rocking wall, a continuous element, another approach must be

taken. One option is to discretize the rocking wall into lumped masses, and solve the problem as

a discrete dynamic system. The other is to solve the flexible wall problem fully analytically as in

section 3.7.

The quasi-static approach to applying seismic action is to apply forces, which are proportional to

the square of the height, to the masses of the building. The values of these forces may be found

analytically, and guides to aid their calculation are found in building codes. To solve the rocking

wall as a statics problem, these loads may be applied to the analytical model, and find the

resultant displacements.

To achieve either of the above methods of applying the seismic action, the stiffness matrix for

the rocking wall-building system must be determined. This may be found empirically, for

example using a finite element approach for a specific system under consideration.43 However, it

42 Chopra (2006)
4 Bathe (1996)
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would be far more valuable to determine the general analytical stiffness matrix of this system, for

any given system parameters. That stiffness matrix is derived in Section 3.10.

3.9. Applying Static Equivalent Seismic Action

There are various methods of force-based design and analysis, such as equivalent lateral force

method, response spectrum method, nonlinear static analysis, and nonlinear time-history

analysis. The equivalent lateral force method is valid for modeling linear systems in 2D and

considers the fundamental mode. This is particularly appropriate for the rocking wall-building

system, since the system is intentionally constrained to primarily fundamental mode action.

The equivalent lateral force method involves representing the seismic activity as forces applied

at each story by the equation:

Vh 2

Fj - = (3.39)
Y hi2mi

where V is the base shearj, i are the floor number starting from the first floor above ground, h is

the height of the floor from ground, and m is the mass of the floor.

The procedure for determining the equivalent lateral forces follows. 4 4

The seismic base shear V, is determined by:

V = CW (3.4045)

where C, is the seismic response coefficient, and W is the effective seismic weight.

44 ASCE (2006)
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The effective seismic weight of the building W, is defined by the code. 46 Cs is given by:

SWCS = SDS

(R)

47

where SDs is the design spectral response acceleration at short period, R is the response

modification factor, and I is the occupancy importance factor.

The design earthquake spectral response acceleration parameter at short period, SDS, is given by:

SDS MS3
(3.42 48)

where SMs, the Maximum Considered Earthquake (MCE) spectral response acceleration for short

periods, is given by:

SMS = F.S, (3.4349)

Here, S, is the mapped MCE spectral response acceleration at short periods and Fa is a site

coefficient. Fa is dependent on the Site Class and Ss. Ss is determined from the 0.2s spectral

response accelerations as shown by a contour map of the Unites States given in a specified

figure.

The code states that "Where the soil properties are not known in sufficient detail to determine the

site class, Site Class D shall be used.".5 In that case, Fa is found to be 1.6.

4sASCE (2006), Eqn. 12.8-14 6 ASCE (2006), Section 12.7.2
47ASCE (2006), Eqn. 12.8-248ASCE (2006), Eqn. 11.4-3
* ASCE (2006), Eqn. 11.4-1
5 0 ASCE (2006), Figure 22-1
si ASCE (2006), Section 20.1
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Assuming an Occupancy Category of j,53 the importance factor, I, is determined to be 1.25.

The response modification factor R is determined to be 4, assuming an ordinary reinforced

concrete shear wall.

The value of Cs must not exceed:

C, = SD1

TR)

T

C, = SDTL

T 2(R
I)

for T !TL (3.4 5)

for T >TL (3. 46'7)

Additionally, Cs must not be less than 0.01.58

For structures located where S, > 0.6g, C, must not be less than:

0.5S
C=C IJ (3.4 759)

(R)

In the above formulae, SDI, TL, T, and Si are to be evaluated.

SDI is the design earthquake spectral response acceleration parameter at Is period, and it is

determined by:

5
2 ASCE (2006), Table 11.4-1

5 3 ASCE (2006), Table 1-I
54ASCE (2006), Table 11.5-1
"5 ASCE (2006), Table 12.2-15 6 ASCE (2006), Eqn. 12.8-3
57ASCE (2006), Eqn. 12.8-4
58ASCE (2006), Eqn. 12.8-5
* ASCE (2006), Eqn. 12.8-6
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SDI = 2S3

SMI, the MCE spectral response acceleration at Is period, is determined by:

S, = F SI

(3.4860)

(3.4961)

Si, the mapped MCE spectral response acceleration at a period of Is, is determined from a

specified figure, 62 and F,, a site coefficient, is determined from a specified table.63

T is the fundamental period of the structure. The approximate period Ta

T, = C,h'n

where h, is the height in feet above the base to the highest level

coefficients C, and x are determined from a specified table.65

is found by the formula:

(3.5064)

of the structure and the

3.10. Solving an Analytical Model with Flexible Wall, with Full Stiffness Matrix

The full analytical model of the rocking wall-discretized building system, concluding with the

definition of the general stiffness matrix for this system, is first derived in this section.

6
0 ASCE (2006), Eqn. 11.4-4

" ASCE (2006), Eqn. 11.4-2
62 ASCE (2006), Figure 22-263 ASCE (2006), Table 11.4-2
1 ASCE (2006), Eqn. 12.8-7
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Figure 3.10.1. The statically condensed rocking wall-building system to be modeled.

The rocking wall-structure system is illustrated in figure 3.10.1, in which k, and m; represent the

stiffness and tributary mass respectively of the ith story. The development of the model begins by

representing the rocking wall as a hinged beam, as shown infigure 3.10.2, in which F; represent

any loading on the beam that is constrained to static equilibrium.

L

F1  F 2  FN

Figure 3.10.2. Model of the free rocking wall.

Computing moments about the pin, assuming constant inter-story height for simplicity, and

setting the lowermost force to be a function of the others, an expression to describe the link

forces Fi is obtained,

Fi = -2F 2 - 3F3 ...- NFN (3.51)

6 5ASCE (2006), Table 12.8-2
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These forces may be applied to the beam model in balanced pairs. First FN at node N with a

reaction of -NFN at position 1, illustrated in figure 3.10.3, followed by FN-1 at node N-1 with a

reaction of -(N-1)FN-1 at position 1, and so on.

NFN

h Ah FN

Figure 3.10.3. Loads applied to the mechanism in pairs, maintaining static equilibrium

It is shown readily that the order N-1 pseudo-flexibility matrix Ewaji consists of elements:

{Fwai = 3-x + 3a) (ij; 1 i,j N-1; i.e. xsa) (3.52)
l~al)i=3NEf ± + 3a

aL a2
{Fwaiiaii = 3NEf ± (3X - a) (i>j; I :sij!N-1; i.e. x>a) (3.53)

which consist of a rotational term and a cantilever term, and where x and a are distance to point

of measurement and distance to point of application of load from the pin respectively, and

obtained as:

i-2

x = NL (3.54)

a = L (3.55)

Thus rather than providing the displacements, Fwall provides the relative shape,

W = F 11 F, of the wall, under the statically-balanced loading F, where the zero reference line

is projected from the pin, through the lowest load-position on the beam, as illustrated in figure

3.10.4.
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N

(W

(II

Figure 3.10.4. The model beam under an arbitrary loading and dejormation. The reference line, shown dashed,
coincides with the lowest beam reference position, requiring that the relative displacement W1=0. yV is the small
angle through which the reference line is displaced.

A vector of displacements relative to the reference line may be defined as W. The total

displacement of the wall is given by _E, plus a rigid body rotation. For now, let W be of size N-1,

omitting the lowest relative displacement W = 0. The analysis may be continued by recognizing

that since the beam is a mechanism, it may be rotated to any arbitrary small angle V under an

arbitrary balanced loading, such that the absolute positions of the beam are a rigid body rotation

displacement j, plus the deviations from that line, _W. Additional information is required to fix

the beam in space. Consider the model in figure 3.10.5, where U, V, P, Q, and F are vectors of

displacements of the building and wall, loading on the building and wall, and link forces

respectively.
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UN, QN -)

U, Q; -M -- V, P,
F, F,

Figure 3.10.5. The rocking wall-building system model with forces and displacements required to complete the
analysis

From the previous discussion, a matrix Fwalu that uniquely maps the upper N-i net forces to the

relative displacements of the wall W is determined. Since this mapping is clearly unique, Fwa 1u

may be inverted to Kwan. Thus the order of Kwau may be incremented to N, by temporarily adding

a leftmost zero column and topmost zero row. Thus Kwau now uniquely maps all N relative

displacements _W, including the lowest relative displacement W, which is always zero, to the

upper N-I forces E&' on the wall:

Ew' = KwauW (3.56)

The vector E' is denoted prime since it is incomplete: it incorrectly records the force applied to

the lowest position on the wall as zero. That force may be determined by applying moments at

the pin. A matrix M0 may be formulated which enforces the principle of moments, such that:

F,,
0

Ew- . - MaF' (3.57)

0

where:
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0 (N -1) - N

MO =

-0 ... ... 0 _

Thus, the complete net force on the wall is found to be:

, = F,' + MoFw' = (Mo + I)F ,'= (Mo + I)KauW (3.59)

Since the total forces on the wall and on the building are defined as:

_F =Q-F

Fb= P + F

(3.60)

(3.61)

These may be rearranged to:

F = Q -F, = Q - (Mo + I)KwaW (3.62)

(3.63)F=Eb- P = KbIdg_ - P

Applying Newton's third axiom, the above two formulae may be equated and rearranged:

KbIdgU + (Mo + I)KwaiW = P + Q (3.64)

As discussed, the absolute displacement of the wall is given as:

V= g+ W (3.65)

where _ is the arbitrary rigid body rotation vector, and W is the relative displacement of each

point about that rigid body rotation. If V is the scalar angle of rotation, then:

h

2h

Nh]

(3.66)
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And since the lowest position lies on the line by definition:

Vy (3.67)

Thus equation 3.65 becomes:

V= V12l (3.68)

-N_

or:

LV (3.69)

where L1 is a linear matrix that acts on the 1st term of a vector:

1 0 ... 0~

L,=2 (3.70)

_N 0 ... 0_

Substituting equation 3.69 into equation 3.65, it is found that:

WE= V-LV=(I-L 1 )_ (3.71)

which may be substituted into equation 3.64 to yield:

KbldgU + (Mo + I)Kwaii(I - L,)V = P + Q (3.72)

If damping is to be added between the wall and the building, U and V must be considered

independent. However, damping is outside of the scope of this work, where only quasi-static

loading is considered. Without damping, it may be assumed that the links are rigid, and thus that

the building displacements U are equal to the wall displacements V. Thus the stiffness matrix of

the undamped system is finally shown:

[Kbldg + (Mo + I)Kwaii(I - Li)J = P + Q (3.73)
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where P + Q are the combined loads on the system, and the matrices are as previously defined. A

M4 TLAB code that performs these calculations, returning the full stiffness numerical matrix of

any given rocking wall-building system may be found in Appendix D.

Using the displacements U found with equation 3.73, equation 3.61 may be rearranged to find F,

the forces in the links:

F=Eb- P = KbidgP (3.74)

If a structure makes use of supplemental damping systems, and the seismic loads are to be

applied in a quasi-static fashion, this measure of the link forces should be considered as an upper

bound, since that method of applying seismic loads implicitly discounts any supplemental

damping that may be added to a system.

This general model matches a good linear finite element analysis exactly, as illustrated infigure

3.10.6.
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U1 =-.1087
U2- 0
U3= 0
R1 = 0
R2 = -.00315
R3= 0

U=[
0.135317, % storeydrift(1) = 0.008104
0.127212; % storeydrilt(2) = 0.008741
0.118471; % storeydrif(3) = 0.009737

% storeydrmt(4) = 0.010852
0.097883; % storey,_drl(5) = 0.011935
0.085947; % storeydrifI(6) = 0.012900
0.073048; % storeydrift(7) = 0.013702
0.059346; % storeydrift(8) = 0.014325
0.045021: % storev driff(g) 0.014773

Figure 3.10.6 (a) & (b) A linear finite element model shown matching the analytical model derived above to every
significant figure returned. In this case the structure is loaded under seismic equivalent loading.

3.11. Benchmark Buildings

In order to illustrate some of the ways in which the methods presented in this work may be

applied, it was required to develop a set of benchmark buildings, which could reasonably

represent buildings that might be found in practice. The benchmark buildings were to consist of

stiffness profiles, mass profiles, and varying numbers of stories.

This requirement is a common one for structural research, and yet to the best of my knowledge,

no qualified set of benchmark buildings, or method for producing a qualified benchmark

building, is readily available to students and researchers.

As a significant sub-project of this work, a fully comprehensive method was developed, using

principles from widely accepted building codes, to generate the stiffness and mass matrices to
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define benchmark buildings. Using that method, 56 benchmark buildings were developed,

ranging from 2 to 15 stories in height. These benchmark buildings were tested with 116 different

rocking wall configurations, and the rocking wall design graph, as shown in sections 4.4 - 4.6,

for each benchmark building was found.

The method of creating benchmark buildings, the data for the benchmark buildings generated,

and the associated rocking wall design graphs, may be found in Appendix B.

The intent of the tables in Appendix B is that an engineer implementing a rocking wall project

would be able to find a close approximation of the building under consideration, and in a matter

of minutes determine the approximate size and number of rocking' walls that would be

appropriate, and whether rocking wall retrofit would be appropriate at all.

It is seen from the tables, for example, that for the benchmark (and thus intended to be

representative) buildings of only two stories, there is no possible rocking wall configuration that

will reduce the maximum story drift. And many other similarly interesting conclusions may also

be drawn from the tables.

The entire sub-project relating to benchmark buildings is presented in Appendix B.
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3.12. Software Implementation

Software has been developed which solves the entire process described in section 3.10, and

offers many functions that will be useful for structural engineers who are designing a rocking

wall installation, and also for those working on a standard design project.

The software developed finds the stiffness matrix of the building based on the stiffness

distribution and a single story stiffness, if available. Otherwise, the software finds the stiffness

matrix by extrapolation of the ASCE 7-05 code, given whatever information the engineer has

available, such as the number of stories and lateral load resisting system, or the measured natural

period of the building. In the process of finding the stiffness matrix, the software also determines

the natural mode. The software then determines the total stiffness matrix of the building-rocking

wall system, and the equivalent seismic loads including the additional inertia of rocking wall.

The software then incrementally increases the size of the rocking wall, finding the maximum

story displacement under seismic loading for each rocking wall size, and reports the minimum of

those story displacements, and the rocking wall size that causes it, providing the engineer with an

optimization technique.

In order to apply the seismic loads including the inertia of the rocking wall (which is critical to

finding the minimum story drift), the mass of the rocking wall is discretized. Figure 3.12.1

illustrates this, and also illustrates the point that the rocking wall may rotate, but the building

floors do not.

52



Figure 3.12.1. (a) The building-rocking wall system with the building discretized, (b) with the rocking wall also
discretized, (c) the system in a displaced state.

Based on 11 basic pieces of information about the building and its locality, the software

provides:

* The code-determined period Tn

* The maximum story drift without rocking wall

e The building stiffness vector without rocking wall

* The building natural mode without rocking wall

e The fundamental period T, without any rocking wall from the Rayleigh Quotient formula

(this matches the code-derived period, as it has been re-derived from the mass matrix and

stiffness matrix derived from the code)

* Spreadsheet-ready tab-delimited data relating wall width to maximum story drift for many

wall widths

* The wall width that allows the minimum maximum story drift

Also, for the width that gives the minimum story drift, and also any chosen wall width (e.g. no

wall), the software provides:

* The code-determined base shear V

e The equivalent seismic loads P
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* The natural mode for the building with the rocking wall

" The total flexibility matrix including the rocking wall

* The forces in the links joining the building to the rocking wall

* The displacements of the structure under seismic equivalent loading, and the story drifts

" The story at which the maximum story drift occurs

All of the data is returned in MATLAB-ready syntax, which may be copied from the software,

should the engineer wish to perform further calculations with it.

RQCHIG-WA LCtM I
Rocking Wall Design

Introduction to Rocking Structures

The software presented here is illustrative software to

implement the ideas that emerged from a research project
into rocking wall design. It is designed to provide a rocking
Fiurall 3.2.n,r Wesi withlr ative sftwr c*reat forA t i

Figure 3.12.2. Website with illustrative software created for this work
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3.13. Software to Implement ASCE 7-05 Equivalent Seismic Loads

Through careful interpretation of the ASCE 7-05 code, it was possible to develop software that

would accurately determine the equivalent seismic loads for any given structure. It was vital to

develop this independently, firstly since it would be the foundation for developing further

software that would automate the process of applying those loads to structures. In addition, the

code is highly complex, and it is very easy to make mistakes in its application. For example, a

popular online calculator tool, by Buildings Guide6 6 , makes an error in determining the

approximate period of the structure. In applying the formula:

Ta = CTh; (3.7567)

that calculator neglects the fact that the above formula is only for moment frame systems, not for

shear wall systems,68 even though that calculator's default setting is a shear wall system. The

ASCE code does give the formula for calculating the approximate period for a shear wall

building, but it is complex, requiring summation terms. Another common mistake is to use the

geographical short period acceleration S, for buildings under six stories tall, but the code requires

a fixed S, of 1.5 in that case. The software developed for this work takes all of these factors into

account, and allows for up to 19 shear walls (the limitation is only there to prevent the interface

from being too large).

1
6 Buildings Guide (2012)

6 7 ASCE (2006), p 12 9
68ASCE (2006), p129
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IOpen Pa" with assLts for coing

Scroll Dowfor Now Inputs

NMber ofStories

Told Storey Whobse& (R!

Tjlpe of LLRS IMoment Frame: Conrt

ElfecUw Selsmic Wli 200

Response ModMcanon Factor F

Occupancycatego 3 eg 300 peple.1-1.25

Log-pero Transiion Period

McE parameter Si()F=5

- 1-1

Ih....nmetres = 36.0; % total height (in)
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Figure 3.13.1. Early version of the software, determining equivalent seismic loads.

Developing software that reliably implemented the ASCE code was significantly more tractable

after first translating the ASCE earthquake code to a graphical form. The software is available as

an unsigned Java applet, so any researcher or engineer can use it. Every step of the calculation is

reported to the user, in MATLAB-ready format. The software also calculates the equivalent

seismic loads for the user, which no known online calculator currently does.
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4. Analysis of Rocking Wall Design

4.1. Natural Frequencies of the Simulations

The analytical model with flexible wall using assumed modes, given in section 3.6, solved with

MATLAB code given in Appendix C, using a rocking wall with the dimensions used in the case

study retrofit (14.4ft wide by 2ft deep, as shown in section 2.5), and a two-story test model,

produces a period of 0.363s for the first natural mode, and 0.0106s for the second natural mode.

The finite element model, with SAP2000 used to perform the calculations, produces a period of

0.369s for the first natural mode, and 0.0181s for the second natural mode, for the same model.

The analytical model thus produces a first period that is only 1.7% less than the finite element

model, and a second period which is 41% less than the finite element method.

It should be expected that the first mode is the most accurate for the analytical model, since

currently only two trial modes have been applied to the system. As the number of trial modes is

increased, the accuracy of the higher modes improves. 69

A natural period within 1.7% of the finite element model is a very good start to the modelling

process. The accuracy of this result is an indicator that the analytical model is good and that

appropriate trial modes were chosen to represent the system.

69 Chopra (2006)
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4.2. Natural Frequencies of the System With and Without Rocking Wall

The analytical model without the rocking wall, solved in MATLAB, procuces natural periods of

0.33118s, and 0.13718s for the two story test model. The finite element model produces natural

periods of 0.33117s, and 0.13718s for the same model. This virtually exact match should be

expected, and confirms that the basic principles of the analytical model are good.

As expected, adding the rocking wall increases the period of the first mode by 11%, making the

structure less stiff in that mode, while decreasing the period of the second mode (considering the

finite element result) by a notional 87%, making the structure much stiffer in that mode. Both of

these effects are generally good for the seismic response of a building, as illustrated infigure 1.3.

4.3. Modes of the System with Varying Stiffness of Rocking Wall

The stiffening effect of the rocking wall on the fundamental mode may be illustrated by solving

the analytical model using the MATLAB code in Appendix C, and finding the modes of the

system quantitatively, with varying stiffness of rocking wall, and with the rocking wall removed

entirely. The following figures illustrate these results for the first mode of the same two-story test

model.
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Figure 4.3.1. The rocking wall-building system first natural mode displacement against height/meters with (a)
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Figure 4.3.1. The rocking wall-building system first natural mode displacement

rocking wall stiffness (c) 500 times more flexible (d) 100 times more flexible
against height/meters with
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Figure 4.3.1. The rocking wall-building system first natural mode displacement against height/meters
(e) with full rocking wall stiffness as used in the case study retrofit project (section 2.5)

4.4. Maximum Story Drift Angle With Varying Rocking Wall Width

A number of tests of the analytical building-rocking wall stiffness matrix, derived in section

3.10, against the output given by the SAP2000 linear finite element software package have

shown that the two have always matched to as many significant figures as SAP2000 has returned.

This is a very good indication of the efficacy of that analytical model.

As discussed briefly in section 3.11, the 116 graphs of maximum story drift plotted as a function

of rocking wall width, for 56 model buildings given in Appendix B show some very interesting

results. First, it is clear that the presence of multiple counteracting effects in rocking wall

installations consistently provides for minima and maxima in these data. It is observed that there

may be multiple turning points in these data, and that these turning points may be smooth, or

abrupt. It appears that there may be many opportunities to design optimum rocking walls that
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take advantage of the minima, and also points of diminishing returns that occur before the

minima, in these data. An example of one of these design graphs is shown infigure 4.4.1. The

graph displays Maximum Story Drift Angle vs. Rocking Wall Width (m), produced by the

method developed in this work, for a benchmark building of 8 stories, with a linear stiffness

profile increasing by a factor d of 50% per story, a top story stiffness kN of 92MN/m, a story mass

of 230 tonnes, and utilizing 2 rocking walls. The graph shows an optimum design point of two

rocking walls that are each 2.7m wide, assuming a rocking wall depth of 0.6m. However, an

engineer might reasonably conclude from this graph that there are significantly diminishing

returns after around 1. 7m. Although the graph is still decreasing at 1. 7m, the gradient indicates

that the benefits may not outweigh the cost of increasing the wall size beyond about 1. 7m.
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0.0051 -

0.005
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Figure 4.4.1. An example design graph of Maximum Story Drift Angle vs. Rocking Wall Width (m), for the particular
benchmark building and rocking wall arrangement described.

The model produced in this report gives every indication of being robust. For example, the data

produced may be used in reverse. For example, if a model of a building is generated in which the

stiffness is specified but not the period, then a model is generated in which the period returned by

the first model is specified as the period, and the stiffness is allowed to be determined by the

model, then the stiffness returned by the second model matches exactly that which was specified

for the first model.
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4.5. Forces Applied to the Building by the Rocking Wall Inertia

By applying the model derived in section 3.10, the total maximum force in the building-rocking

wall links, under the code-specified seismic loading, is found to be approximately 8.2MN, or

1800 kips, for the case study building, occurring at the top story. This force is due to the inertia

of the building combined with that of the heavy rocking wall, and can be thought of as the effect

of the rocking wall trying to straighten the deformation of the building, while the building is

trying to bend under the lateral loading. This total load is distributed between 6 rocking walls

each with 2 lateral connectors per story, resulting in a maximum undamped load of about 680kN,

or 150kips per connector. However, the connections to the static shear walls, at the ends of the

building, are less stiff than the others are, so should be considered as attracting less load.

10 0

0

8 -

0

6 0

0

4 0

0

2 0

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
Force in link (kN)

Figure 4.5.1. The forces in the building-rocking wall links, under code specified seismic loading, for the case study
building, as predicted by the static equivalent method presented.

This is a useful figure, since it illuminates the loading on the rocking wall itself, and thus could

allow further optimization of the rocking wall stiffness along its length.
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At the lower stories, the wall is pushing the building further than it would ordinarily go under

this loading, to maintain the straight profile. Around the middle stories, the force in each link is

low. This can be thought of as being due to the natural position of the building under this

loading, approximately matching the wall-reinforced position, at that location. At the higher

stories, the wall is pulling the building back, less far than it would ordinarily go, to maintain the

straight profile. At the top story, the wall is once again pushing the building further than it would

go. This is due to the half-story mass associated with the top story in the model, and since the

seismic load is correlated with mass, the top story drift would usually be lower than other story

drifts. The top story drift is then forced to the near-constant story drift by the rocking wall.

One design strategy for a rocking wall, and later a rocking column, may be to design the wall or

colunm to stop short of the top story, if the weight of the top story were low, since otherwise the

wall may actually be applying greater stress to that story than is necessary.

The maximum link force is of the order of magnitude of the total weight of a story, and may also

be equated to the thrust produced by a jet engine, by order of magnitude. As discussed

previously, this figure is an upper bound, due to not taking account of supplemental damping.

Section 5 contains an analysis of whether the case study structure was sufficient to sustain these

lateral forces.

63



4.6. Comparison with Given Case Study Building Data

The team who designed the case study rocking wall installation were kind enough to share the

actual case study building data to aid with this work. It has thus been possible to compare the

simulation against experimentally confirmed data.

If the discretized case study story stiffnesses for each of the 11 stories is plotted against a linear

stiffness form where the incremental increase of the top stiffness is d=0.25, a very reasonable

match is found:

2
-- Case

1.8 Model

1. -

1.1

0.8-

0.6

1. 2 3 4 5 6 7 8 9 10 11
Story

Figure 4.6.1. The actual case study building story stiffnesses compared to a linear model.

The mass model that has been used divides the total mass by the number of stories, and

distributes the mass equally between the stories, except for the top floor, to which it apportions

half the mass of the other floors. The comparison with the real case study data is again

reasonably good:
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Figure 4.6.2. The given case study building story masses compared to a linear top-light model.

However, the mass model presented here (Fig 4.6.2, green dots) may be a more accurate

discretization of the case study building, as the mass for the top floor given by the case study

design team appears to be the combined mass of that floor, which is not the commonly accepted

method of building discretization.70

The actual value for natural period in the building x direction was given as 0.589s, and this is

confirmed to 2 decimal places by applying the iterated Rayleigh quotient formula to the given

information of stiffness and mass.

In a further illustration of robustness, if this given period of 0.589s is inputted into the formulae

developed for this work (as in Appendix B), using a stiffness increase factor d=0.25 as infigure

4.6.1, the stiffhesses generated are a reasonable approximation of the actual, with kN just 15%

less than the actual given value for kN.

70 Kausel (2010)
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Similarly, given the true kN and a factor d=0.25, the linearized model developed provides a first

period of 0.539s, which is just 8.7% less than the period given. Applying this closely-matching

model of the case study building, and using six rocking walls with a wall depth of 0.61m, a top

story stiffness of 4.68GN/m, a user-specified stiffness profile of d=25%, applying the factored

earthquake intensity parameters for Tokyo71 , considering an effective seismic weight W of

200MN, 11 stories of 3.27m each, and a natural period of 0.589s, the following design graph,

tailored for the case study building, is found.

4.3

4.2

E

3.8-

0 2 4 6 8 10 12 14 16 18 20
Wall Width (m)

Figure 4.6.3. The Rocking Wall Design Graph for the case study building, showing maximum story drift angle of the
modeled case study building, against rocking wall width (m), using 6 rocking walls. The location of the 4.39m-wide
walls actually used in the case study is marked.

It is seen fromfigure 4.6.3, that based on the design graphs produced by this analysis method,

the 4.4m-wide walls, that were chosen through an exhaustive experimental testing process, were

a highly appropriate choice for the case study building retrofit project. Although the actual

optimal minimum of the data is at 6.7m, it is seen from the figure that the returns obtained for

adding further wall size begin to diminish significantly after around 4.5m.

71 Kinetics (2008)
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The fact that the suggested wall size given by the method presented in this work matches closely

that chosen for a fully experimentally-tested rocking wall installation is a useful confirmation of

this method.

It is thus clearly seen, that the models developed in this work suggest that for example 2m-wide

walls, or 12m-wide walls, would actually make the case study building's seismic response worse,

rather than better. This is a counter-intuitive, and thus very useful result.

It is also interesting to note that in this case the maximum story drift occurs at the sixth story

from the ground. Although some might expect the highest building stresses due to environmental

loads to always be at ground level, the maximum story drift only occurs at the lowest story in the

case where the story stiffness profile is close to constant. When the story stiffnesses are linearly

increasing, the maximum story drift due to the seismic equivalent loading often occurs as the

middle stories, according to the data produced by this model, as shown infigure 4.6.4. Since it is

usually seen in practice that buildings fail at a middle story during an earthquake, this is another

useful confirmation that the equivalent seismic loading method used here is a good tool to

predict and prevent such middle story failure. If the correct parabolic stiffness were used, then

the drift profile under seismic loading would be linear 72, and thus optimal, as previously

discussed.

72 Connor (2003)

67



X 103

3.8

3.7 X

3.6 x

3.5-

3.4 X

3.2

3.1 X

3-

2.9-

2.8
1 2 3 4 5 6 7 8 9 10 11

Story

Figure 4.6.4. The story drift angles of the case study building under seismic equivalent loading, with the maximum
occurring at the middle stories.

Another helpful result is that the output design parameter of the method presented is especially

robust. If the story stiffnesses or masses are changed by some reasonable amount, the overall

shape of the graph remains very similar, with very little movement of the minimum or the point

of diminishing returns, as shown in figure 4.6.5. And so although a number of approximations

have been incorporated to the model of the building (figures 4.6.1 - 4.6.2), there can be

confidence that the result returned for most useful size of rocking wall would be very similar

even if the fully analytical mass and stiffness matrix of the building had been used. The same is

true if the loads are scaled, for example by changing the location of the building and thus the

magnitude of the equivalent seismic loads. Thus it appears that the primary aim of this work,

which was to offer a useful starting point for rocking wall size for rocking wall installations, has

been achieved.
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Figure 4.6.5. The rocking wall design function of the case study building compared to cases where all story
stiffnesses are modified by ±10%. The central line is the case study, the upper with stiffnesses decreased by 10%,
and the lower with stffnesses increased by 10%. The change in the minimal width 3 is only 0.2m, illustrating the
robustness of the output.
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5. Study to Determine whether the Case Study Rocking Wall Caused

Damage During the Thhoku Earthquake

Figure 5.0.1. The case study building model, as retrofitted with rocking walls. The arrow indicates a static shear

wall that was damaged during the 2011 earthquake, which was of relatively light intensity in Tokyo.

It is noted during the Tohoku Earthquake of March 2011, that a shear wall adjacent and

perpendicular to the case study rocking wall installation was damaged. Based on the work

culminating with section 4.5, which suggests very high inertial forces from the rocking wall, it is

theorized that the inertial forces exerted by the adjacent rocking wall were responsible for the

damage to the static shear wall. The inertial forces that rocking walls exert on surrounding

structure will be studied, and it will be demonstrated that the stresses experienced by the static

shear wall due to the rocking wall inertial forces were sufficient to cause the damage that was

observed.
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Figure 5.0.2. The rocking wall under consideration, adjacent to the static shear wall that sustained damage
(courtesy Dr. Z Qu, March 15 h 2011)

This structure will be modeled in the finite element modeling package ADINA, with the exact

dynamic earthquake loading that was felt in Tokyo during the earthquake, and the forces in the

links joining the rocking wall to the building will be determined, as a function of time. Those

link forces will then be combined, to find the overturning moment as a function of time that the

rocking wall exerted on the building. It will then be determined that the overturning moment was

sufficient to cause the cracking that was observed in the static shear wall.

The rocking walls for the 11-story case study building are 0.61m x 4.39m in plan, and each story

is 3.27m.

5.1. The Mathematical Model of the Building

The physical rocking wall-building system will be modeled as a bending planar beam hinged at

the base, hinge-connected at each story to a building that is idealized as a set of shear springs.

Due to assistance from the team that designed the case study building, the story stiffnesses of the

building are known, and can be approximated with a stiffness profile that starts at 4.68GN/m at
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the top story, and increases by a factor d=25% of the top story stiffness for each lower story, as

shown infigure 4.6.1.

5.2. Finite Element Modeling

It is desired to determine the forces that are generated in the building-wall links, and thus that the

wall exerts on the building, under seismic loading.

The stiffnesses and corresponding

Story
1
2
3
4
5
6
7
8
9

10
11

Table 5.2.1. Building story stiffnesses, a
with rotational fixity at both ends

section size for the building floors is given in table 5.2.1.

Stiffness k Side dimension b
(GN/m) using steel (m)

16.38 1.301759
15.21 1.277863
14.04 1.252546
12.87 1.225594

11.7 1.196736
10.53 1.165626

9.36 1.131803
8.19 1.094644
7.02 1.053262
5.85 1.006331
4.68 0.951729

nd corresponding square section size required, when modeled with steel,

For the finite element model, the building will be fully attached to the rocking wall by the pinned

truss members, as illustrated infigure 5.2.1.
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Figure 5.2.1. The third mathematical model, showing only 6 of the 11 stories for clarity.

The analytical stiffness matrix for the arrangement shown in figure 5.2.1 has previously been

defined in section 3.10, and tested against the SAP2000 software package, as illustrated infigure

3.10.6. The analytical stiffness matrix may now be further tested using the ADINA finite element

software package.

Story Finite Element Model 3 (m) Mathematical Model 3 (m) Difference (m) Difference (%)

1 0.061933 0.061766 -0.000167 -0.270
2 0.127870 0.128206 0.000336 0.263
3 0.199264 0.199569 0.000305 0.153
4 0.277259 0.277641 0.000382 0.138
5 0.363213 0.363681 0.000468 0.129
6 0.458948 0.459534 0.000586 0.128
7 0.566977 0.567801 0.000824 0.145
8 0.690692 0.692168 0.001476 0.214
9 0.834341 0.83 7533 0.003192 0.383

10 1.002660 1.008431 0.005771 0.576
11 1.204450 1.201345 -0.003105 -0.258
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Table 5.2.2. The results of the thirdfinite element model compared with the results of the third mathematical model



The maximum difference in the results between the finite element model and the mathematical

model is 0.6%, but are mostly around 0.2%. Clearly this is a very good match. The reason for the

slight difference is that the version of ADINA used is limited to 900 finite element nodes. While

SAP2000 performs all element meshing automatically, meshing is chosen by the engineer in

ADINA to allow the engineer to optimize complex problems, and in the version available is

limited to 900 nodes.

To fully compare the analytical stiffness matrix against the finite element model, the stiffness

matrix can be found directly from the finite element model by setting each degree of freedom to

unity in turn, while holding the others fixed and finding the reactions will give one row of the

stiffness matrix. However this is a laborious process to accomplish by hand, and checking the

displacements in this way is sufficient.

The model includes 2-D elements, which only approaches the exact theoretical solution as the

number of elements increases. 73

7 Bathe (1996)
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5.3. Dynamics
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Figure 5.3.1. (a) The Tjhoku Earthquake data, as
(b) the central span of its Fourier Transform.

felt in

Frequency Content

1

0.9 -- - ------- --- - ----- - - - - - - - - - - -

0.7 ---------- ------- ------ ----- ------ ---------7
0.6 ------ ----- -- -- - ---- -- -- ------ -

0.5 ------ ------ --- -- -------

0.4 ------ ------------- ------ ------ - -----

0.2 ------ ------ ----- - '----- ------

0.1 - -- -- - -- - -- -- -

0 20 -15 -10 -5 0 5 10 15 20
Freq (Hz)

Tokyo at an angle of 3480 east from north,

As is seen in figure 5.3.1(a), The magnitude of the horizontal accelerations in Tokyo peaked at

only a fifth of gravity, which is not a high acceleration value for a modem city to withstand.

There was not significant damage in Tokyo generally following the Tohoku earthquake.

It is seen from figure 5.3.1(b) that the frequency content drops off significantly after 15Hz

(below about 3% of peak). This shall be considered the ultimate loading frequencyf,. Thus the

cutoff frequency fco = 4f, = 60Hz.

The frequencies of the model, to the first frequency above 60Hz, are as shown in table 5.3.1:

74 Bathe (1996)
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Table 5.3.1. Frequencies of the finite element
convergence

model (in Hz), to find how much model detail is required for

In finding these frequencies, it was required to restrain the building and wall nodes vertically to

prevent erroneous axial modes.

The refinement of the frequencies of the modes of interest was less than 1% when increasing the

mesh detail from splitting the wall surfaces into 4 parts than when splitting the wall surfaces into

9 parts, so the model with the wall surfaces divided into 4 shall be used for the dynamic analysis.

This represents a level of model refinement that is accurate enough to capture the details needed,

but not so accurate that the processing is overly expensive.75

Implicit direct integration analysis shall be used as the earthquake load is over a long period of

time it is reasonable to believe that implicit analysis would be more efficient than explicit, and

has the added benefit of a consistent mass matrix. For accuracy a time step of t = Te./40 will be

used, where Te,, = 1/fe. Thus t = 0.0016s, and 180000 time steps are required for the 300s of

earthquake data.

7s Bathe (1996)
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Model Mode 1 Mode 2 Mode 3
As described in 5.3 14.1 38.37 63.48
With the wall 13.59 36.77 60.77
surfaces divided in 4
With the wall 13.38 36.11 59.64
surfaces divided in 9 1 1



However, this many time steps produces an 8.6GB ADINA porthole file, which the software

cannot open on the computer hardware available. In ADINA, the number of time steps recorded

can be limited by going using the function Control/Porthole/Timesteps (nodal results), setting

the function to Overwrite Any Existing Blocks, and defining all of the 180000 time steps as being

in one of these 'blocks'. The period of interest in the earthquake is 75s to 150s, which

corresponds to time steps 45000-90000. Additionally, it is chosen to not record any time steps

for the blocks outside of this period, and only one in six time steps will be recorded for this

period, which is one every 1 /1 0 0 th of a second, the frequency of the acceleration data.

5.4. Units and Consistency

The acceleration load is applied in m/s 2, which is the consistent unit for SI, which the model has

been constructed in. The acceleration loads that are to be used are for Tokyo, which was far from

the epicenter of the Tohoku earthquake. As such, this data is not high-priority and has not been

processed, and has a non-zero mean. This means that in the video illustration of the finite

element analysis, the building can be observed drifting to one side. Japan of course is known to

have moved by 8 feet in the Tohoku earthquake, and so to some degree that motion accurately

represents the history, although drift observed in the illustration is greater than the 8 feet that

Japan is commonly understood to have moved during the earthquake. This fact is not detrimental

to the present analysis, in which it is planned to find the forces in the links between the building

and the rocking wall. Since the movement is gradual over 5 minutes, the accuracy of the link

forces will not be significantly affected.
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5.5. Mass for Dynamic Analysis

Mass will be added to the finite element model at specific points, in particular 2000 tonnes will

be added at points 3 to 12, and 1000 tonnes at point 13, to match the mathematical model of the

building. This is accomplished in ADINA with the function Model/Element

Properties/Concentrated Masses. In addition, the material that the building was notionally

constructed in the finite element model from has its density set to zero, matching the

mathematical model of a lumped-mass building.

5.6. Finding and Processing the Link Axial Forces in ADINA

To find the axial forces in each link (represented in the finite element model by lines 48 to 58),

each one must be added to a different element group (element groups 14 through 24), as although

setting the zone to "element 1 of element group 2" and so on was accepted by ADINA as correct

syntax, it did not function as expected. On time steps after the first, details for other elements

were also printed. Also it was not immediately apparent which element was element n.

To solve that problem, the data were processed with text editing software to obtain 11 vectors of

forces in MA TLAB-ready syntax. These vectors were then multiplied by the height vector for the

structure, and the results summed, to find the combined .turning moment at the base of the

building, as a function of time. The result is shown infigure 5.6.1, below.
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Figure 5.6.1. The overturning moment at the base of the building, as afunction of time

5.7. The Addition of Damping to the Model

For the final model, 5% Rayleigh Damping was added in ADINA using the commands

Control/Analysis Assumptions/Rayleigh Damping, and setting the parameters a and 8 to 0.7225

and 1.67E-3 respectively.

As is seen fromfigure 5.7.1, the addition of 5% damping to the model reduced the peak moment

by nearly 30%, and the sustained moment magnitude by even more.
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Figure 5.7.1. The overturning moment at the base of the building, as afunction of time, with 5% Rayleigh damping

5.8. Calculation of the Static Shear Wall Cracking Moment

The size of the static shear wall as seen infigure 5.0.2 is approximately 5.2ft by 54.4ft, and thus

the second moment of area of the weak axis is 637.42 ft4 . High strength 5 ksi concrete is

assumed.

The cracking moment may be found from the following formulae:76

fr = 7.5 4fc = McrackYmax/I (5.1)

Merack = 7.5I4f'c/ymax (5.2)

76 Nilson et aL. (2009)
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It is found that the cracking moment of the static shear wall is 2.247x]08 lb-in or 2.5393x]07

Nm. The first moment value recorded in the high-energy earthquake period from 75s to 150s is

4.8x1 07 Nm, almost twice the cracking moment. Thus it is seen that the cracking strength of the

concrete was reached relatively early in this earthquake. The remaining earthquake cycles over

the following minutes will have continued to crush the concrete around the cracks, making the

cracks visible to the naked eye, as was observed. The peak overturning moment, approximately 2

minutes into the earthquake, was approximately 20 times the cracking moment of the static shear

wall.

5.9. Conclusions of the Finite Element Study

It is clear from the finite element analysis presented that the inertia force from the rocking wall

was sufficient to cause, and most likely was the cause of the cracking in the adjacent static shear

wall of the building studied.

The high inertial forces generated by rocking walls during an earthquake should be carefully

considered by designers implementing this scheme. In this particular case, the rocking wall

should not be attached to the static shear wall, and the static shear wall should not block the

dynamic path of the rocking wall.

Connections from a rocking wall to a building should only be on the near side of the rocking

wall, when the rocking wall is constructed on the edge of a building.
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It may be noted that while the loads imposed by the rocking wall were substantial, they were not

entirely unmanageable. Equations 5.1 - 5.2 show that if the static shear wall were doubled in

thickness, it could have sustained the loads without cracking.
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6. Rocking Column Design

6.1. Rationale for Design

As a consequence of the research presented in this work, it has become apparent that the lateral

inertial forces exerted by rocking walls on the surrounding structure during an earthquake are

greater than was previously understood.

In addition to requiring additional care in the design process, regarding the kind of adjacent

structures that should be supporting the inertial lateral loads from rocking walls, it emerges

clearly from the presented research that when under full code-specified seismic loading, the total

maximum load that rocking walls apply laterally is of the magnitude of one story weight. For the

case study building presented, this total maximum lateral load occurs at the top story, and is

8.2MN, or 1800 kips in magnitude, which is 4 times more than the weight of the rocking wall

itself. It is clear that the connections from the rocking wall to the building are required to be very

significant to support such a load. Such connections are not readily available, and are costly. And

although this load is the maximum load, the loads at other stories are also significant.

The above loads were calculated without the effect of supplemental damping systems, and so

should be considered an upper bound. However, it would not generally be expected for even

optimum damping to reduce the lateral loads by more than 50%, and thus the remaining loads

will still be very difficult to control.

In addition, the foundations required for rocking walls, and the pins required at their base, are

very significant and costly. For the case study building, each of the six rocking walls are 3400
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cubicfeet in volume, and 500 kips of weight, not including the case iron base. As a reference, the

case study retrofit project added 50% to the existing reinforce concrete area, in plan.

Clearly, reinforced concrete rocking walls have been a highly commendable academic effort, and

have taught the engineering community a lot about this kind of dynamic structure. However,

there are practical difficulties inherent in their design that must still be overcome.

6.2. Introduction to Rocking Column Design

It is suggested that to overcome the difficulties observed with rocking walls, that a structure be

designed from steel which maintains the desired properties of adding lateral stiffness to the

structure, while being moment-released at the base, but without the high mass of a rocking wall.

Starting from the assumption that a wide flange section is most efficient in general bending,

some initial calculations can be performed to determine the size of section that would be required

to replace, for example, a rocking wall from the case study:

IcEe = IsEs (6.1)

Ee = 2AJ42Es 
(6.2)

and thus:

bdEe bd
Af= 6Es ~~0 (6.3)

where Ic, Is, Ec, Es are the strong second moment of area and modulus, of the concrete and steel

respectively, A4 is the area of the flange, and d, b are the dimensions of the rocking wall in plan.
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Thus for the same stiffness, the total area of steel flange is 95% less than the area of concrete.

Steel is approximately 3.25 more dense than concrete, and so the weight of the steel flanges is

approximately 84% less than the weight of the concrete.

The web of the wide-flange section need not be continuous, but rather should most likely be

designed as a truss. In particular, a concentric braced frame, as illustrated in figure 6.2.1 is a

popular form of deep supporting section in steel construction. For total steel weight, a

reasonable conservative first estimate is that for the deep section considered for the case study

building, the web be an inch thick. Ultimately, the web design would be a much lighter truss of

course, so this would be a gross overestimate of the web area A,,. If applied consistently for any

size section, this would suggest a web area of:

bd
A 2 ~ (6.4)

This upper bound estimate would then suggest a total steel area of 91% less than the equivalent

concrete system, and a total weight of 70% less. This corresponds to a rocking column weighing

approximately 150 kips, for the case study example, compared to the rocking wall with a weight

of 500 kips.

7 McCormac and Csernak (2012)
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Figure 6.2.1. Schematic (a) lower elevation, and (b) plan, of a rocking column, with trussed web

6.3. Further Rocking Column Design

For the case study building, the flange size required is 104in2 , which is 4.3 in. wide over the 24

in. depth of the available space. Such sizes of steel plate are not commonly available.

One possible solution would be to build up a thicker section from thinner plates, which may be

desirable in certain architectural situations. Architectural considerations are addressed further in

section 6.5. The most realistic structural approach is to use a standard wide-flange or WT section

for the flange of the rocking column.

The most likely candidate wide flange sections for the case study example are given in Table

6.3.1.
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Section Area A, in' Overall depth d. in flange width bf. in flange thickness tf in

W40x362 107 40.6 16.0 2.01
W36x361 106 38.0 16.7 2.01
W33x354 104 35.6 16.1 2.09
W30x357 105 32.8 15.5 2.24
W27x368 108 30.4 14.7 2.48
W24x370 109 28.0 13.7 2.72
Wl4x370 109 17.9 16.5 2.66

Table 6.3.1. Candidate wide flange sections for the flange of a rocking column for use in the case study building7 8 .

All shapes are considered heavy shapes, with a flange thickness greater than 2 ", so AISC A3. 1(c) applies.

The least wide section is most desirable, since it is required to get the rocking column flange area

as far from the middle of the rocking wall as possible. This requirement would lead to W24x370

being chosen. However, the depth of the section is 4 in. more than the current rocking wall.

Possibly this would be within tolerances. However, W14x370 will be chosen, with a web

thickness of 1.66 in., to ensure that the rocking column design would fit within the existing space

allocated for the rocking wall. This is illustrated in plan, to approximate scale, infigure 6.3.1.

I I
Figure 6.3.1. A schematic plan of a rocking column, using standard structural steel wide flange shapes, designed for

the case study building, to approximate scale, assuming 4 in. members for the truss web.

An alternative approach would be to use a WT shape for the flanges. These are more expensive

per unit mass of steel, since they consist of a wide flange shape that has been cut in half along

the web, and are not as common as wide flange shapes. However, they would offer a more

efficient use of steel, since the steel would be as far as possible from the center of the rocking

column.

There are only two standard WT sections that meet the area requirement, as shown in table 6.3.2.
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Section Area , in2 Overall depth d, in flange width br, in flange thickness t. in

WT18x400 118 21.3 18.0 4.29
WT7x365 107 11.2 17.9 4.91

Table 6.3.2. Candidate WT sections for the flange of a rocking column for use in the case study building". All
shapes are considered heavy shapes, with aflange thickness greater than 2".

As is seen from table 6.3.2, the net effect of using a wide flange section for this purpose would

be simply to split the flange of the rocking column into two halves.

Both of the possible WT sections meet the depth requirement of 24 in. However, the WT7x365 is

the better choice in this case, with a flange thickness of 4.91 in., placing the maximum area away

from the center of the rocking column, and the lightest possible, with a stem thickness of 3.07 in.

This yields an ideal rocking column, as illustrated infigure 6.3.2.

Figure 6.3.2. A schematic plan of a rocking column, using standard structural steel WT shapes, designed for the
case study building, to approximate scale, assuming 4 in. members for the truss web.

6.4. Detail Design

The open-face cast iron pin presented by Wada et al., illustrated infigure 2.1.2 and pictured in

figure 6.4.1 is a proven design, behaving as intended during the 2011 earthquake. A smaller

version of that pin might be used for this purpose.

8 AISC (2005)
" AISC (2005)
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Figure 6.4.1. Open cast pin (photograph courtesy Prof Simon Laflamme)

6.5. Architectural Considerations

For certain contemporary buildings, a set of visible rocking columns may be a desirable

architectural feature, particularly for architects who desire a structurally descriptive style.

For many buildings, such a feature may not be architecturally appropriate, and will require

covering, as is common for most structural systems. A model illustrating how a rocking column

installation for the case study building might look, at three stages, is shown infigure 6.5.1.
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Figure 6.5.1. A model of the case study building (a) as it was before retrofit, (b) with rocking columns installed, (c)
with architectural cover
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6.6. Analysis of the Benefits of Rocking Columns

6.6.1 Lateral Force Reduction

The software developed for rocking wall analysis was modified to allow both rocking wall

analysis and rocking column analysis.

Based on a new full analysis of the case study building, it is found for the case study building

that the maximum lateral force in the wall-building links is projected to drop by 7.5% with a

rocking column, corresponding to the drop in mass of the new system.

The case study building is very massive, due to being long in one direction. The reduction in

lateral force from using a rocking wall is greater for a less massive building, since the rocking

wall represents a greater fraction of the total mass of the building. For a very massive building,

the majority of the lateral link load may be attributed directly to the action of the stiffness of the

rocking wall or column.

10- 0

8-e

6 0 0

2 0

-00 -6000 -4000 -2000 0 200 4000 6000 8000
Force in link (kN)

Figure 6.6.1.1. The forces in the building-rocking column links, under code specified seismic loading, for the case
study building, as predicted by the static equivalent method presented.
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6.6.2 Foundations Reduction

As discussed in section 6.2, the weight of rocking columns is predicted to be 70% less than that

of rocking walls. It is thus reasonable to consider that the foundations required for rocking

columns will be 50% to 70% less substantial than those required rocking walls, with significant

cost savings.

6.6.3 Cost Effective Connections

As has been established, substantial lateral connections are required between the rocking wall

and the building, for either rocking walls, or rocking columns. Such connections are predicted to

be more cost effective for rocking columns, since steel-to-steel connections are significantly less

expensive than steel-to-concrete connections. 80

6.6.4 Greater Story Drift Reduction, with Potential for Further Reductions

As is seen from figure 6.6.4.1, since the use of steel rather than concrete reduces the system

density by 70%, a significant reduction in maximum story drift is achieved for the case study

building, using the same size column as the wall that was used: 4.39m wide by 0.61m deep.

80 McCormac and Csernak (2012)
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Figure 6.6.4.1. The Rocking Column Design Graph for the case study building, showing maximum story drift angle
of the modeled case study building, against rocking column width (m), using 6 rocking columns. The location of the
4.39m-wide walls actually used in the case study is marked red, and the reduction in maximum story drift that is
predicted to be achieved with rocking columns is marked with green.

As is also seen from the figure, there is significantly capacity to reduce the maximum story drift

even further, by using a rocking column rather than a rocking wall. The point of diminishing

returns occurs at about 7m, and the gradient before this point is very steep, indicating a high

incentive to increase the width of the column if possible.

6.6.5 Overall Comparative Effectiveness

Due to their use in dynamic motion, concrete rocking walls are highly reinforced members. Of

course, concrete is not generally a material that is considered for dynamic applications.

There have been no negative indications found of using steel rocking columns rather than

concrete rocking walls, and several substantial positive indications. It seems highly advisable to

use steel rather than concrete in future projects of this type.
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7. Suggested Extensions

There is much that could be extended in this work. A number of possible extensions to this work

are suggested:

* Use the link forces to determine the stresses in the wall & thus indicate the amount of

pre/poststress required in the wall.

* Apply a dynamic load application approach to these issues.

* Consider that seismic damage to columns may decrease the story stiffnesses during an

earthquake.8 '

* Add to the software the ability to take an input of zip code and to derive the design spectral

acceleration values Ss and Si from the zip code.

* Add supplemental damping to the model, which the analytical model is designed to allow,

since it allows the wall to move independently from the building.

* Allow for a fully specified stiffness, mass, and height vectors in the software.

Koh et al. (1995)
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8. Conclusions

Retrofitting certain sizes of rocking walls to older buildings is an effective method of reducing

structural response during a seismic event. It is thus an effective method of reducing the

structural damage caused, thus reduces the potential for loss of life and societal disorder.

Care must be taken in the rocking wall design process, however, to ensure that adjacent systems

are capable of supporting the high lateral loads that the rocking wall will exert during a seismic

event. Those forces are primarily due to the stiffness of the rocking wall, but also increase with

the mass of the rocking wall. In addition, as also shown in this work, care must be taken that

useful sizes of rocking wall are chosen, and not sizes that will worsen the structural response.

If the top story of a retrofitted building is significantly lighter than other stories, the research

presented implies that rocking walls and columns may be stopped short of the top story without

negative consequence.

Current rocking walls designs consume significant area on a building plan, and may not be the

most effective option for a modem newly constructed building that requires maximum available

light and access. However, the latest buildings use all available technologies to deal with extreme

load cases, and rocking walls may form part of a comprehensive damage reduction strategy for

new buildings, particularly if optimized rocking wall sizes for given applications can be

identified.

The quasi-static approach to applying seismic loads to structures is an effective way of

determining the maximum story drift when the building is excited in its first mode. The

frequencies of higher modes are increased significantly by rocking columns or rocking walls,

often well beyond excitation frequencies, reducing the need to analyse those modes.
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The general stiffness matrix derived for a discretized shear spring-mass system pin-connected to

a flexible pinned column (a simplified building-rocking wall system) provides an accurate

description of the simplified building-rocking wall system under arbitrary loading.

The total maximum forces in the links joining the rocking wall to the building in the case of the

case study building rocking wall retrofit have an upper bound of the order of one story weight,

and occur at the top stories of an installation. Supplemental damping may reduce these forces.

The representative discretized building models presented are a useful tool by which to simulate

structural ideas against a broad background of representative buildings.

Based on comparison with the case study rocking wall retrofit, the method presented of using an

analytical model to produce a design graph of maximum story drift against rocking wall size is

an effective way to optimize the size of rocking wall required for a rocking wall installation

project.

The use of steel rocking columns, as presented in section 6, is an effective way to reduce the

difficulties associated with concrete rocking walls. They show evidence of reducing the

maximum story drift further than rocking walls for the same volume of wall, and have potential

for greater story drift reductions than rocking walls. They require smaller foundations, and

smaller lateral connections. Rocking columns have a greater potential to be commercially viable

than rocking walls have so far been.
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Appendix A: The 20 Significant United States Earthquakes
1933-2006

This appendix presents the time histories and spectral acceleration plots of the 20
earthquakes that occurred in the United States from 1933 to 2006 that are considered
significant.A1 This information was combined to create figure 1.2.3, which illustrates that
the most damaging earthquake frequencies are in the approximate range 2 to 6 Hz, and
that moving structural response frequencies away from this region is a good way to
control structural response.

The Spectral Acceleration plots are calculated with a damping of 5% of critical.

Earthouake Year Date Time Latitude Longitude Mao. Fatalities

Hawaii Kiholo Bay

Parkfield

San Simeon

Hector Mine
Northridge

Big Bear

Landers
Cape Mendocino

Sierra Madre
Loma Prieta

Whittier Narrows
Morgan Hill

Coalinga

Livermore

Livermore
Imperial Valley
San Fernando

Kern County
El Centro
Long Beach

2006
2004

2003
1999
1994

1992
1992
1992
1991
1989
1987
1984
1983
1980
1980
1979
1971
1952
1940

1933

10/15/06
09/28/04

12/22/03
10/16/99
01/17/94

06/28/92
06/28/92
04/25/92

06/28/91
10/17/89
10/01/87
04/24/84

05/02/83
01/26/80
01/24/80

10/15/79
02/09/71
07/21/52

07:07:48 HST
10:15:24 PDT

11:15:56 PST
02:46:45 PDT

04:30:00 PST
08:05:31 PDT
04:57:31 PDT

11:06:05 PDT

07:43:00 PDT

17:04:00 PDT

07:42:20 PDT
14:15:19 PDT
16:43:00 PDT

18:33:35 PST
11:00:09 PST
16:16:00 PDT

06:00:00 PST
16:52:14 PDT

05/18/40 20:36:40 PST
03/10/33 17:54:00 PST

Table Al: Overview of the 20 significant earthquakes in the United Statesfrom

Figure Al. U.S. Earthquakes Causing Damage, 1750-1996, using Modified Mercalli Intensity. Adapted
from USGS record of damaging US earthquakes5
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Peak Accn.
Period Low (s)

0.1

Peak Accn.
Period High (s)

0.619.820
35.815
35.706
34.600
34.209

34.201

34.216
40.380
34.262

37.037
34.067
37.317
36.250
37.760
37.840
32.640

34.400

34.958
32.844
33.700

-156.027
-120.374

-121.101

-116.270
-118.541
-116.826
-116.433

-124.230
-118.002
-121.883
-118.078
-121.680
-120.300
-121.700
-121.800
-115.330
-118.400
-118.998
-115.381
-118.000

6.7
6.0
6.5
7.1
6.4

6.5
7.3
7.1
5.8
7.0
6.1
6.2
6.5
5.8
5.9
6.6
6.6
7.5
6.9
6.4

0
0
2
0

57
0
3
0
2

63
8
0
0
0
0
0

65
14

9
120

0.1
0.1
0.1
0.1
0.1
0.2

0.1
0.3
0.2
0.1
0.2
0.2

0.2
0.2

0.1
0.2
0.3
0.2

0.2

1933-2006

0.6
0.4

1.0
0.8
0.3
1.3
0.4

0.6
0.6
0.4

0.6
0.7
0.6
0.7
0.6
0.5
0.4

0.6
0.6



1) Long Beach 1933

Magnitude: 6.4
Recording station and instrument:
Long Beach, CA - Public Utilities Bldg - 215 W Broadway
Closest distance to fault: 0.8 km
1880
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Wikipedia link: http://en.wikipedia.org/wiki/1933_LongBeachearthquake
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2) El Centro 1940

Magnitude: 6.9
Recording station and instrument:
El Centro, CA - Array Sta 9; Imperial Valley Irrigation District - 302 Commercial
Hypocentral distance: 12.2 km
1800
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-342-
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Wikipedia link: http://en.wikipedia.org/wiki/1940_ElCentro-earthquake
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3) Kern County 1952

Magnitude: 7.5
Recording station and instrument:
Taft, CA - Lincoln School - 810 N Sixth
Closest distance to fault: 36.2 km
210

150

-150
0 11 22 33 43

seconds

1P

.0

L.

54

Period
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Wikipedia link: http://en.wikipedia.org/wiki/1952_Kern_Countyearthquake
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4) San Fernando 1971

Magnitude: 6.6
Recording station and instrument:
Pacoima Dam, CA
Closest distance to fault: 3.5 km
1640
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Wikipedia link. http://en.wikipedia.org/wiki/]971_SanFernando-earthquake
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5) Imperial Valley 1979

Magnitude: 6.6
Recording station and instrument:
Bonds Corner, CA - Omlim residence - Hwys 115 & 98
Closest distance to fault: 4.4 km
1400
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Wikipedia link: http://en.wikipedia.org/wiki/List of earthquakes inCalifornia
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6) Livermore A 1980

Magnitude: 5.9
Recording station and instrument:
San Ramon, CA - Fire Station
Hypocentral distance: 19.5 km
3400
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Wikipedia link: http://en.wikipedia.org/wiki/List of earthquakesinCaliornia
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7) Livermore B 1980

Magnitude: 5.8
Recording station and instrument:
Livermore, CA - Fagundes Ranch
Hypocentral dist: 11.3 km
3600
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Wikipedia link: ht'tp:/en. wikipedia. org/wiki/ListofearthquakesinCalfornia
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8) Coalinga 1980

Magnitude: 6.5
Recording station and instrument:
Pleasant Valley, CA - Pumping Plant
Hypocentral dist: 14.1 km
450
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Wikipedia link. http://en.wikipedia.org/wiki/]983_Coalingaearthquake
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9) Morgan Hill 1984

Magnitude: 6.2
Recording station and instrument:
Halls Valley, CA - Grant Ranch
Closest distance to fault: 2.5 km
1500
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Wikipedia link. http://en.wikipedia.org/wiki/1984_MorganHill-earthquake
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10) Whittier 1987

Magnitude: 6.1
Recording station and instrument:
Monterey Park, CA - Garvey Reservoir
Closest distance to fault: 13.6 km
3300
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Wikipedia link: http://en.wikipedia.org/wiki/1987_WhittierNarrows-earthquake



11) Loma Prieta 1989

Magnitude: 7.0
Recording station and instrument:
Corralitos, CA
Closest distance to fault: 2.8 km
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Wikipedia link: http://en.wikipedia.org/wiki/1989_LomaPrieta-earthquake
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12) Sierra Madre 1991

Magnitude: 5.8
Recording station and instrument:
Sierra Madre, CA - Cogswell Dam (Ctr Crest)
Hypocentral distance: 12.6 km
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Wikipedia link: http://en.wikipedia.org/wiki/List of earthquakes_inCal fornia
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13) Petrolia 1992

Magnitude: 7.1
Recording station and instrument:
Cape Mendocino, CA - Petrolia
Hypocentral distance: 15.5 km
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Wikipedia link: http://en.wikipedia.org/wiki/l992_CapeMendocinoearthquakes
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14) Landers 1992

Magnitude: 7.3
Recording station and instrument:
Joshua Tree, CA - Fire Station
Closest distance to fault: 10.0 km
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Wikipedia link: http://en.wikipedia.org/wiki/]992_Landersearthquake
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15) Big Bear 1992

Magnitude: 6.5
Recording station and
Snow Creek, CA

instrument:

Hypocentral distance: 37.9 km
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Wikipedia link: http://en.wikipedia.org/wiki/1992_BigBear earthquake
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16) Northridge 1994

Magnitude: 6.4
Recording station and instrument:
Tarzana, CA - Cedar Hill Nursery A
Closest distance to fault: 16.7 km
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Wikipedia link: http://en.wikipedia.org/wiki/]994_Northridgeearthquake
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17) Hector Mine 1999

Magnitude: 7.1
Recording station and instrument:
Amboy, CA
Hypocentral distance: 48.4 km
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Wikipedia link: http://en.wikipedia.org/wiki/1999_HectorMine-earthquake
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18) San Simeon 2003

Magnitude: 6.5
Recording station and
Cambria, CA - Hwy 1
Hypocentral distance:
3600

122
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instrument:
Caltrans Bridge Grnds
14.8 km

i i I1.

0 16 32 48 65
seconds

81
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Wikipedia link: http://en.wikipedia.org/wiki/SanSimeonearthquake
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19) Parkfield 2004

Magnitude: 6.0
Recording station and instrument:
Parkfield, CA - Gold Hill 1W
Closest dist to fault: 0.5 km
3600

139
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-139

0 4 9 13 17 21
seconds
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Wikipedia link. http://en.wikipedia.org/wiki/2004_Parkfield earthquake

Notes:

High resolution data of this event is available from the Parkfield High Resolution Seismic
Network.A3 As part of the research operation at Parkfield, a hole was drilled near the fault
to a depth of 8500 feet. Drilling was completed a week before this event.A4
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20) Hawaii 2006

Magnitude: 6.7
Recording station and instrument:
Anaehoomalu, Hawaii Is, HI - Waikoloa Hotel
Hypocentral dist: 42.5 km
1780
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C7

-178
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seconds

28

________Period

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Wikipedia link: http://en.wikipedia.org/wiki/2006_Hawaiiearthquake
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A3 http://www.ncedc.org//2004parkfield.html (Jan 9 th 2012)
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A5 http://earthquake.usgs.gov/earthquakes/states/us_damage-eq.php (Jan 9 th 2012)
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Appendix B: A Set of Benchmark Building Models for Use
in Simulations

B.1. Index of Symbols Used

Symbols are defined as they are used, and are also defined here for reference.

A constant used to simplify the calculation of parabolic stiffness distribution. Defined in eqn B.53

CT variable used by the ASCE 7-05 code to find the approximate first natural period

D the fractional increase in stiffness, of k1, that defines a linearly-increasing stiffness distribution

d The linear increment of lower story stiffnesses as a fraction of k1. Defined in eqn B. 11

story drift

E material stiffness modulus

e rigid body vector. Defined in eqn B.9

F, force on structure node i. In particular the forces in the wall-building links

F vector of forces Fi

Fw. vector of the net loads on the wall

vector of the net loads on the wall but incomplete as FN = 0

Fb vector of the net loads on the building

Fwall wall pseudo-flexibility matrix, determining shape from loads

F1  a 'flip' matrix. Defined in eqn B.28

H total height of the building

h, h, single story height

h, the height of the it, jTh story

I the identity matrix

second moment of area, usually of the rocking wall

the rotational moment of inertia of the rocking wall

the story stiffness of the it' story, where i= 1 is the top story

k story stiffness. If no subscript, then represents constant story stiffness

k stiffness vector of the building story stiffnesses

K stiffness matrix, either of the building, or of the whole building-rocking wall system ,depending on context

Kwaii wall pseudo-stiffness matrix, determining loads from shape

Kbld the stiffness matrix of the building

L a lower triangular matrix where the lower triangular elements are all unity. Defined in eqn B. 16

L length, either of a single story, or the total height of the rocking wall, depending on context

M diagonal matrix of the masses in a building. Defined for the standard top-light case in eqn B.3

M total mass of the rocking wall

m mass of any non-top story, when using the standard top-light mass distribution

mi the mass of the ith story

N the number of stories in the building

Pj load on building position i

P vector of Pi

Qj load on wall position i
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Q vector of Qi

SD/L a matrix that shifts elements down or left depending whether it pre- or post-multiplies. Defined in eqn B.5

SUR a matrix that shifts elements up or right depending whether it pre- or post-multiplies. Defined in eqn B.6

Ss Igeographical short period acceleration

T, T1  first natural period, usually of the building

Ta approximate first natural period

ut displacement of building node i

U vector of uj

U an upper triangular matrix where the upper triangular elements are all unity. Defined in eqn B. 17

vi displacement of wall node i

V vector of vi

v linear vector which is the standard initial guess for the building first mode.

V the base shear in an equivalent seismic load calculation

V diag(v), a diagonal matrix of the linear vector v. Defined in eqn B.58

W shape displacement vector for wall, as measured from some rotational datum line

Wi ith element of W

On, 01 first natural angular frequency, usually of the building

V angle through which the datum line (projected through the hinge and position N) of the wall has rotated

vector representing a rigid body rotation of y

B.2. Conventions

In this appendix, the top node of a discretized building is referred to as node 1, while the

lowest node is referred to as node N. This is in contrast to the work body.
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B.3. Introduction

In order to present details of the most useful rocking wall size for representative building

types, those representative buildings must first be defined.

There are many ways in which this could be done. The method that seems most natural is

to start with basic assumptions that a structural engineer would have about a building of a

given size. One of the earliest appreciations that an engineer has is of the natural period

of a building.

The natural period may be estimated with the familiar T ~~0. IN. However, that is a very

rough approximation, and can be considerably off, especially for certain kinds of

structure. A better approach to approximate the period is to follow the guidelines in a

widely accepted code, such as ASCE 7-05. ASCE 7-05 considers almost all building types

when calculating the natural period, and although it usually produces a result within 25%

of T ~~0. IN, is not constrained by the assumptions in that formula.

In addition to story masses, the only other piece of information needed to determine the

story stiffnesses is the stiffness form. For example, it is required to know whether the

story stiffnesses are uniform, or increase linearly from the top down, or increase

parabolically from the top down. It is not possible to model every building, but rather a

representative set of models may be determined, one of which will offer a reasonable

approximation to most given rocking wall installations, and thus provide data which

simplifies the analysis process.
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It is important to understand that if, in addition to the mass distribution, the stiffness form

(constant/linear/parabolic) is known, and code is used to determine the natural period,

then the code fully implies the stiffness matrix. Developing a stiffness matrix in addition

to using code to determine the natural period is redundant. Likewise, if the stiffness

matrix is known, then using the code to find the period is redundant. And since code

provides a very useful approximation of the natural period of buildings, it may also be

extended to provide a useful set of representative building models. Making the leap from

natural period to stiffness matrix, given the stiffness form, requires some careful algebra,

which is presented here.

Based on the mass, mass form, and stiffness form, algebra may be applied that rearranges

the Rayleigh quotient formula, including inverse iteration, to provide the building

stiffnesses, to determine the story stiffnesses, and thus produce a set of representative

discretized building models. An example will also be used to suggest that using five

inverse iterations is equivalent for any reasonable purpose to a closed-form solution.

In the case where the story stiffnesses are uniform, the Rayleigh quotient is not required,

since the closed-form solution may be applied:

co2 = 4!sin (Bm 4N

where N is the number of stories, m is the story mass of a standard top-light building

model, and k is the story stiffness.
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B.4. Using the Rayleigh Quotient to Find the Building Stiffness

In order to find the stiffness from the natural period of a building, the logical formula to

use is the Rayleigh quotient.

When the Rayleigh quotient is used with buildings, a very commonly used initial vector

is the linear vector, v = [N,N-1,...,1]

If this vector is substituted into the denominator of the Rayleigh quotient formula, with a

standard top-light mass matrix M, it can be seen that:

vTMv = nr (2N2 + 1) (B.2)(2P]8

where

- 0 ... 0
2

M= 0 m (B.3)
* .0

0 --- 0 M_

For the numerator, a similar method may be applied in the case where ki are constant:

y Kv = Nk (B.4)2,8

However, most buildings do not have a constant ki, but rather are stiffer at the base, and

become less stiff towards the top. Thus it would be useful to extend this idea to other

distributions of k;.

Let us define a matrix SD/L, that shifts elements down or left, and Su , that shifts

elements up or right, depending respectively whether they pre- or post-multiply:
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0 0 ... 0

SD/L = (B.5)
0 - -. 0

0O 0 1 01

0 1 ... 0

SUIR = . . (B. 6)

0O 0 0 0j

it is seen that

v(I - SDI) =eT (B. 7)

(I - SumR)v = e (B.8)

where

e = . (B.9)

If the output of the formula vTKv is studied, it is observed that:

N
vKv = ki (B. 10)

i=1

This is very useful, and this may be used with the uniterated Rayleigh quotient formula to

determine ki, for some predictable distribution of stiffness, given the natural period of a

structure. However, it would be preferable to apply inverse iteration in the solution.

B.5. Using Inverse Iteration to Find the Building Stiffness

The next step is to incorporate inverse iteration to the method, to ensure that the values

found for k; are as close as possible to the true values.
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However, the Rayleigh quotient formula only allows us to solve for one variable, so in

order to use inverse iteration, a stiffness matrix must be formulated specifically for a

given arrangement of stiffnesses, in terms of a fixed variable that defines the stiffness

distribution, such as k;.

When each story stiffness is a successive multiple of the top stiffness (i.e. in the

following example, the increment d=]), the structure deforms linearly, under uniform

loading.3'' 58 Let us consider the general linearly-increasing case, in which the increment d

may be less than or greater than unity:

ki = k; + (j-1)dki (1 j < N; d e -i) (B.11)

It is required to solve the following for ki, or some other variable that uniquely specifies

the stiffness matrix, given the stiffness arrangement:

v'ET((K- M)T)" K (K -M) " v(B2
vT ((K M)T)n M(K -'M)"v

Since it is known that:

vT Kv = k (B.13)

and by definition:

N

elk = ki (B. 14)

it may be equated in the general case:

ek =Kv (B.15)
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It would be helpful if k, a vector of story stiffnesses could be solved for, knowing K.

Define:

L = K

0
U =

0

L0

0 ... 0~

I .U
.- 1 1

(B.16)

(B.17)

and thus:

v Ue

T TV AL

(B. 18)

(B. 19)

Also note that:

(I - SD/L) L^

(I - SUIR) = U~

Thus equation B. 19 may be rearranged for eT, and substitute into equation B. 15:

(I- SDRL)k vTKv

And so the following may be observed in the general case:

k = LKv

LKU = diag()

k = LKUe

Thus, to find K as a multiple of k1, or of some other variable that defines a specific

(B. 10)

(B. 21)

(B. 22)

(B.23)

(B.24)

(B.25)

arrangement of stiffnesses, first diag(L must be defined as a multiple of that variable.
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B.5.1. Linear Stiffness

For the linear case,

k = k;

I

1+d

1+ 2d

1+ (N - I)d

diag(k) = k;(I + dSD/LFVFSu/R)

where F, is a 'flip' matrix:

0

F1=
0

LI

-- 0 1

.' 0

0 --- 0

where it might be noted that U = FILF. V is the linear diagonal matrix:

-N

T 0
V = diag(v) = ye .*I =.

: 0

0 --- 0
o ]N-i

0 0

-- 0 1

thus substituting equation B.27 into equation B.24,

ki(I + dSD/LFjVFSup) = LKU

rearranging:

and so

K = k1(I - SD/L)(I + dSD/LFiVFPS/)(I - SuR)

1
K' = TU(I + dSD/LFIVFISU)~' L
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This linearly increasing K may thus also be substituted into the uniterated Rayleigh

quotient formula as a simple multiple of k1 :

vTKv = kivT(I - SD4)( I + dSD/LFiVFISu/P)(I - SuR)v (B.33)

simplifying:

Kv = ek = kjfT(I + dSDIjFVFSVUI)e (B.34)

The mass matrix may also be defined in terms of such standard matrices, multiplied by a

constant:

M - 2 ±( +SDILSU/R) (B.35)

and so:

KIM = + dSD/LFVFS1)-'L(I + SD/LSU/R) (B.36)

Thus, in the linear case, the nth iteration of the first eigenvector is:

= (K'M) v =2k[U(I + dSD/LFVFASU/)~'L(I + SD/ )]nv (B.37)

where high n may simply be chosen to very closely approximate the true eigenvector.

The constants may be neglected of course. Thus the iterated Rayleigh quotient formula

for k, may be evaluated:

co v Mvki -
vn Kv,,

ki

co1 2vT(I+SD/LSUIR)Vn

r (2
vn (I - SDI L)(I +dSDI LF VFSU1I R SUI R)n

(B.38)

(B.39)

which may be found in non-dimensional form:
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ki
nMi CO

Iv;T(I + SD/ LSUI R)vn
2y

,_V 1- SDL)(1 +dDLF VFISUIR)(1 - U/RV,

(B.40)

where v, is found in equation B. 37. The constants multiplying v and v' are not required.

B.5.2. Constant Stiffness

Now that the case of linearly increasing story stiffnesses has illuminated the issues, let

the simpler case be considered, where ki are constant.

Equation B.1 may be rearranged to find k in the constant case, or d=O may be set in

equation B.40. But let the problem also be solved from scratch, in order to compare the

results.

For the constant case,

diag(k) = kI

substituting into equation B.24:

rearranging:

kI = LKU

(B.41)

(B.42)

(B.43)K = k(I - SD/L)(I - SU/R)

and so

K1

Then if the mass matrix defined in equation B.35 is multiplied by, then:

K'M = U L(I + SD/LSU/R)

(B.44)

(B.45)
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Thus, in the constant case, the n'h iteration of the first eigenvector is:

n= (K'M)" v = j[ UL(I + SD/LSU,/R))]n v (B.46)

where again high n may simply be chosen to very closely approximate the true

eigenvector, and neglect the constants. Thus the iterated Rayleigh quotient formula for k

may be evaluated:

k =- -2ET(B.47)
v TKv

k

co v (+SDILSUIR)

= 2 (B.48)
v (I -SDL )(I-SUIR(B8

which matches equation B.40 where d = 0. v=v may be substituted from equation B.46.

The constants multiplying v and v' are not required.

The performance of this formula is excellent as expected. It may be compared with the

closed-form solution non-dimensionally:

N2 cosec2N (B.49)2 ,P13 9 )

For N = 10, the closed-form solution yields 40.611909699 to 9 d.p. Equation B.48 yields:

Iterations mwo2  Error (%)
k

0 33.5 17.51
1 40.556 1.4x10-'
2 40.61124 1.6x10 3

3 40.611901 2.1x10-5

4 40.6119096 2.7x10-7

5 40.611909698 3.4x10-9

Table BL. The output of equation B.48 compared with the closed-form eigenvalue formula
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As can be seen from table B1, with each iteration, the error is about two orders of

magnitude better. It seems clear that using five iterations would ensure an entirely

negligible difference between the estimated value and the true value. The software

developed in this work uses 50 iterations, which is computationally trivial.

B.5.3. Parabolic Stiffness

Since seismic loading is parabolic in nature, a common strategy in building design is to

have the stiffness form be parabolic.

It can be seen that if constant story drifts 5 are required to ensure that damage is spread

evenly, then:

kI=-FUR (B.50)

where k is the stiffness vector, and p is any load vector. The inspiration for this neat

formula (equation B.50) is Jerome Connor's Introduction to Structural Motion Control,

which gives a more general form for any desired drift arrangement' 58 . It so happens that

for constant story drifts, the stiffness vector k may be expressed in terms of the standard

matrices previously defined.

For equivalent seismic loading, that the loads p; may be defined as:

j Zhi m,
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in which k = 2 unless the period is less than 0.5s, in which case k = 1, with the option for

linear interpolation between 1 and 2 if the natural period is between 0.5s and 2.5s. For the

case k = 2, and for the standard top-light mass model, this can be expressed in vector

form as:

2
p = Vm h 0

him -0

L0

0

1 .. (B.52)

where hs is the single story height. Denote the constant:

Vm h2 =A

Z him,
(B. 53)

1
p = 2A(I+ SD/LSU/R)

N 2

N 2 -2N+1 2

N 2 -4N+2 2

_N2 -2(N -1)N +(N -1) 2

I
=A 2(I + SD/LSU/R)[N22 -

0

2

4

_2(N -1).

0

12

2 2

_(N -1) 2

1
=A(I + SD/LSU/R)[N 2 e - 2NSD/LFIUe + F(SU/RVSD/L) 2e]

1
= A(I+ SDILSU/R)[N 2 - 2NSD/LFIU + FI(SU/R VSD/L2]e
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where V = diag(v):

N 0 ... 0

0 N-1:
V= . (B.58)

: -. 0

L0 --- 0 1

And thus substituting equation B.57 into equation B.50:

A
k -2 FU(I + SD/LSu/)[N 2I - 2NSD/LFlU + F(Sum VSD/L)2]e (B. 59)

215

And thus from equation B.24:

LKU = diag@ (B. 60)

It is possible to determine diag() in the parabolic case directly in terms of standard

matrices, but the formula is very long, and there is no real benefit to it. Rearranging:

K = (I - SD/L)diag()(I - SU/p) (B.61)

and thus:

K' = U[diag(@)]-'L (B. 62)

Then if the mass matrix defined in equation B.35 is multiplied by, then

K'M = IU[diag(k)]-iL (I + SD/LSU ) (B. 63)

Thus, in the parabolic case, the n' iteration of the first eigenvector is:

v= (K'M

m"

~ 2 [U[diag(k]-'L (I + SD/LSU V v (B. 64)

where high n may simply be chosen to very closely approximate the true eigenvector,

with the constants neglected. Thus the iterated Rayleigh quotient formula may be

evaluated, in this case solving for 5, the constant interstory drift:
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t v Kv
W 2 T

>5v Mv

SvT(I - SD/L)diag (I - SUq)v
(B. 65)

2o ±(I + SD/LSU/Rv

v=v may be substituted from equation B.64. The constants multiplying vn and y' are

again not required. Taking (5 to the outside of diag@, t may now be substituted into

equation B. 61 to obtain the stiffness matrix.

In summation, the stiffness vector, matrix and mode may be found in any of the three

cases with inputs N, w1 , and m, with the addition of d in the linearly increasing case.

An alternative use for equation B. 65 is to specify the desired story drift 5 for a parabolic

stiffness arrangement, which will provide constant story drift under equivalent seismic

loading, and solve for the resulting period and hence stiffnesses. The same is true for any

of the previous stiffness arrangements.
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B.6. Representative Model Building Data with Rocking Wall Design Data

56 representative model buildings are presented, with 116 rocking wall configurations,
each with a graph of maximum storey drift vs. rocking wall size.

The storey drifts were determined using the static equivalent seismic loading method, and
were based on a location of Los Angeles, California. The story stiffnesses were
determined by extrapolation from the code-derived period and the mass of each structure.
The constant data used to determine the period of the buildings and seismic loads from
ASCE 7-05 were:

Story Height 3.3m
Occupancy Category 3 (e.g > 300 people)

1-second Spectral Acceleration S, 0.75
Short-period Spectral Acceleration Ss 1.5

Site Class D
LLRS Concrete Moment Frame

Response Modification Factor R 4

Long Period Transition Period TL 8

Other constant data were:

Rocking Wall Depth 0.61m

Average Density 400 kg/m3

The data modified for each model building were:

N Number of stories

Height:width Ratio 2 to 5 stories: 1
6 to 10 stories: 2
11 to 15 stories: 3
(square plan)

m The single story mass m based on the
above.

Stiffness Form (d) Four different linear stifnessjbrms
were tested, with d (the increase in
stiffness of lower stories as afraction of
the upper storey) as 0.0, 0.25, 0.5, and
1.0. Thus only the top story stiffness ,top
is given in the tables. The other
stiffnesses can be inferredfrom ktrop and
d

Number of Rocking Walls 2-5 stories: one pair of rocking walls,
6-10 stories: up to two pairs,
15 stories: up to three pairs.

Each graph has been cropped to show only the most relevant data. It may be noted that
the small stiff buildings of 2-4 stories have very low story drifts, but from 5 to 15 stories,
all of the data are in the 0.4-0.7% range, and produce some very interesting and
sometimes unexpected graphs, which may be confirmed in any finite element software
package.
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Number Maximum Story Drift Angle
N Walls d m (kg) I (s) htop (N/m) vs. Rocking Wall Width (m)

2 2 0 57499 0.2547 5.972E+07 a0025

00023

0 001;

0 0015

3 (.5 1 15 2 23 3 3, 4

0.25 0.2547 4.960E+07 0025

D 0023

3 0021

3 0019

0 00171

3,0015

5 3 1 13 2 25 3 3.5 4

0.5 0.2547 4.298E+07

3 002-7

0 0021

32315 - - -- - - - - - -

5 1 15 2 2. 35 4

0.2547 3.498E+07 0 0029

0 0027

30023

3 0017*

S 3,5 1 15 2 25 3 35 4

3 2 0 129373 0.3669 1.416E+08 ns
3 0029 1
0,0027
0,0026

0,0023

0021

0 00 2 - - - - - - - - - - - -

2 3 4 5 6
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Number
N Walls d m (kg) l (s) htop (N/m)

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

0.3669 1.030E+08

0.3669 8.237E+07

0.3669 6.043E+07

3 303

0 00295
0 0029

0 00285

0 0328;

3002657

3 00295

0 00265

3,33355

3 002

3 3339

03333

3 03-75

3 3023

3 05 1 ~ 15 2 25 3

3 05 1 15 2 -5

0 0035

0,0033

3 315

0 0031
3 15

3 0303

333293

5 6 7 S

0.4754 1.715E+08 0003,

3 0033

3 3333

0 0032

3 00315
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Number
N Walls d m (kg) L (s) jtop (N/m)

Maximum Story Drift Angle
vs. Rockina Wall Width (m)

0.4754 1.296E+08 00035

3,00345

3 0034

300335

0 0033

2 0 359370 0.5811 4.292E+08

300375

0037

3 00365

0 0033

300355

0 0033

33034 -0003

3 0033

3 33356

33334 4-

00040s

300395

o 0039

000385

0 00375

373o37 -

300415

00041o c35

3 39

3385

3 4 57
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Number
N Walls d m (kg) l (s) op (N/m)

Maximum Story Drift Angle
vs. Rockina Wall Width (m)

1 0.5811 1.205E+08

2 0 129373 0.6847 1.599E+08

0.25 8.590E+07

0.5

1

6.017E+07

3.842E+07

03047

0 0046

o 0045

0 0044

30043

O 5344

305

0 0049

0 004FS

1 - 3 4 5 6

3 '540 0343
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3 1 4 50 00550.03343
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Number
N Walls d m (kg) l (s) htop (N/m)

Maximum Story Drift Angle
vs. Rockina Wall Width (m)

4 0 129373 0.6847 1.599E+08

0.25 8.590E+07

0.5 6.017E+07

3337

0 0065

0 0055

30 004 53

0 1 2 3 4 5 6

30065

333055

3 33

00045

0314

3,307

336

S0055

333045 -

0 0068

0.0068

0,0054

1 23 4

3 0367

0.0055

33054

0 0052

3 3 4

0.0055

0 0051

0 005

0 0049

0 0049

1 3.842E+07

2 0 176091 0.7866 2.241E+08

3 0047
-r - - - -3
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d m (kg) I (s) stop (N/m)

0.25

0.5

1

1.109E+08

7.561 E+07

4.709E+07

4 0 176091 0.7866 2.241E+08

0 0059

0 0057

3 0055

0 0053

0 005 1

3 0049

0 0047

30045

00064

0 0052

0 336

0 0064

3 0336

33 335

3 3368

0,3366

D 0364

3 0356

D 3 4

00307

Number
N Walls

33363

336

3 333~
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13

1.109E+08
0007~
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3330-5

3304,
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Maximum Story Drift Angle
vs. Rocking Wall Width (m)
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Number
N Walls d m (kg) I (s) ktop (N/m)

0.5 7.561 E+07

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

3003

0075

333065

0306

2 4 6 8

4.709E+07

0007

3 3365

2 0 229997 0.8871 3.003E+08

3349

3 30445

33347

3) 3475

5 2

1.379E+08 3336

3 0054
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3,0055
30054
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Number Maximum Story Drift Angle
N Walls d m (kg) li(s) op (N/m) vs. Rocking Wall Width (m)

1 5.609E+07 00062
0 3061

0 0053

0 0.055

3 0054

3 - 4 5 13

4 0 229997 0.8871 3.003E+08 0065

000645
D 0 4 S 13
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0 01054
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J 33 1
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30319
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Number
N Walls d m (kg) l (s) ktop (N/m)

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

2 0 291090 0.9863 3.888E+08

1.666E+08

30535

3 349

0.00485
004

000475
0 0047

1.00465

0.0046
330455

0 0055

0 0054

3 3053

3 0052

0 005

0 04 9

0 0047 --

6 8

6

1.089E+08 30356

0 355

3 0054

3 3353
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3335
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0 0058
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0 0054
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4 6
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Number
N Walls d m (kg) _i (s) htop (N/m)

0.25 1.666E+08

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

0 0061

1-0057

0 005530 333

0 0049

3 3047

1.089E+08

3 0064

00054
333 s

3 00523 30,4

34 6

6.538E+07 00061

3 3359
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3 33333
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0 004S

0 0046

0 004655
3 03443

0.0045

0 00445

0 00515
3 0051

3 34,

3 3495

0 00495

3 0348S

3 33,8

0.00475

33047
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Number
N Walls d m (kg) i (s) stop (N/m)

0.5

1

1.265E+08

7.493E+07

Maximum Story Drift Angle
vs. Rockina Wall Width (m)

0300545

03054

00535

0.0053
0.00525

0052

00515

0051
3 00505

0.005
00495

0 0061

30036

3 0055

3 005303355

33354

:).0052
3 0051
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Number
N Walls d m (kg) _i (s) htop (N/m)

Maximum Story Drift Angle
vs. Rockinq Wall Width (m)

7.493E+07 06,

3 035S

3 337

o 005

3 34-7

2 0 193261 1.1815 2.685E+08 0 0051,

0 004

3 0046

1.016E+08

6.432E+07

3 73"

7337

3 3331

333771

33331

3 0149

00063

0 006

0 3476
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3 361
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Number
N Walls d m (kg) l (s) htop (N/m)

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

4 0 193261 1.1815 2.685E+08 00065

3 055

3305

00045

0.0055

33351

33366

3 0064

333062

3,0054

i 1j,-
3335 4

2

3 0075

3 335

0 0055

6 0 193261 1.1815 2.685E+08
3 0065

3337

3 3365

13
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Number
N Walls d im (kg) i (s) ktop (N/m)

Maximum Story Drift Angle
vs. Rockinq Wall Width (m)

1.016E+08 10395
1 n1s

30005

3 DO55

3')05

0 0345~

0.5 6.432E+07

1 3.765E+07

2 0 229997 1.2777 3.251E+08

109

10055

30305
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3 00475

0 307

3 0045
333J95

3346

1.162E+08 00057

3 054

3 005

03134
339

30049

13
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13
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Number
N Walls d m (kg) i (s) stop (N/m)

0.5 7.264E+07

1 4.21 OE+07

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

0 0057

0 0055

0 053,

j 3352

30062

00061

0,0059

3 0058

0 0055
0 0054-

4 0 229997 1.2777 3.251E+08

S a 4 6

10

13

0 0051

a 0049

a 0047a 3349

0 0045

0,34

0 0-1

a 0a65
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a 0045

0004

0.0064

0 0058
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0.005 --
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d m (kg) _I (s) kop (N/m)

1 4.21 OE+07

6 0 229997 1.2777 3.251 E+08

0 006

0 0061

0 00591

3 3355

3306

3 03

0.25

0.5

1

1.162E+08 o

0 0075
3376

3 33-55

0 00F5

331

3 0045

7.264E+07'

3 0075

D3035 +-

4.21 OE+07
35

0 3075

'1307

3 3b~

3 346

3 3466
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Number
N Walls d _m (kg) _i (s) ltop (N/m)

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

2 0 269927 1.3732 3.876E+08

2 4 6 8

4 0 269927 1.3732 3.876E+08
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8 10

13
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0 2 4 6 8

13 000495

30049

0 00485

00048
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0 00475
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0.25 1.313E+08

0.5

3 0055
0 0054

0 0053

OM052

0.005

3,3355

03348

3 00555

0 30555

0 00545

333054

3 3035
0 00535

0 0052

0 00515

8.116E+07

1 4.663E+07 00062
3,3361

0 008
30359

333055

3 0358

0 0357

3 3356

0 0054

3 0053

0.00519

313357

3 3355
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0 0047

30045
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Number
N Walls d m (kg) i (s) kp (N/m)

1.313E+080.25

0.5

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

3 0064

3 3063

3 0058

0005
03~

005i

0039

8.116E+07

6 0 269927 1.3732 3.876E+08

0005--9

4 4365
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3 3394
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34
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Number
N Walls d rm (kg) i (s) stop (N/m)

0.5 8.116E+07

1 4.663E+07

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

00075

0 007

00065

0 0055

0 0074

00072

3 0038
33066

300364

33363

3 358

3 2

00043

000485
3 0345

3 00475
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00012

1.469E+08 000325
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Number Maximum Story Drift Anqle
N Walls d m (kg) _I (s) htop (N/m) vs. Rockinq Wall Width (m)

1 5.124E+07 6
3 2361

3 0059

3 0357

0 0056

0 0053

3 2 4 6 13

4 0 313051 1.4679 4.561 E+08 0 0056

3.0354

33

20043
0 0046

3 2 4 6 1 13

0.25 1 .469E+08

3 049

30147

3 2 4 4 13

0.5 8.989E+'07 6

3 0058

33374
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3 2 4 s 13
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3 3364
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32316

3 0056040063

0 0057 -- - -
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Number
N Walls d _m (kg) _I (s) stop (N/m)

Maximum Story Drift Angle
vs. Rockinq Wall Width (m)

6 0 313051 1.4679 4.561E+08

0.25 1.469E+08

2 265

0 0053

0.0055

22245 -,

2 2 4 6 8

0007

2.0055

2 2245 4-

~12
0.5 8.989E+07 0,337

2 3368

2 30s6

0.3064

33062

3 335

3 005S

32256

2 2354

3,3052 i

o 12
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2.0068
2 2266

3 0064

0.0062

222658
206

2 0 359370 1.5619 5.308E+08

13
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13

15
0.0048
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0,0047

1.00465

0.0046

0.00455/

00045
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Number
N Walls d m (kg) _I (s) ktop (N/m)

Maximum Story Drift Angle
vs. Rockina Wall Width (m)

1.629E+08 3331

0.00495

0 0049

3.00485

3 3045

3004475

10

9.879E+07

0.25

0.5

13

1 5.592E+07

4 0 359370 1.5619 5.308E+08
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32 4 6 S
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Number
N Walls d m (kg) I (s) htop (N/m)

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

9.879E+07 33062

0 0061 1

.005

0,0057

o 0056/00055

0 0054

0 0053

5.592E+07 6

00059

0 0058

00057 L

3305

6 0 359370 1.5619 5.308E+08

0 0057
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Number
N Walls d m (kg) i (s) htop (N/m)

Maximum Story Drift Angle
vs. Rocking Wall Width (m)

5.592E+07 0.17

03075

3 35bS

033C64

033

13
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Appendix C: MATLAB Code for Solving the Rocking Wall
as a Flexible Continuous System, using Lagrange,
as in Section 3.6.

syms x L h kl k2 rho A m EI qO ql qOdot qldot q0dotdot qldotdot;

Building nodes are numbered from the top down. The top node is 1.

This is unlike the work body, in which the top-node-N convention is used.

This example demonstrates the method for a two-story model.

The model expects the building shape to follow the wall shape (rigid links),

so expects L to be about the same as h * number storys or greater

replace syms with values

number storys = 2;

wallwidth = 14.4 * 0.3048; % m

walldepth = 2 * 0.3048; % m

m = 57000; % kg

concretemodulus = 24.82*10^9; % Pa

rho = 2400; % kg/m^3, density of wall

h = 12 * 0.3048; % m, height of 1 story

kl = 8*12*concretemodulus*((0.3048)^4/12)/h^3;

k2 = kl; % 35.0237776 MN/m

L = numberstorys * h;

wallI = walldepth*wallwidth^3/12;

EI concrete modulus*wallI;

A = wallwidth*wall depth;

I alpha factor for psil

a = 5*pi/4/L;

% trial functions

psiO = x/L;

psil = sin(a*x);

% position function u(x,t)

u = psio*qO + psil*ql;

% find u at critical locations

u_1 = subs(u,x,2*h);

u_2 = subs(u,x,h);

% building stiffness matrix

K_building = [kl -kl;-kl kl + k2];

% find loads on the wall from the building

P = K-building*[ul;u_2];

% BUT! these forces are in the -ve direction on the wall
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% when the movements by the wall are +ve. So we want the -ve of these forces.

% Check this by looking at the force vector P. For an all-positive mode

such as rigid body rotation (qO), you want the force to be -ve WRT qO.

P -P;

p1 P(1);

p2 P(2);

% 'differentiate' u wrt t by substituting the q functions with qdot

udot = subs(u,qO,qOdot);

udot = subs(udot,ql,qldot);

find udot at critical locations

udoth = subs(udot,x,h);

udot_2h = subs(udot,x,2*h);

% differentiate u wrt x

dudx = diff(u,x);

d2udx2 = diff(dudx,x);

energy functions for Lagrange

K_forlumped_masses = 1/2*m*udot_h^2 + 1/2*1/2*m*udot_2h^2;

K 1/2*rho*A*int(udot^2, x, 0, L) + K_forlumped masses;

V = 1/2*EI*int(d2udx2^2, x, 0, L);

%(NB: there is no curvature associated with the rigid body mode

% so d2udx2 & thus V are not functions of qO)

W = 1/2*pl*u_1 + 1/2*p2*u_2; % is this definitely 1/2?

% differentiate energy functions

dKdqOdot = diff(K,qOdot);

ddtdKdqOdot = subs(dKdqOdot,qOdot,qOdotdot); % differentiation wrt t by substitution

ddtdKdqOdot = subs(ddtdKdqOdot,qldot,qldotdot); % differentiation wrt t by substitution

dKdqldot = diff(K,qldot);

ddtdKdqldot = subs(dKdqldot,qOdot,qOdotdot); % differentiation wrt t by substitution

ddtdKdqldot = subs(ddtdKdqldot,qldot,qldotdot); % differentiation wrt t by substitution

dKdqO = diff(K,qO);

dKdql = diff(K,ql);

dVdqO = diff(V,qO);

dVdql = diff(V,ql);

dWdq0 = diff(W,qO);

dWdql = diff(W,ql);

% get the matrix components

(differentiation only works for this because there

are no higher powers/functions of qO, qOdotdot, etc)

Mll = diff(ddtdKdq0dot,q0dotdot);

M12 = diff(ddtdKdq0dot,qldotdot);

M21 = diff(ddtdKdqldot,q0dotdot);

M22 = diff(ddtdKdqldot,qldotdot);
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K11 = diff(dVdqO,qO) - diff(dWdqO,qO); % 1st term is 0 as explained above

K12 = diff(dVdqO,ql) - diff(dWdqO,ql); % 1st term is 0 as explained above

K21 = diff(dVdql,qO) - diff(dWdql,qO); % 1st term is 0 as explained above

K22 = diff(dVdql,ql) - diff(dWdql,ql);

create the matrices

M_matrix = [M11 M12;M21 M22];

K_matrix = [K11 K12;K21 K22];

display the matrices as approximate decimals

M_matrixapprox = double(Mmatrix);

K-matrixapprox = double(K matrix);

solve the eigenvector problem

[Phi,Omega] = eig(Kmatrixapprox,M_matrix_approx);

now we can find q0,ql, etc.

find the natural frequencies of the system

Wn0squared = Omega(1,1);

Wnlsquared = Omega(2,2);

WnO = sqrt(Wn0squared);

Wnl = sqrt(Wnlsquared);

f0 = Wn0/2/pi;

fl = Wnl/2/pi;

TO = 1/fO;

T1 = 1/fl;

c vectors give the relative strength of each mode

qAtWnO = [Phi(l,l);Phi(2,1)];

qAtWnl = [Phi(1,2);Phi(2,2)];

% sub the qs to get u

x = 0:0.1:2*h;

psiO as array = 1.*x/L;

psil as array = sin(a.*x);

uAtWnO = vpa(qAtWnO(1))*psiOasarray + vpa(qAtWnO(2))*psilas array;

uAtWnl = vpa(qAtWnl (1) )*psiOasarray + vpa(qAtWnl (2)) *psil as array;

uAtWnOnormalized = psiO + vpa(qAtWnO(2))/vpa(qAtWnO(1))*psil % for readability

uAtWnlnormalized = psiO + vpa(qAtWnl(2))/vpa(qAtWnl(l))*psil % for readability

plot(x,uAtWnO)

M matrix output:

Mll=(3*h^2*m)/L^2 + (A*L*rho)/3

M12 = (h*m*sin((5*pi*h)/(2*L)))/L + (h*m*sin((5*pi*h)/(4*L)))/L -

(A*rho*((16*2^(1/2)*L)/25 - (4*pi*2^(1/2)*L)/5))/(2*pi^2)
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M21 = (h*m*sin((5*pi*h)/(2*L)))/L + (h*m*sifl((5*pi*h)/(4*L)))/L -

(A*rho*((16*2^~(1/2)*L)/25 - (4*pi*2 ~(1/2)*L)/5))/(2*piA2)

M22 = (m*sin((5*pi*h)/(2*L))V2)/2 + m*sin((5*pi*h)/(4*L) )A2 + (A*rho*(L -

(2*L) /(5*pi)) )/2]
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Appendix D: MATLAB Code to Find the Stiffness Matrix of Building-
Rocking Wall System

building nodes are numbers from the bottom up. the top node is N.
This is like the work body, in which the top-node-N convention is also used.
Get input

N = input('Number Stories: ');
L = input('Total Height (m): ');
EIwall = input('EI of Wall (Nm^2):
bldg storey stiffness = input('Building Storey Stiffness (N/m): ');
if (isempty(N))N=ll;end; if (isempty(L))L=33;end; if (isempty(EI wall))EI wall=1000000;end; if
(isempty(bldgstoreystiffness) )bldg storey stiffness=1000000;end;

% wall stiffness matrix
F wall prime = zeros(N-1,N-1);
for i = 1:N-1; ' i is point measured

for j = 1:N-1; % j is point of application of load
x = (i-2)/N*L; the distance to the point measured from the cantilever root
a = (j-2)/N*L; % distance to point of application of load from cantilever root

find the rotation term
moment-arm = a;
single storey height = L/N;
distance-to-point measured from cantilever root = x;
rotation at lowest storey = momentarm*singlestorey height/(3*EI wall);
rotation-term = rotation at loweststorey*distance to pointmeasured from cantilever root;

% find the cantilever term
if (i > j)

must use the x > a cantilever formula
cantileverterm = a^2/(6*EIwall)*(3*x - a);

else
must use the x <= a cantilever formula

cantilever-term = x^2/(6*EI wall)*(-x + 3*a);
end;
F wall prime(i,j) = rotation-term + cantilever-term;

end;
end;
K wall prime = inv(F wall-prime);
K wall = zeros(N,N);
for i = 1:N-1;

for j = 1:N-1;
K_wall(i+l,j+l) = K wallprime(i,j);

end;
end;

building stiffness matrix
Sum bldg stiffness = bldg storeystiffness;
K bldg = zeros(N,N);
for j = 1:N;

diagonals
K_bldg(j,j) = 2*Sum bldgstiffness;

end;
for j = 1:N-1;

off diagonals
K bldg(j,j+l)= -Sum bldg stiffness;
K_bldg(j+l,j)= -Sum bldg stiffness;

end;
K_bldg(N,N)=Kbldg(N,N) - Sum bldg stiffness;

moments matrix

M = zeros(N,N);
for j = 2:N;

% top row
M(lj) = -j;

end;

L 1 "linear-1"
L 1 = zeros(N,N);
for j = 1:N;

start of each row
L l(j,l) = j;

end;
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total stiffness matrix
K total = Kbldg + (M + eye(N))*K-wall*(eye(N) - Lil);
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