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Abstract
Regulation of RNA levels is determined through the interplay between RNA production,
processing and degradation. However, since most global studies of RNA regulation do not
distinguish the separate contributions of these processes, relatively little is known about how they
are temporally integrated to determine changes in RNA levels. In particular, while some studies
emphasize the role of changes in the rate of transcription, others suggest a prominent involvement
of time-varying degradation rates. Here, we combine metabolic labeling of RNA at high temporal
resolution with advanced RNA quantification assays and computational modeling to estimate
RNA transcription and degradation rates during the model response of immune dendritic cells
(DCs) to pathogens. We find that changes in transcription rates determine the majority of temporal
changes in RNA levels, but that changes in degradation rate are important for shaping sharp
‘peaked’ responses. Furthermore, transcription rate changes precede corresponding changes in
RNA level by a small lag (15-30 min), which is shorter for induced than for repressed genes. We
used massively parallel sequencing of the newly-transcribed RNA population – including non-
polyadenylated transcripts – to estimate constant RNA degradation and processing rates. We find
that temporally constant degradation rates vary significantly between genes and contribute
substantially to the observed differences in the dynamic response, and that specific groups of
transcripts, mostly cytokines and transcription factors, are undergoing faster mRNA maturation.
Our study provides a new quantitative approach to study key steps in the integrative process of
RNA regulation.

Introduction
Cellular RNA levels are determined by the interplay of tightly regulated processes for RNA
production (transcription), processing (e.g., polyadenylation, splicing, transport,
localization), and depletion (degradation). In addition to transcriptional regulation1,2,
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changes in RNA degradation can also significantly affect differential gene expression3,4,
particularly in mammalian cells where RNA half-lives are typically longer3.

The response of immune dendritic cells (DCs) to pathogens provides a compelling model of
a temporal transcriptional sensory response in mammalian cells5,6. DCs initiate and regulate
immune responses. Upon stimulation with pathogen components, DCs activate a regulatory
program, which unfolds over ~24h and involves the activation of ~1700 genes and
repression of ~2000 genes7, some peaking as early as 30 minutes, whereas others peak after
6 hours or more. In a recent study, we identified over a hundred transcription factors, and at
least a dozen RNA binding proteins controlling this response7.

There are two key questions on the roles of transcription and degradation in regulating RNA
levels in this response. (1) Which of the two processes contributes most to shaping changes
in RNA levels over time? (2) Do such changes primarily result from variation of constant
rates between genes or from variability of the rates for each gene over time?

The extent to which RNA stability contributes to dynamic changes in RNA levels is still
unclear and debated. Most works focus on transcriptional mechanisms8-12, tacitly assuming
that degradation rates (per gene) are constant over time13 (‘constant degradation
hypothesis’). However, recent studies suggest that changes in a gene’s mRNA level
following stimulation are strongly affected by corresponding changes in its RNA
degradation rate13,14, modeled either by a single change3,4,15 or as a continuous shift16,17

over time (‘varying degradation hypothesis’). Indeed, it was proposed that such changes in
degradation rates may determine up to half of the temporal changes in RNA levels in
mammalian cells16. Distinguishing between these two hypotheses is hampered by the
shortcomings of the indirect methods used for determining transcription and degradation
rates, which may limit their relevance in vivo. For example, nuclear run-on assays for
measuring transcription rates are conducted ex-vivo in isolated nuclei15,16,18, and methods
for estimating degradation rates by transcriptional inhibition, either with antibiotics or
temperature sensitive mutants3,4,13,17,19, are not well adapted to dynamic settings and
severely affect cell growth and survival20.

Improved direct measurement of RNA production rates may allow us to address these
questions. Recent studies used metabolic labeling of RNA with 4-thiouridine (4sU), a
naturally occurring modified Uridine, to distinguish recently-transcribed RNA from the
overall RNA population, with minimal interference to normal cell growth21-26. The
modified base is incorporated into the growing RNA chain in place of Uridine, marking it,
and serving as an attachment point for a biotin tag for easy separation of newly transcribed
RNA from the total RNA population (Supplementary Fig. 1). In previous work, labeled
RNA was hybridized to standard microarrays, requiring relatively large quantities of RNA
and hence lengthier 4sU labeling times (1-2h). Thus, most existing studies focused on
variation between genes during steady state conditions22,25,26, and a single 4 time points
microarray study23, though promising, lacks a systematic dynamic analysis.

Here, we use metabolic labeling coupled with advanced RNA quantification assays and
computational modeling to study RNA regulation in the response of mouse DCs to
Lipopolysaccharide (LPS). Leveraging the Nanostring nCounter technology for accurate
multiplex measurement of RNA27 and massively parallel sequencing28, we significantly
reduce metabolic labeling time to directly measure RNA transcription rates at high temporal
resolution for a selected set of signature genes, and at a lower temporal resolution on a
genome-scale. We develop new computational models to decompose RNA levels into the
separate contributions of RNA production and degradation, and estimate changes in
degradation rates between genes and over time. We leverage the reduced abundance of
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rRNA and other stable RNA populations in recently transcribed RNA, to sequence a broad
representation of the labeled RNA transcriptome, and determine the processing rates of
precursor mRNA (pre-mRNA).

We discover key principles of temporal RNA regulation in mammalian cells. We find that
changes in transcription rate highly correlate with changes in RNA level, preceding them by
~15-30 min, with about twice as long a delay in down-regulated than up-regulated genes. In
contrast to recent works16,17, we find that dynamic changes in degradation rates have
minimal effect on most RNA profiles, but that they do play a unique role in genes with sharp
‘peaked’ responses. Genome-wide analysis shows substantial variation in both degradation
and processing rates between genes, rather than over time, consistent with their regulatory
and functional differences. Our method is a new and effective tool for studying key
processes controlling cellular RNA levels.

Results
Assessing RNA transcription rates by short metabolic labeling

We used short metabolic labeling with 4sU23 (Methods) to directly estimate RNA
transcription rates in DCs. Total cellular RNA levels (RNA-Total) globally integrate the
effects of RNA transcription and degradation over the entire lifetime of the cell, whereas
newly-transcribed RNA (RNA-4sU) contains only RNA that was actively transcribed during
the labeling pulse, and hence represents a ‘local integration’ of average transcription and
degradation. When labeling time is sufficiently short, the labeled RNA is still in the nucleus,
and is subjected to little, if any, degradation (with the notable exception of aberrant
transcripts), thus reflecting the average transcription rate. We chose a labeling time of 10
minutes as an appropriate ‘short’ duration, based on the time required for 4sU uptake by
cells23 and for RNA-4sU transcription and processing in the nucleus.

4sU ‘short’ metabolic labeling in mouse DCs (Fig. 1a) is specific, reproducible and has no
significant effect on cellular function or transcriptional response of primary DCs
(Supplementary Fig. 1-5; Supplementary Notes, section 1). Furthermore, we used Pol-II
binding and sub-cellular fractionation to show that it directly measures transcription rates
(Fig. 1b; Supplementary Fig. 6; Supplementary Notes, section 1).

Dynamic changes in RNA expression levels usually lag behind transcription rate changes
by 15-30 min

We used short metabolic labeling (10 min) followed by nCounter measurements to assess
transcription rates and RNA levels of 254 representative signature genes along a high-
resolution time course, during the response of DCs to LPS (Fig. 1a). We selected the 254
transcripts (Supplementary Table 1; Methods) based on our previous study7, as
representative of global mRNA profiles in this response, including key regulators, cytokines
and other effectors, whose expression changes in this system. We measured RNA-Total and
RNA-4sU at 15 min intervals over the first 3 hours post-LPS stimulation (spanning most
changes in mRNA abundance in this response7; Supplementary Table 2).

We found eight coherent groups with distinct temporal patterns that cluster based on their
transcription rates and expression profiles (Fig. 1c; Methods), distinguishing subtle
temporal differences. For example, both group III (e.g., Egr1, Zfp36) and group IV (e.g.,
Cxcl1, Tnf) genes peak early in the response, but with a 30-minute difference in their peak
times. Likewise, the expression of groups VI (e.g., Il12b, Il6, Nfkb1) and VII (e.g., Ifit2,
Il12a) genes constantly increases, but with different onset and saturation times.
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Changes in RNA-Total levels temporally correlate with corresponding changes in
transcription rates (mean ρ = 0.73±0.3 SD), but on average lag behind them by ~15-30 min
(Fig. 1d; Supplementary Fig. 7; Methods). There is about twice as long a delay for down-
regulated than for up-regulated genes, possibly because degradation rates are generally
slower than transcription rates, delaying their effect on RNA levels. Overall, using the
optimal time shift, variation in transcription rates explains 64% of the variation in RNA
levels.

A computational model for RNA transcription and degradation dynamics
We developed a computational approach to estimate the temporal profiles of transcription
and degradation rates from measurements of RNA-Total and RNA-4sU (Fig. 2a; Methods).
Our generative model assumes that total RNA levels are determined by a simple (first-order)
integration of production and degradation rates over time, and that the temporal behaviors of
transcription and degradation rates follow a parametric function (constant or ‘impulse’
model29,30). While we directly measured transcription (as RNA-4sU) and RNA levels
(RNA-Total), we cannot currently measure degradation in a comparably accurate way
without impacting cell viability. We therefore used a maximum-likelihood estimation to find
the parameters of the production and degradation profiles that best fits the observations
(Methods; Supplementary Fig. 8).

We compared two alternative models for degradation. The simpler ‘constant degradation’
model assumes that each gene has a temporally constant degradation rate (Fig. 2a, solid
line); the rate can vary between genes. This simple model is often implicitly assumed in
computational models of gene expression8-13. The more complex ‘varying degradation’
model assumes that the degradation rate of a gene changes over time (Fig. 2a, dashed line),
and represents such changes with an ‘impulse’ model. We used a likelihood ratio test
(Methods; Supplementary Notes, section 2) to compare the ‘constant’ to the ‘varying’
degradation models. Genes that confidently (p < 0.01) reject the ‘constant degradation’
model in favor of the alternative ‘varying degradation’ model represent cases in which
changes in degradation rate significantly contribute to shaping temporal changes in RNA
levels. In all other cases we retain the ‘constant degradation’ model and assume that changes
in degradation rate contribute minimally.

Changes in transcription rates shape temporal RNA profiles of most genes
Most signature genes (83%, 210/254) retain the ‘constant degradation’ hypothesis (Fig. 2b),
suggesting that changes in degradation rates contribute minimally to shaping their RNA
levels dynamics during the first 3 hours of the response. On average, the ‘constant
degradation’ model explains 78% (± 19% SD) of a gene’s RNA levels variation, while the
‘varying degradation’ model, despite its substantial complexity, extends this by less than
10% (86% ± 14% SD; Supplementary Fig. 9). While the predicted constant RNA half-lives
range from 10 to 70 min (Supplementary Fig. 10a), the predicted varying half-lives span a
much wider range (1-200 min; Supplementary Fig. 10b). Measuring degradation rates by
standard Actinomycin D treatment (Methods), although severely impacting cell growth and
survival20, supports the predicted fit to these models (Supplementary Notes, section 3,
Supplementary Fig. 11-12).

These results contradict recent works16,17, which proposed that changes in RNA degradation
rates significantly affect temporal expression patterns in mammalian sensory pathways.
Instead, they support an earlier view8-13 of the ‘constant degradation hypothesis’ that during
such responses RNA levels are predominantly affected by changes in transcription rates.
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Temporal changes in degradation are important for shaping ‘peaked’ responses
In a minority of genes (44 genes, 17%) changes in degradation rate significantly affect
changes in RNA levels (Fig. 2b). The predicted degradation rate profiles are partitioned into
3 groups (A, B, C, Fig. 2d) and have only one or two prominent rate changes (Fig. 2d,e),
suggesting a single underlying regulatory event (Discussion).

These changes in degradation may uniquely contribute to shaping sharp ‘peaks’. First, the
genes that reject the ‘constant degradation’ model are concentrated in three clusters (III-V,
Fig. 2c) containing many immediate-early genes (e.g., Fos, Jun, Egr1, Zfp36) with a sharper
‘peak’ in their expression profile. Second, the maximal peak height (Methods) and the error
of the fit to the ‘constant degradation’ model are highly correlated (Pearson ρ=0.61, p<10-26;
Supplementary Fig. 13). Finally, the fit error concentrates at the peak, and changes in the
‘varying degradation’ rate overlap the peak (Fig. 2e, Supplementary Fig. 14).

Genome-wide measurements of a broad population of newly transcribed RNAs by 4sU-Seq
To generalize our findings to genome-scale, we adapted the 4sU metabolic labeling protocol
for massively parallel sequencing (4sU-Seq, Fig. 3a). First, to extract labeled RNA in
sufficient quantities for sequencing, we extended the labeling time to 45 minutes. As
labeling time increases, RNA-4sU no longer directly approximates transcription rates, but a
‘local integration’ of the average transcription and degradation rates. Second, due to the
lower proportion of rRNA and other stable RNAs in newly transcribed RNA (1.8-4 fold
reduction, Supplementary Fig. 2d), we generated 4sU-Seq libraries without prior poly-A
selection. Indeed, while RNA-A+-Seq libraries are mainly enriched for mRNA exons (80%),
4sU-Seq libraries represent a greater diversity of RNAs (pre-mRNA introns 47%, rRNA
14.2% and pre-miRNAs 0.1%; Fig. 3b, Supplementary Fig. 15-17, Supplementary Tables
3-4, Supplementary Notes, section 4). Finally, to account for the reduced temporal
resolution and the longer labeling time in the genomic data, we adapted our modeling
approach (Supplementary Methods) and used only the simpler ‘constant degradation’ model.

Consistent genome-wide and small-scale measurements of newly transcribed RNA
We applied 4sU-Seq to mouse DCs in response to LPS stimulation, with an expanded
temporal scope and reduced temporal resolution (Fig. 3a). We estimated expression by
Reads Per Kilobase exon model per Million mapped reads (RPKM) (Methods), and found
that these match the nCounter data (Supplementary Fig. 18).

The genome-wide analysis shows similar patterns as our signature set. Of the 9,838
expressed Refseq31 genes, the majority (83%) fit the patterns of the signature-set clusters
(clusters II-VIII) based on their 0-3h expression profiles (Methods; Supplementary Fig. 19),
with subgroups of genes (in clusters II, III, VI) that differ in their behavior during later time
points (4-6h). The minority of genes (17%, cluster I) that did not fit the signature patterns
included genes repressed (Ia) or induced (Ib) after 3h.

Each of the eight clusters is enriched with distinct functional annotations, consistent with
their temporal pattern (Supplementary Table 5). For example, Cluster I, showing minimal
changes in transcription rate or expression (during 0-3h), is enriched for glycolysis and
ribosomal proteins, whereas Clusters II and III, with transient or sustained down-regulation
of transcription rates, are enriched for cell cycle, mitochondrial, or oxidative
phosphorylation genes. The transiently early induced Cluster V (1h peak) is enriched for
inflammatory regulators (e.g. Tnf, Nfkbiz, Il1a, Il1b) and differentiation factors. Conversely,
in cluster VI, which is enriched for their targets (inflammatory and immune signaling genes
and differentiation factors’ targets), the early induction is sustained.
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Constant degradation rates are a genome-wide phenomenon and contribute to shaping
temporal RNA levels

For the vast majority of genes, dynamic changes in degradation rates contribute little to
changes in expression during the first 6 hours of the response. Most expressed genes (94%,
9,274/9,838) show only a minimal discrepancy between the measured data and the expected
values under the ‘constant degradation’ model (‘goodness of fit’ test, Methods).

For the remaining 6% (564/9,838), the ‘constant degradation model’ is rejected, suggesting
that at least one of the model’s assumptions is inaccurate (such as varying degradation or
other post-transcriptional events, see Discussion). This group is enriched for inflammatory
and immune signaling genes, and for targets of NFKB signaling, suggesting that these
processes are dynamically regulated both transcriptionally and post-transcriptionally.
Notably, unlike the high-resolution signature data, we cannot fit the ‘variable degradation
model’ to 4sU-Seq data, nor can we use a likelihood ratio test (Methods) to determine that
the degradation model per se is at fault.

Large differences in constant degradation rates between genes are associated with distinct
functional and temporal patterns, and suggest that variation in degradation rates between
genes contributes to shaping temporal RNA levels. For the 93% ‘constant degradation’
genes, the estimated ‘constant’ mRNA half-lives range from 3 to 200 min (Fig. 3c), match
the nCounter predictions, and are correlated – albeit shorter on average – to other available
estimates in our system and others (Supplementary Fig. 20; Supplementary Notes, section 5;
Discussion). The long half-life genes (groups I-J; Methods) are enriched for proteasome,
ribosomal proteins, oxidative-phosphorylation and glycolysis genes (Supplementary Table
6): all are stable mRNAs that constitute a major fraction of total cellular mRNA. These
genes are mostly members of cluster I (e.g. Rpl18a, Cox8a) with a stable, minimally
changing expression pattern in the first 3h of the response. Short half-life genes (groups A-
B) are enriched for transcription regulators (e.g., Klf7, Dmtf1), and for targets of many
known miRNAs and TFs (e.g., Foxo1, Hif1a, p53). Furthermore, some sharp ‘peaked’
expression genes from clusters III-V (e.g., Il10, Btg2) have constant high degradation rates
(rather than varying rates), an alternative means to the same end.

Genome-scale measurement of mRNA maturation by 4sU-Seq
We monitored mRNA maturation by distinguishing intronic and exonic reads in 4sU-Seq
data (Fig. 4a; Methods). Reads covering introns and intron-exon junctions (Fig. 3b;
Supplementary Fig. 21) likely arise from pre-mRNAs, while reads covering exons arise both
from pre-mRNA and mRNA. Since 4sU-Seq libraries are not polyA-selected, intronic and
exonic reads reliably represents the relative frequencies of pre- and total-RNA within the
recently-transcribed RNA population. Thus, exon-RPKM estimates the overall (pre-mRNA
and mature mRNA) newly-transcribed RNA, and intron-RPKM estimates the newly-
transcribed pre-mRNA levels (Methods and Supplementary Notes, section 6, on controlling
for overlapping transcripts). Indeed, expressed introns and exons profiles correlate well
(Spearman ρ=0.81), and show similar patterns in all clusters (Supplementary Fig. 22).
Intronic reads (not overlapping intron-exon junctions) can hypothetically arise from
sequencing of the excised introns, leading to over-estimated pre-mRNA expression levels
and under-estimated processing rates. However, this is unlikely given the reported fast
degradation of excised introns32-35, and the comparable coverage of introns and intron-exon
junctions in 4sU-Seq (data not shown).

We fit the data with an extended model (‘constant processing and degradation’) that includes
an additional RNA processing step (Fig 4b; Methods). This model assumes that mRNA is
produced by pre-mRNA transcription followed by processing into mature mRNA, and that
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only mature mRNA is exported to the cytoplasm, where it is degraded. The pre-mRNA half-
life reflects the processing rate, whereas mRNA half-life reflects its degradation rate. We
use constant functions for both degradation and processing rates, and an ‘impulse’ model for
transcription rates. We conservatively analyzed only the 2,122 genes for which both exons
and introns are expressed above a minimal value, excluding genes with expressed anti-sense
transcripts or significant alternative isoforms biases (Methods, Supplementary Notes,
section 6).

Differences in pre-mRNA processing rates between genes contribute to regulation of
mRNA levels

Most expressed genes (95%, 2,014/2,122; Methods) show only a minimal discrepancy
between the measurements and the expected values under the ‘constant processing and
degradation’ model (‘goodness of fit’ test). Of these, 8% (161/2,014) are genes that rejected
the previous ‘constant degradation’ model (above), suggesting that for these genes,
regulation of pre-mRNA maturation is important for shaping final mRNA levels. For the
remaining 5% (108/2,122), one or more of the model’s assumptions is inaccurate (e.g.,
changes in pre-mRNA processing rate or in RNA stability), but we cannot determine which
one. A few examples highlight that changes in processing rate over time may be a regulatory
event for at least certain genes (Supplementary Fig. 23).

Predicted constant pre-mRNA half-lives (for 95% of genes) are shorter than the mRNA half-
life (21±13% SD of mRNA half-life; Supplementary Fig. 24a), and range between 1-30 min
(Fig. 4c). Pre-mRNA half-lives significantly correlate with mRNA half-lives (Spearman
ρ=0.46, Supplementary Fig. 24b), possibly due to the relationship between the ‘constant
degradation’ and ‘constant degradation and processing’ models (Methods), which makes
our processing and degradation rates estimates somewhat dependent.

Differences in constant pre-mRNA half-lives among genes are consistent with exon
structure and temporal expression pattern, and suggest that variation in RNA maturation
rates between genes serves as a regulatory mechanism. The slow processed pre-mRNAs
(group E; Methods) are enriched (Fig. 4d) for constantly expressed genes (clusters I), with
1-10 exons, and with short transcripts (1-16 kb unprocessed length). Conversely, fast
processed pre-mRNAs (group A) are enriched for genes with sharp ‘peaked’ expression
(cluster III), with few (1-4) exons, and surprisingly, with long transcripts (>60kb
unprocessed length) and many exons (>17).

Discussion
In this work we combined metabolic labeling of RNA with advanced RNA quantification
assays and computational modeling to quantitatively dissect the contribution of different
steps to RNA levels during the model response of DCs to pathogens. We highlight three
principles. (1) Changes in transcription rates dominate most temporal mRNA profiles,
whereas changes in degradation rates are important for shaping ‘peaked’ responses. (2)
Temporally constant degradation rates vary significantly between genes, and contribute to
the differences in the dynamic response. (3) There are marked differences in pre-mRNA
processing rates between genes, suggesting a regulatory role for RNA maturation.

Our work highlights the need for an unbiased method to directly measure degradation rates
on a genome scale. While existing direct methods are significantly biased, and particularly
in dynamic settings, our approach avoids such biases, but only indirectly infers degradation
rates. In comparing different estimates we find our predictions to be highly correlated –
albeit consistently shorter – than other estimates in our system and others (Supplementary
Notes, section 5). While a proportional decrease in rates may result from difference in cell
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type or from the inherent limitations in all existing methods (ours as well as others), the
RNA stability rankings, on which we base our analysis, seems more comparable between
methods and reliable. One promising direction in settling these discrepancies is chasing 4sU
with Uridine22, which allows to estimate RNA degradation directly and with minimal biases,
but may be challenging for highly induced genes (MR, IA, NF and AR, unpublished results).

Our work opens many directions for future research. First, it will be important to generalize
our findings to other systems and responses, and test whether the difference between our
conclusions and those achieved in other immune cells16,17 stem from technology or
biological factors. Second, monitoring RNA production, processing and degradation at the
single-cell level will allow us to distinguish between changes that arise from intrinsic
properties of the molecular system and those that are affected by cell-to-cell variation.
Third, correlating RNA production and degradation rates to proteomics and ribosome
occupancy studies can connect the mRNA life cycle with protein production and protein
regulators. Fourth, 4sU-Seq provides opportunities to study additional post-transcriptional
regulatory processes (e.g., poly-adenylation, alternative splicing), to improve non-coding
RNA annotations, and to identify new classes of short-lived functional transcripts. Fifth,
monitoring distinct splice isoforms (through strand-specific sequencing and transcript
assembly36) can further enhance our models beyond the canonical splice variants and
constitutive exons in this analysis. For example, we can distinguish splice variants with
different production, processing or degradation rates, or estimate processing rates of
individual introns.

Finally, the ability to measure transcription, processing and degradation during a complex
temporal response provides an experimental framework to decipher the molecular
mechanisms controlling variations in these rates between genes or time points (for one
gene). For example, several lines of evidence suggest that the RNA binding protein Zfp36
may play an important role in regulating changes in degradation rates in our system. First,
Zfp36 is a known regulator of RNA stability that de-stabilizes its mRNA targets by binding
AU-rich elements in their 3’UTR37. Zfp36 is known to auto-regulate its own stability,
consistent with the increased degradation rate, which our model predicted for it (Fig. 2d).
Second, the same signaling pathways that activate the transcriptional machinery are known
to also induce Zfp36 and other proteins that regulate RNA degradation5,37. Third, Zfp36’s
most well-established target, Tnf38, also shows a similar increase in degradation rate, and 20
of the 44 genes with variable degradation rates have the target AU-rich consensus sequence
in their 3’UTR (p<1.5×10-3) associated with RNA destabilization by Zfp3637. Additional
studies are required to test this hypothesis and explore other regulatory mechanisms7,
including the role of miRNAs in regulating RNA decay rates, to which our enrichments
analysis hints (Supplementary Table 6).

Overall, our method provides a new tool to simultaneously study several key cellular
regulatory processes and model their interactions with each other, generating a
complementary view to any RNA expression analysis, and deepening our understanding of
the RNA life cycle.

Methods
Dendritic cell isolation, culture, LPS treatment and metabolic labeling

All animal protocols were reviewed and approved by the MIT / Whitehead Institute / Broad
Institute Committee on Animal Care (CAC protocol 0609-058-12). Details on the DCs
isolation and treatment are presented in full in7. Briefly, 6-8 week old female C57BL/6J
mice were obtained from the Jackson Laboratories. Bone marrow-derived dendritic cells
(BMDCs) were collected from femora and tibiae and plated on non-tissue culture treated
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plastic dishes in RPMI medium (GIBCO, Invitrogen), supplemented with 10% FBS, L-
glutamine, penicillin/streptomycin, MEM non-essential amino acids, HEPES, sodium
pyruvate, β-mercaptoethanol, and GM-CSF (15 ng/μL; Peprotech, Rocky Hill, NJ). At day
5, floating CD11c+ cells were sorted on the autoMACS separator with the CD11c (N418)
MicroBeads kit (Myltenyi Biotec), re-plated at a concentration of 106 cells/ml and
stimulated 16 hours post sorting. LPS (rough, ultra-pure E. coli K12 strain LPS) was
purchased from Invivogen and used at a concentration of 100 ng/ml. For metabolic labeling
of RNA, 4-thiouridine (Sigma) was added to a 150 μM final concentration at the appropriate
times prior to RNA extraction.

Biotinylation and purification of 4sU labeled RNA
Total RNA was extracted with the miRNeasy kit’s procedure (Qiagen), and sample quality
was tested on a 2100 Bioanalyzer (Agilent). For the high-resolution (signature) analysis, we
extracted RNA starting at 0h and until 3h after LPS stimulation in 15 minutes intervals. We
generated replicated samples for the 0, 30, 45, 60 and 75 minutes samples. For the lower
resolution analysis (4sU-Seq), we extracted RNA starting 0h and until 6h after LPS
stimulation in 60 minutes intervals.

We used 20 μg total RNA for the biotinylation reaction. 4sU-labeled RNA was biotinylated
using EZ-Link Biotin-HPDP (Pierce), dissolved in dimethylformamide (DMF) at a
concentration of 1 mg/mL, and stored at -80°C. Biotinylation was done in labeling buffer
(10 mM Tris pH 7.4, 1 mM EDTA) and 0.2 mg/mL Biotin-HPDP for 2h at room
temperature. Unbound Biotin-HPDP was removed by chloroform/isoamylalcohol (24:1)
extraction using MaXtract (high density) tubes (Qiagen). RNA was precipitated at 20,000g
for 20 min with a 1:10 volume of 5M NaCl and an equal volume of isopropanol. The pellet
was washed with an equal volume of 75% ethanol and precipitated again at 20,000g for 10
min. The pellet was re-suspended in 100 μL RNAse-free water. Biotinylated RNA was
captured using Dynabeads MyOne™ Streptavidin T1 beads (Invitrogen). Biotinylated RNA
was incubated with 100 μL Dynabeads with rotation for 15 min at room temperature. Beads
were magnetically fixed and washed with 1x Dynabeads washing buffer. Flow-through was
collected for unlabeled preexisting RNA recovery. RNA-4sU was eluted with 100 μL of
freshly prepared 100 mM dithiothreitol (DTT). RNA was recovered from eluates and
washing fractions with RNeasy MinElute Spin columns (Qiagen).

Cell fractionation
Nuclear and cytoplasmic fractions were separated using NE-PER nuclear and cytoplasmic
extraction (Thermo Scientific). RNA from each compartment was extracted following the
miRNeasy kit’s procedure (Qiagen), and sample quality was tested on a 2100 Bioanalyzer
(Agilent). On average, we obtained 5 times more cytoplasmic than nuclear RNA. We used
20 μg total RNA from the cytoplasmic fraction, and 4 μg total RNA from the nuclear
fraction for the biotinylation reaction to reflect the original ratio. Purification of labeled
RNA was done as described above.

qPCR measurement
RNA was reverse transcribed with the Sensiscript RT kit (Qiagen). Real time quantitative
PCR reactions were performed on the LightCycler 480 system (Roche) with FastStart
Universal SYBR Green Master Mix (Roche), and every reaction was run in duplicate. The
28S-rRNA levels were used as an endogenous control for normalization.
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Design and selection of ‘signature’ gene-set
Our ‘signature set’ consists of 254 transcripts (Supplementary Table 1) that we identified in
our previous study7 as key representatives of the LPS response. These include 19 control
genes, whose expression levels were unchanged under LPS stimulation, but whose
(constant) basal levels varied from low to high. The other 235 genes were differentially
expressed during the LPS response, and identified as dominant players in the biological
pathways involved7. An information-theoretic approach we implemented (the GeneSelector
algorithm7) incrementally chooses genes (from a full expression data set) whose expression
profile improves our discrimination of several different stimuli, and we added to that
candidate regulators with detectable expression during the response to LPS.

nCounter measurements and data processing
Details on the nCounter system are presented in full in27. We hybridized 50-100 ng of RNA
for 16 hours with the code set and loaded into the nCounter Prep Station followed by
quantification using the nCounter Digital Analyzer. Code sets were designed and
constructed to detect the 254 ‘signature’ genes, and to capture multiple splice isoforms. Each
probe set matches ~100 bases long exonic sequence of the target genes, and therefore detects
both pre-mRNA and mature mRNA (see Supplementary Methods for full details). We
normalized the nCounter data (Supplementary Table 2) in two steps: (1) with internal
positive spiked-in controls provided by the nCounter system, and (2) with a set of 8 control
genes (see Supplementary Methods for details). We used the ratio of RNA quantity in each
sample before and after RNA-4sU purification (0.022 ± 0.015 SD), to normalize RNA-total
and RNA-4sU samples relative to each other.

RNA-polymerase II ChIP
Dendritic cells were fixed with 1% formaldehyde, quenched with glycine, and washed with
ice-cold PBS. Pelleted cells were re-suspended in SDS lysis buffer. Samples were sonicated
with a Branson 250 Sonifier, centrifuged at 13,000g for 10 min, and diluted 10-fold in ChIP
dilution buffer. After removing a control aliquot (whole-cell extract), sample was incubated
at 4°C overnight with antibodies against the CTD domain of Pol-II (Covance MMS-128P).
Complexes were precipitated with protein G-Dynabeads. Beads were washed sequentially
with low-salt immune complex wash buffer, high-salt immune complex wash buffer, LiCl
immune complex wash buffer, and TE. Immunoprecipitated chromatin was eluted in elution
buffer, incubated at 65°C for 8 hr, and treated with RNase A, proteinase K and purified with
a MinElute Kit (Qiagen). Quantification of relative binding was done by hybridization to an
nCounter codeset covering the promoter regions of the indicated genes.

Time-lagged correlation
We calculated the k-th time-shifted correlation between a gene’s expression {e1…en} and
transcription {t1…tn} profiles by corrk(e,t) = corr({ek+1…en},{t1…tn−k}) (shifted Pearson
correlation). We calculated the time-shifted correlation per gene, than average over clusters,
and looked for the shift k with the maximal average correlation.

Estimating the ‘fraction of explained variance’
The percent of variance in a set of measurements that is explained by the model’s
predictions was estimated by the standard ‘coefficient of determination’ (r2) of the
regression model, and was corrected to account for the non-linearity of our model (see
Supplementary Methods for details).
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Clustering nCounter expression data
We standardized (subtracted the mean and divided by standard deviation) the
log2(expression) of a gene, separately per time series, and applied k-means clustering with
random initialization and multiple executions, finally selecting the best result. We iteratively
increased the number of clusters as long as none of the clusters had less than 2% of the
genes.

Dynamic model of RNA transcription and degradation in the signature set
Modeling—Let α be the transcription rate (RNA/min*cell), β the degradation rate (1/min)
and X be the expression level of a gene x (RNA/cell), than the time evolution of X is
described by a first-degree dynamic equation:

While RNA-total globally integrates this equation over the entire lifetime of the cell,
RNA-4sU only locally integrates it over the (short) labeling time. We assumed that: (1) both
α and β are approximately constant during the (short) labeling period, and (2) with short
enough labeling time (<10 min) RNA-4sU is mostly nuclear and is therefore subjected to
little if any degradation (β=0); and concluded that RNA-4sU directly estimates the average
α during the labeling period (see Supplementary Methods for details). We built a generative
modeling scheme that describes α(t) and β(t) by a parametric function, and uses an additive
Gaussian noise model (estimated from experimental repeats). We used an ‘impulse’ model,
a 6-parameter double-sigmoid function29,30, which describes temporally varying rates, for
α(t), and compared two alternative parametric descriptions of β(t): a simple one-parameter
constant function (‘constant degradation’) and an impulse model that models temporally
varying rates (‘varying degradation’).

Fitting the model to the data—We optimized the likelihood of the data given each
model predictions using the Nelder-Mead simplex algorithm39 (see Supplementary Methods
for details).

Statistical tests—We used two complementary statistical tests. The first is a goodness of
fit test that measures how well the data fits each model (separately). Rejecting the model in
this case means that one of the modeling assumptions does not hold in the data, but without
determining which assumption that is. We estimated the variance from data points measured
in replicates, and used the standard least-square error and associated chi-square distribution
with n degrees of freedom40 to calculate a p-value. The second test is a likelihood ratio test,
which compares the two alternative models, and identifies in which cases the simpler model
(‘constant degradation’) should be rejected in favor of the more complex model (‘varying
degradation’). We used a standard nested likelihood ratio test41.

Measuring the maximal peak height
We defined the ‘maximal peak height’ in the temporal profile of RNA levels (X(t)) by Pmax
= maxt {2X(t) − (X(t − 1) + X(t + 1))}, and ranked genes according to the ‘peakiness’ of
their expression profiles (genes with highest ‘maximal peak height’ have the sharpest
peaks).
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Actinomycin D treated cells
We added actD (3 μg/ml) directly to untreated cells (‘0h experiment’) and collected cells at
0.5, 1, 2, 4 and 6 hours after actD addition. We added actD (3 μg/ml) directly to LPS-treated
cell cultures for 2.5h (‘2.5h experiment’) without removal of LPS, and collected cells at 2, 3
and 4h after actD addition. RNA levels for the ‘signature set’ genes were quantified using
nCounter, and normalized only with the internal nCounter provided controls.

Comparing model predictions and Actinomycin D data

We used our standard first-degree model: . We assumed that after actD
treatment: (1) transcription is blocked, i.e. α (t) = 0 and (2) a constant decay rate; and

therefore the model becomes: . We compared the actD data to our model
predictions with two complementary methods. First, we compared RNA levels from actD
experiment and model predictions: we used the ‘constant degradation’ model with α(t)=0
and with the β(t) predicted by the model at actD treatment time (0h or 2.5h), and the RNA-
total levels measured at actD treatment time, to predict expected RNA levels following actD
treatment. We compared these with actD data by least square error (normalized by each
gene’s average expression level). Second, we compared the degradation rates (β) predicted
by our models with those calculated directly from actD decay profiles. Based on the
assumptions (above), the analytic solution is a first-order exponential decay: X(t) = X0 · e−βt

⇒ log X(t) = log X0 − βt. We fit a first-order linear model to the log-decay profile to
estimate the degradation rate (β). Only genes with a good fit (R2 > 0.8) were used for further
analysis (100/254 genes).

Estimating mRNA half-life
We estimated mRNA half-life directly from the degradation rate (β), per time point, by:

. Therefore, for varying degradation rates, the half-
life at time T represents the expected half-life if the degradation rate was fixed to its value at
that time point.

Preparation and sequencing of RNA-Seq and 4sU-Seq libraries
We prepared the 4sU-Seq libraries using the ‘control (non–strand-specific)’ protocol as
described in28, with the following modifications: after DNase treatment, we used the entire
RNA sample (without polyA-RNA isolation) and fragmented RNA by incubation in 1X
RNA fragmentation buffer (Affymetrix) at 80 degrees for 4 minutes. We prepared the RNA-
A+-Seq libraries using the ‘dUTP second strand (strand specific)’ protocol as described in28,
except we fragmented RNA as for the 4sU samples. We used the Illumina Genome Analyzer
(GAII). We sequenced two lanes for each RNA-A+-Seq sample, corresponding to 45 million
paired-end reads/sample (90 million single reads, 76 bases long) on average (Supplementary
Table 3); and a single lane for RNA-4sU sample, corresponding to 33 million paird-end
reads/sample (68 million single reads, 76 bases long) on average (Supplementary Table 4).

Read mapping
We aligned all reads to the mouse reference genome (NCBI 37, MM9) using the TopHat
aligner42 with default parameters (See Supplementary Methods for details). To estimate
rRNA levels, we mapped all reads (with the same procedure) to mouse rRNA sequences
from GenBank44. About 80% of RNA-Seq (RNA-total) reads were uniquely mapped to the
genome, and 85% of these mapped in pairs (average insert size of 644 bases ± 2886 SD),
while only 0.2% of the reads mapped to rRNA (Supplementary Table 3). About 60% of
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4sU-Seq (RNA-4sU) reads were uniquely mapped to the genome, and 65% of these mapped
in pairs (average insert size of 699 bases ± 5746 SD), while 30% of the reads mapped to
rRNA (Supplementary Table 4). Thus, in 4sU-Seq libraries, rRNA accounts for the high
fraction of reads that were not aligned (or not uniquely aligned) to the genome.

Estimating percentage of reads mapped to specific genomic annotations
We extracted mouse Refseq genes (exons and introns), microRNA and tRNA annotations
from the UCSC genome browser45. We extracted rRNA sequences from GenBank44 and
other non-coding RNA sequences from Rfam46. We generated non-coding RNA annotations
by aligning their sequences to the mouse genome using BLAST47.

Quantification of transcript abundance from RNA-Seq data
We estimated the expression of a transcript X in both RNA-A+-Seq and RNA-4sU-Seq by
standard ‘Reads Per Kilobase exon model per Million mapped reads’ (RPKM), as previously
described in48, but defined it over exons alone (see Supplementary Methods for details). We
normalized RPKM estimates using: (1) a selected set of control genes as previously
described49, and (2) adjusting the mean and standard deviation of each sample’s log(RPKM)
values. We used the ratio between RNA quantity in each sample before and after RNA-4sU
purification (0.046 ± 0.019 SD), to normalize RNA-total and RNA-4sU relative to each
other. We took genes with log2(RPKM) >= 2 for at least one time point (10,106 genes,
which are ~40% of the Refseq31 genes), and excluded transcripts with significant antisense
expression (to avoid biases arising from strand-specificity; see Supplementary Notes, section
6), leaving us with 9,838 genes.

Assigning RNA-Sequencing expression profiles to clusters
We assigned each RNA-Seq gene to the nCounter cluster (out of clusters II-VIII) with the
maximal Pearson correlation between the gene’s RNA-Seq expression profile and the
cluster’s centroid (as calculated by k-means at 0, 1, 2 and 3 hours). If the correlation p-
values for all clusters was non significant (p > 0.01), we assigned the gene to cluster I (the
control genes cluster). We divided each cluster into sub-groups by applying our k-means
clustering procedure separately per cluster, and required a minimal cluster size of at least 3%
of the genes (globally).

Grouping genes based on predicted constant degradation rates
We divided the 9,448 genes with non-significant discrepancy from the ‘constant
degradation’ model into 10 deciles (~900 genes per group) based on their predicted mRNA
half-life (A-J, Fig 3c).

Quantification of mRNA and pre-mRNA abundance from 4sU-Seq data
We estimated the pre-mRNA expression by intron-RPKM, and the overall (pre-mRNA
+mRNA) expression by exon-RPKM (see Supplementary Methods for details). We focused
on genes with significantly expressed introns and exons (RPKM >= 2) for at least one time
point (3,011/10,106; ~30% of expressed genes), and excluded transcripts with antisense
transcription or significant alternative isoforms biases (see Supplementary Notes, section 6),
leaving us with 2,122 genes.

Dynamic modeling of processing rates
Modeling—Let α be the transcription, β the degradation and γ the processing rate, and let
P be the pre-mRNA level, and M be its mature mRNA level of gene x, than we extended the
dynamic model to include the processing rate as following:
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This model assumes that mRNA is transcribed as pre-mRNA, processed into mature mRNA,
and only the mature mRNA is degraded. Our 4sU-Seq data measures (separately) the local
integration of P(t) and of M(t). We directly estimated α(t) from M(t) data by assuming that
during the (short) labeling period: (1) pre-mRNA is at steady state, (2) all rates (α, β and γ)
are approximately constant and (3) the temporally constant β that was estimated by the
simpler model. We used an ‘impulse’ model29,30 for transcription rate, and a constant
degradation and processing rates.

Fitting the model to the data—We optimized the likelihood of the data (α(t) and P(t))
to the first equation of the model as before.

Testing the fit—We used a goodness-of-fit test (see Supplementary Methods for details).

Functional Enrichments
We calculated the enrichment of a query set of genes X for an annotation A using
hypergeometric p-value between two groups40, and a 1% False Discovery Rate (FDR)
significance threshold, across all annotations we tested. Functional annotations of the mouse
genome were taken from the Molecular Signature Database (MSigDB)50, c2 (curated gene
sets), c3 (motif gene sets) and c5 (GO gene sets).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Changes in transcription rates during the response of DCs to LPS
(a) Measuring transcription rates with short metabolic labeling. We used short metabolic
labeling (10 min, red lines), and measured the expression of RNA-Total (blue) and
RNA-4sU (red) for 254 ‘signature’ genes at 13 time points in 15 min intervals (rows) over
the first 3 hours post-LPS stimulation. (b) Changes in RNA-4sU levels follow changes in
pol-II binding and precede changes in total RNA levels. Shown are example time course
profiles for selected genes for RNA-4sU expression (nCounter, red), RNA-Total expression
(nCounter, blue) and pol-II binding at the promoter (ChIP, dashed gray). (c) Distinct
temporal clusters of newly transcribed and total RNA. Shown are clusters of expression
profiles (nCounter) for 254 ‘signature’ genes (rows) based on RNA-Total (left) and
RNA-4sU (right) measurements across 13 time points (columns). Cluster I includes the
control genes. Cluster numbers (I-VIII) are noted on right; representative member genes are
noted on left. Purple: high relative expression; white: mean expression; pink: low relative
expression. (d) Peak transcription precedes peak expression by 15-30 minutes. Shown are
average profiles (Y axis) for RNA-4sU (red) and RNA-Total (blue) for each cluster at each
time point (X axis), ordered by cluster numbers (cluster I topmost; cluster VIII bottommost).
The size of each cluster is indicated in brackets. Pearson correlation coefficient (ρ) of the
best time-lag correlation between transcription and expression is indicated on right, with the
optimal time lag in square brackets.
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Figure 2. Changes in transcription rate account for most expression changes; changes in
degradation rate contribute to ‘peaked’ responses
(a) The ‘constant degradation’ and ‘varying degradation’ models. A first-degree dynamical
model (formula, right) models the expression level of a gene (grey curve) as a function of
transcription (black) and degradation (green) rates. Parameters include an ‘impulse’
model29,30 for transcription (black curve), and either a constant function for degradation
(‘constant degradation’ model, solid green line), or an ‘impulse’ model (‘varying
degradation’ model, dashed green line). We fit them to our data (left, RNA-Total, blue, and
RNA-4sU, red) by optimizing the likelihood function (separately per gene). We compare the
model’s fit (black and grey curves) to the data (red and blue curves, respectively) and
calculate the error. (b) The ‘constant degradation’ model fits the majority of genes well.
Shown is the distribution of the log likelihood ratios between the ‘constant degradation’ and
‘varying degradation’ models. Dashed line indicates the threshold for rejecting constant
degradation (p<0.01). (c) The percent of genes per cluster (numbered as in Fig. 1c) that
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reject the constant degradation model. (d) Varying degradation profiles estimated for the 44
genes that reject the ‘constant degradation’ model. Right: estimated degradation rates
(relative rate; purple: high; pink: low) for the 44 genes (rows), clustered into 3 groups (A-C),
across 12 time points (columns; excluding t=0 which is highly sensitive to noise due to low
RNA levels). Asterisk: known regulators of RNA degradation (see Discussion). Left: mean
degradation rate profile per cluster (bracket: number of genes in cluster). (e) Genes with
peaked responses reject the ‘constant degradation’ model. Shown are two example genes
(top: Cxcl1, bottom: Zfp36). For each, upper row: ‘constant degradation’ model fit (solid
line) to the data (dashed line); lower row: ‘varying degradation’ model fit (solid line) to the
data (dashed line). Left: expression level; middle: transcription rate; right: degradation rate
(estimate only).
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Figure 3. Genome-wide analysis of RNA transcription and degradation rates using RNA- and
4sU-Seq
(a) Experiment overview. We isolated RNA-4sU (after 45 min of 4sU labeling, red) and
polyA+ RNA-Total (blue) at 1h intervals (rows) over the first 6 hours of the response of
DCs to LPS stimulation, and used massively parallel sequencing to measure RNA levels. (b)
4sU-Seq captures a broader representation of transcripts compared to polyA+ RNA-Seq.
Shown is the fraction of reads in RNA-4sU-Seq libraries (left) and polyA+ RNA-Seq
libraries (right), across several annotation categories. Only reads that are mapped to a unique
location in the genome or to rRNA are considered. (c) Distribution of predicted constant
mRNA half-lives for the 9,448 genes expressed during the first 6 hours of the response to
LPS stimulation that do not reject the ‘constant degradation’ model. Dashed lines distinguish
10 deciles (A-J, 10% increments, 35 transcripts with >200min half-life are included in the
last decile).
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Figure 4. Genome-wide analysis of RNA processing rates
(a) Using 4sU-Seq data to study RNA processing. Sequencing reads in the 4sU-Seq libraries
originate from either pre-mRNA (U; purple) or mature mRNA (M; light blue). While
mRNA reads map only to exons, the pre-mRNA reads map to both exons and introns. We
estimate newly transcribed pre-mRNA expression by the RPKM of a gene’s introns alone,
and overall newly transcribed RNA expression (pre-mRNA + mRNA) by the RPKM of a
gene’s exons. (b) An overview of the ‘constant degradation and processing’ model. The
model expands on our ‘constant degradation’ model (Fig. 2a) by adding a constant
processing rate (right; orange). We fit the model parameters to our data (left; mRNA-4sU,
dashed red, and pre-mRNA-4sU, dashed purple) by optimizing the likelihood function
(separately per gene) and using the degradation rates predicted by the ‘constant degradation’
model. (c) Distribution of predicted constant processing rates for 3,011 genes with exonic
and intronic expression during the first 6 hours of the response to LPS stimulation. Dashed
lines distinguish 5 quintiles (a-e, 20% increments), and transcripts with >30min half-life are
added to the last bin. Pre-mRNA half-lives for illustrative genes are denoted in each bin. (d)
Transcripts with low or high pre-mRNA half-lives are enriched in functional categories,
clusters, exon structures or transcript lengths. Shown are the enrichments (P-value,
hypergeometric test, grey), of the overlap between the genes in each of the half-life bins in
(c) (A-E, columns) and each tested category (rows). Only categories with at least one
significant enrichment are shown.
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