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1 Introduction

Among the diverse and ever-expanding array of approaches to the electronic structure prob-

lem, the rise of approximate density functional theory (DFT) as the method of choice for

practical calculations has been nothing short of meteoric.1, 2 The stage for this explosion of

interest was set by three pivotal developments: the establishment of the ground-state energy

as a functional of the density by the Hohenberg-Kohn theorems;3 the Kohn-Sham reformu-

lation of the problem in terms of self-consistent field (SCF) equations with an approximate

exchange-correlation (XC) functional;4 and the invention of accurate approximations to the

XC functional itself.5–7

A key distinction of Kohn-Sham DFT, compared to ab initio methods based on the

Hartree-Fock (HF) reference wavefunction, is the favorable scaling with system size that

can be obtained with many popular XC functionals. Thus, approximate DFT accounts for

much of the dynamical correlation energy absent in HF theory, but at roughly the cost of

a HF calculation.8 This superior balance of accuracy and low computational overhead has

spurred much of the growth in popularity of approximate DFT over the last two decades.

For traditional semilocal and hybrid functionals, the computational cost of a single-point

energy calculation scales nominally as O(N3), where N is the number of basis functions;

a variety of techniques have since been devised to obtain linear-scaling implementations of

DFT for extended systems.9, 10 Fast implementations of Kohn-Sham DFT with Gaussian or

plane-wave basis sets are available in many modern electronic structure packages.

Thanks to its computational tractability, DFT has been at the forefront of efforts to

extend the reach of quantum chemistry beyond the traditional realms of single-point energies

and geometries in the gas phase. DFT is now routinely employed alongside spectroscopic

and electrochemical analyses11, 12 and is invoked in the interpretation of novel organic and

organometallic reactivity.13, 14 The favorable accuracy-to-cost ratio of approximate DFT for
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large systems has made it the method of choice for quantum chemical studies of biomolecular

systems15–17 and has enabled classical molecular dynamics simulations on high-dimensional

Born-Oppenheimer potential energy surfaces (PES).18, 19 The introduction of a fictitious

dynamics for the orbitals in the Car-Parrinello approach20 further reduces computational

costs and has enabled density functional simulations of bioactive and reactive species.21–23

The establishment of linear-response time-dependent DFT (LR-TDDFT) as a viable, and

in principle exact,24, 25 formalism for obtaining excited states from DFT laid the groundwork

for its routine application to excited states in organic compounds26 and transition metal

complexes.27 Paired with a classical force field via QM/MM or ONIOM techniques, DFT

and TDDFT have gained traction for computational modeling of systems once only accessible

to classical simulation, such as enzymes28 and chromophores strongly coupled to a solvent

bath.29, 30 DFT has been enlisted to shed light on a dizzying variety of physical and chemical

applications, from structure and reactivity at surfaces31 and screening of organic dyes32 to

the characterization of superconductors33 and materials simulations for art preservation.34

In light of the many strengths and diverse applications of DFT, it is easy to get the

impression that the current stable of approximate XC functionals is adequate for all of

chemistry. On the contrary, the scope of applicability of traditional functionals is limited by

a number of shortcomings which in many cases lead to qualitatively incorrect predictions of

chemical structure and reactivity. Traditional functionals suffer to varying degrees from self-

interaction error (SIE) which results in spurious delocalization of the density with semilocal

functionals but can also cause the opposite (localization) error in some hybrids.35, 36 These

errors are largely responsible for the failures of traditional functionals for such fundamental

properties as barrier heights of chemical reactions,37 energies and structures of long-range

charge-separated states,38 and magnetic exchange couplings.39 Furthermore, noncovalent

van der Waals interactions are generally either absent entirely or treated incompletely by

traditional functionals, although progress in addressing this problem has been rapid in recent
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years.40–43

The shortcomings of traditional functionals naturally plague TDDFT as well. The LR-

TDDFT approach is better suited for some types of excited states than for others. For in-

stance, charge-transfer excitation energies are often grossly underestimated by LR-TDDFT

with traditional functionals in the adiabatic approximation.44, 45 Conical intersections pre-

dicted by these methods can be qualitatively incorrect.46, 47 Some exotic excitations such

as double excitations also pose problems for LR-TDDFT with traditional functionals and

frequency-independent XC kernels.46, 48

Strategies for addressing these shortcomings can be roughly grouped into three categories:

1. Wait patiently for the arrival of the exact functional; or if impatient, design better

approximations to the exact functional.

2. Abandon the DFT approach in favor of systematically improvable but computationally

demanding ab initio methods.

3. Adapt calculations involving existing traditional functionals to mitigate known short-

comings.

Of course, one can devise methods that fall between categories 1 and 2 by combining certain

features of DFT and ab initio techniques.49, 50

This review explores one particular method, constrained DFT (CDFT), that falls into

the third category. The significance of CDFT is necessarily ephemeral, as improvements in

functional approximations or ab initio techniques will eventually render CDFT unnecessary

(we hope). However, in the here and now, CDFT has proven to be a valuable tool in the

electronic structure toolbox, and this review presents an overview of its role in contempo-

rary research. At a basic level, CDFT offers a partial workaround to some of the detrimental

effects of SIE discussed above. However, CDFT also provides a direct route to diabatic elec-

tronic states and, by extension, to charge transfer excited states, using the basic machinery
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of the Kohn-Sham SCF procedure. At a deeper level, these excited states lead naturally

to the construction of physically motivated effective Hamiltonians for a variety of problems.

The diversity of applications presented in this review does not reflect the breadth of CDFT

so much as the narrowness of commonly used density functionals: there are many places

CDFT is useful because there is a wide range of problems for which a truly satisfactory XC

functional does not yet exist. Of course, solutions in each category enumerated above are

being actively pursued and refined, and there is good reason to anticipate that solutions of all

three types will extend the reach of electronic structure theory — and of DFT in particular

— to ever more complex problems.

The remainder of the review is structured as follows. Section 2 develops the theory

and working equations of CDFT. In the two subsequent sections, we illustrate applications

of charge-constrained and spin-constrained CDFT states to problems in electron transfer

(section 3) and in the chemistry of low-lying spin states (section 4), respectively. Section 5

addresses the question of how to compute couplings between CDFT states, with illustrative

examples. The use of CDFT as a tool for parameterizing model Hamiltonians is considered

in section 6, where we also discuss configuration-interaction (CI) expansions of CDFT states

for improved treatment of transition states and conical intersections. Section 7 presents a

handful of other category 3 methods that cover the same applications as CDFT: techniques

that overcome SIE, or define diabatic states, or describe low-lying excited states through

modifications of the Kohn-Sham SCF procedure. We conclude with our impression of the

role to be played by CDFT and related methods in the future development and application

of approximate DFT.
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2 Theory

In this section, we outline the working equations of CDFT and describe how they can be

solved efficiently. Development of modern CDFT has benefitted greatly from the foresight

of the original presentation of CDFT, which fully anticipated all manner of applications

and formalisms.51 In modern molecular usage, the theory of CDFT has been refined so

that constraints are typically phrased in terms of the charge and spin on arbitrary molecular

fragments, which are defined in terms of an atomic charge prescription.38, 52–55 This portrayal

allows for multiple constrained fragments, analytical gradients, and efficient determination

of the self-consistent constraint potential. In this section we introduce the general theory

with emphasis on the formulation in terms of populations. We close the section with a few

illustrations of best practices in using constraints to solve chemical problems.

2.1 Original CDFT Equations

The first presentation of a constrained DFT formalism is due to Dederichs et al.51 and

proceeds as follows. Suppose we seek the ground electronic state of a system subject to

the constraint that there are N electrons in a volume Ω. One can accomplish this by

supplementing the traditional DFT energy functional, E[ρ(r)], with a Lagrange multiplier:

E(N) = min
ρ

max
V

[

E[ρ(r)] + V

(
∫

Ω

ρ(r)d3r −N

)]

(1)

The addition of a single Lagrange multiplier term V
(∫

Ω
ρ(r)d3r −N

)

is sufficient to effect

a constrained optimization that yields the lowest-energy state with exactly N electrons in

the volume Ω. This would clearly be useful, for example, in looking at the localization of

charge around an impurity. Continuing along these lines, one can easily come up with other

interesting constraint formulations.51 One could constrain local d (or f) charge variation in
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transition (or rare-earth) metals:

E(N) = min
ρ

max
Vd

[

E[ρ(r)] + Vd

(
∫

ρd(r)d
3r −Nd

)]

(2)

or the (net) magnetization:

E(N) = min
ρ

max
H

[

E[ρ(r)] +H

(
∫

Ω

m(r)d3r −M

)]

[

m(r) ≡ ρα(r)− ρβ(r)
]

. (3)

One could go even further and note that the magnetization in a given system need not have

a uniform orientation throughout, so that one could partition the system into magnetization

domains with different axes of magnetization. In this case, the magnetization on each domain

would become an independent parameter, with the energy E( ~M1, . . . , ~MN) being a function

of the constrained parameters.

All of the constraints above can be cast in a unified notation:52

W [ρ, V ;N ] ≡ E[ρ] + V

(

∑

σ

∫

wσ(r)ρσ(r)d3r −N

)

(4)

E(N) = min
ρ

max
V

W [ρ, V ;N ]. (5)

Here, one introduces a (spin-dependent) weight function, wσ(r), that defines the property

of interest. For example, to match equation (1), wα(r) = wβ(r) would be the characteristic

function of Ω. To match equation (3), wα(r) = −wβ(r) would again be the characteristic

function of Ω. In this way, we think of the various constraints as specific manifestations of

a single unified formalism.

These core equations have been widely used for determining the U parameter in LDA+U ,

Anderson, and Hubbard models,56–71 frequently in combination with the Hund’s rule ex-

change parameter J .72–86 A closely related fixed spin moment (FSM) class of methods,
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which will not covered in the present review, originated in tandem with the original CDFT

work of Dederichs et al.87–89 Related use of CDFT for producing constrained magnetic

configurations has been rather widespread,90–105 and the ability to fix different spin orien-

tations at distinct sites allows for ab initio spin dynamics106 with extension to relativistic

spin dynamics.107 A survey of the results based upon CDFT finds that virial and Hellmann-

Feynman theorems have been given for CDFT,108 and the theory has been generalized for

application to the inverse Kohn-Sham problem.109 CDFT has found use examining charge

localization and fluctuation in the d density of bulk iron,110 studying localized excitons on

the surface of GaAs(110),111 and constraining core orbital occupations to obtain core exci-

tation energies.112 Combining Janak’s theorem and its integrated version the Slater formula

with CDFT yields an efficient method for determining the charge on quantum dots,113 and

using CDFT to constrain orbitals to a fixed atomic form provides a projection operator for

use in self-interaction correction (SIC) calculations;114 the CDFT equations have been refor-

mulated for use with DFTB+ tight-binding models.115 With this slew of varied applications,

the theory of constraining properties of DFT states has proven quite versatile, being applied

to study a wide variety of phenomena. In recent years, it has seen broad use constraining

the charge and spin on molecular fragments, which will be of particular importance for this

review.

2.2 Constrained Observables

There is a great deal of flexibility available for constraining the ground-state density in

equation (4), since in an unrestricted KS DFT framework an arbitrary constraint may be

applied to the integrated population of each spin, over any number of arbitrary regions of

space, subject to an arbitrary weighting scheme. In practice, this degree of flexibility is simply

overwhelming, and requires some way to streamline the choice of appropriate constraints.

In this spirit, real-space atomic charge schemes have driven much of the modern work with
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CDFT: they are flexible enough to define a variety of states in accord with chemical intuition,

but at the same time compact enough that the number of reasonable constraints is not too

large.

First, it is important to note that a variety of commonly used prescriptions for computing

the charge on atom A can be cast in the form

NA ≡
∫

wA(r)ρ(r)d
3r. (6)

Thus, constraining the charge or spin using one of these population prescriptions is just a

special case of equation 4. The easiest to understand is probably the Voronoi method,116

which partitions space up into cells ΩI consisting of all points closest to atom I. The number

of electrons on atom A is then

NA ≡
∫

ΩA

ρ(r)d3r (7)

which is obviously a special case of equation (1). The Becke population scheme is similar:117

here one defines a weight function, wBecke
I , that is nearly unity inside the Voronoi cell, nearly

zero outside and smoothly connects the two limits. The number of electrons on A is then

NA ≡
∫

wBecke
A (r)ρ(r)d3r. (8)

In a completely different fashion, the Hirshfeld (or Stockholder) partitioning can also be

written in terms of atomic weight functions.118 In the Hirshfeld scheme, one constructs a

promolecule density, ρ̃(r) that is just the sum of (usually spherically averaged) atomic densi-

ties, ρI(r). One then defines an atomic weight function and number of electrons respectively

by:

wHirshfeld
A (r) ≡ ρA(r)

ρ̃(r)
NA ≡

∫

wHirshfeld
A (r)ρ(r)d3r. (9)

Similar constructions apply to the variations on this theme — including Hirshfeld-I119 and
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iterated Stockholder120 — with mild adjustments to the definitions of wA. It is also in

principle possible to phrase more sophisticated schemes — such as partition theory121–123

and Bader’s atoms-in-molecules approach124 — in terms of a weight function wA, although

to our knowledge these connections have never been made in the context of CDFT. Finally,

there are charge prescriptions (including the popular Mulliken,125 Löwdin126 and NBO127

schemes) that can not be written in terms of the density. In these cases, the charge is defined

by partitioning the one-particle density matrix (1PDM) which technically goes outside the

scope of constrained density functional theory. However, in practice it is a simple matter to

apply constraints to the 1PDM within the same formalism52, 53 and thus when one constrains

Löwdin or Mulliken populations it is still colloquially referred to as CDFT.

With a prescription for atomic charges in hand, one can easily build up a weight, wF ,

for the charge on a fragment F , consisting of any group of atoms within a molecule or solid.

The charge on the fragment is just the sum of the atomic charges, so that

NF ≡
∑

I∈F

NI =
∑

I∈F

∫

wI(r)ρ(r)d
3r

=

∫

∑

I∈F

wI(r)ρ(r)d
3r ≡

∫

wF (r)ρ(r)d
3r [wF (r) ≡

∑

I∈F

wI(r)]. (10)

We can thus constrain the number of electrons on any fragment by adding the Lagrangian

term

VF

(
∫

wF (r)ρ(r)d
3r −NF

)

(11)

to the energy expression. Here NF is the total number of electrons on the fragment, though

for practical calculations the nuclear charge is subtracted off and only the net number of

electrons on the fragment (−qF ≡ NF − ZF ) need be specified as input to the calculation.

For magnetic systems, we would also like to be able to constrain the local spin using

population operators. That is, we would like the equivalent of equation (3) for subsets of the
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entire system. To accomplish this, we note that the number of electrons of spin σ (σ = α, β)

on F is just

Nσ
F ≡

∫

wF (r)ρ
σ(r)d3r. (12)

The net spin polarization (i.e. the local MS value) is (Nα − Nβ)/2, where the factor of

1/2 reflects the fact that electrons are spin-1/2 particles. We can thus constrain the net

magnetization of any fragment by adding the Lagrangian term:

HF

(
∫

wF (r)(ρ
α(r)− ρβ(r))d3r −MF

)

(13)

MF is then the net number of spin up electrons on the fragment, which is the same as twice

the MS value.

Finally, we can apply any number of spin and charge constraints by adding a number of

such terms:

W [ρ, VF , HF ′;NF ,MF ′] ≡ E[ρ] +
∑

F

VF

(
∫

wF (r)ρ(r)d
3r −NF

)

(14)

+
∑

F ′

HF ′

(
∫

wF ′(r)(ρα(r)− ρβ(r))d3r −MF ′

)

E(NF ,MF ′) = min
ρ

max
VF ,HF ′

W [ρ, VF , HF ′;NF ,MF ′]. (15)

The actual form of wF (and thus the constraint) will depend on the choice of target pop-

ulations as described above. But it is a trivial matter to write the equations in a manner

that is independent of the population, and we will maintain this level of abstraction in what

follows.
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2.3 Choosing a Constraint

Even if we restrict our attention only to charge and spin constraints, in any given application

one still has several choices to make about how an appropriate constraint should be defined.

What atomic population should be used? Which atoms should be included in the fragment?

Does the basis set matter? For the most part, the answers to these questions must be

determined on a case-by-case basis either by trial and error or using chemical intuition.

However, the literature does contain a number of empirically determined guidelines that can

be helpful in practice:

• Mulliken populations are not reliable. One abiding rule is that Mulliken pop-

ulations are unrealistic in CDFT. For example, in Figure 1, Mulliken populations

spuriously predict that separating charge in dinitrogen to obtain the N+N− configu-

ration should only require a fraction of an eV, whereas all other prescriptions predict

energies on the order of 5-10 eV. This failure can be linked to the ability of Mulliken

populations to become negative in some regions of space.128

• When diffuse functions are involved, density based prescriptions are more

stable. Here again, the observation is tied to a known weakness of an atomic popula-

tion scheme: AO-based schemes (like Löwdin, Mulliken or NBO) tend to get confused

when diffuse functions are added.129 In the worst cases, this fault keeps Löwdin-CDFT

energies and properties from converging as the size of the basis set is increased. Such

a case is illustrated in Table 1, which presents the electronic coupling (discussed in

section 5) between benzene and chlorine at two different separations for a variety of

basis sets. Clearly the Löwdin result shows an unreasonably large increase as the ba-

sis size increases, while the density-based Becke prescription shows fast convergence.

Real-space population schemes such as the Becke weighting scheme and Hirshfeld par-

titioning correct for the broad spread of diffuse basis functions, giving good results for
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Figure 1: The energy and constraint potential as a function of charge separation in N2 with
different charge prescriptions. Squares: Becke population; triangles: Löwdin population;
dots: Mulliken population. Calculations performed using B3LYP in a 6-31G* basis set.
Used with permission from reference 53.

CDFT.53, 130

Table 1: Diabatic coupling (in mHartree) for electron transfer from benzene to Cl. Repro-
duced with permission from ref 38.
d (Å) 0.604 1.208

Löwdin Becke Löwdin Becke
6-31G 21.3 58.2 30.1 65.9
6-31G(d) 21.0 56.9 29.9 64.8
6-31+G(d) 39.6 46.7 46.1 53.9
VDZ-ANO 95.3 48.8 94.0 56.1

• Larger fragments give more consistent results. This conclusion has mainly

been drawn from the application of CDFT to predict exchange couplings in magnetic

organometallic compounds, where there is a wealth of experimental data to compare

to.39 The qualitative picture is that all excess spin resides on the metal atoms. How-

ever, in practice, constraining the net spin of the metal atoms alone using any of the

14
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Figure 2: Structure of the n-alkyl di(sodium tetraamine) donor-acceptor complexes discussed
in this section.

standard schemes gives unreasonable exchange couplings. The most reliable results

are obtained if the fragments are made as large as possible; if there are two metals (A

and B) then every atom in the molecule is assigned either to fragment A or fragment

B, even if there is thought to be no net magnetization on that fragment. Likewise,

for charge transfer, making the fragments large helps stabilize the excess charge, e.g.

constraining a metal center and its ligands (instead of just the metal), or not leaving an

unconstrained “bridge” in a fully conjugated aromatic charge-transfer system. Making

the constrained region too small can cause the constraint to be artificially too strong;

a charged metal center really will delocalize charge to its ligands (Figure 3), and a

charge-transfer state in a conjugated system will delocalize the electron and hole as

much as possible to stabilize itself. By making the CDFT constraint region as large as

possible, the minimum perturbation needed to enforce the constraint can be applied,

with the system naturally seeking the correct level of localization. It is important to

emphasize that adding “spectator” atoms to a fragment does not necessarily place any

charge or spin on the spectator; adding the atom to the fragment merely means that

the variational CDFT optimization can place additional charge or spin on that atom,

not that it will. For example, in Figure 3, when half of the bridge is added to each

fragment, not all of the bridge carbons will have extra charge.
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Figure 3: The energy behavior of [Na(NH3)3]
+H2N(CH2)nNH2[Na(NH3)3]

− with the con-
straint applied to just the metal atoms (•), the Na(NH3)3 groups (+), the metal and ammo-
nias and the amine group of the bridge (×), splitting the complex in two down the middle of
the bridge (×+), or with a promolecule-modified constraint applied to the Na(NH3)3 groups
(�). Energy differences are measured with respect to the ground-state DFT energy for each
system, and plotted as a function of the number of carbons in the alkyl amine. Geometries
are constructed with bond lengths and angles corresponding to the optimized geometry of
the eight-carbon system. The metal-only constraint is comically overstrong (note the bro-
ken y-axis), while expanding the constraint region to include the ligands or the ligands plus
bridge leads to reasonable results. The constraint in (×+) is a weaker constraint than all the
other curves except the promolecule-corrected constraint on the sodium and ammonias; this
is because when the system is literally divided in two, only one constraint region is needed
— the other partitionings require that one region is constrained to +1 charge and the other
to −1, with an implicit constraint that the bridge is neutral.
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• When possible, constrain charge and spin together. Suppose you were inter-

ested in charge transfer between C60 and C70 (i.e. C+
60 · · ·C−

70). You could generate

this state in one of two ways: either constrain only the charge (e.g. qC60
= +1) or

the charge and spin (e.g. qC60
= +1 and MC60

= 1). In many cases these two routes

will give nearly identical answers (as long as the calculations are spin-unrestriced).

However, in the cases where they differ significantly, it can often be the case that con-

straining the charge leads to a state that still has significant overlap with the ground

state. This phenomenon is known as “ground state collapse” and generally leads to

erroneous results for energetics. Thus, to be on the safe side, it seems best to constrain

both charge and spin rather than just charge alone.

• There can be many equivalent ways of specifying the same state. Returning

to the C+
60...C

−
70 example, because the overall charge on the system is fixed, specifying

qC60
= +1 or qC70

= −1 would obtain exactly the same answer in CDFT. Alternatively,

requiring that qC60
−qC70

= +2 would also give the same result. These observations are

general: it is always mathematically equivalent to describe the system with constraint

NA on A and with constraint NB ≡ N − NA on B ≡ R
3 \ A. The ability to add and

subtract constraints in this manner is reminiscent of the elementary row operations of

linear algebra, allowing for different presentations of equivalent physical constraints.

The charge difference constraint illustrated above has been used rather extensively53, 130

because, in cases where the constraint regions do not cover all of space, the charge

difference constraint is insensitive to fluctuations in the overall charge.

• When donor and acceptor are very close to one another, CDFT may fail.

When atoms are bound together in molecules, there is no perfect prescription for

assigning atomic charges: at some point any method for dividing delocalized charge

becomes arbitrary. It is particularly challenging when atoms are very close to each
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other, e.g. the two nitrogen atoms in N2, illustrated in Figure 1. Here, even when two

reasonable charge prescriptions (Löwdin and Becke) are used, the energy of the N+N−

state varies by more than 3 eV. This is clearly an unacceptably large error for chemical

purposes and trying more population prescriptions will not fix the problem. There is

simply no unambiguous way to apportion the charge in N2 to the different nitrogen

atoms. In section 2.5 we will discuss how these problems can be mitigated somewhat

by using fragment densities, but they cannot be entirely ignored.

Thus, while defining an appropriate constraint is not a trivial task, in practice we at least

have some empirical guidelines of what to do and what not to do when we approach a new

problem with CDFT.

2.4 Implementation

A full implementation of CDFT needs to find the density which obeys the specified charge/spin

constraints at SCF convergence. That is to say, it needs to solve for the stationary points

of the Lagrangian in equation (15). Ideally, we would like to solve these equations with

approximately the same computational cost as a regular KS-DFT calculation. Toward that

end, we re-write equation 15 as

E(Nk) = min
ρ

max
Vk

W [ρ, Vk;Nk] = min
ρ

max
Vk

[

E[ρ] +
∑

k

Vk

(

∫

∑

σ

wσ
k (r)ρ

σ(r)d3r −Nk

)]

(16)

where the index k indexes charge and spin constraints: for charges Vk ≡ VF and wα
k = wβ

k =

wF , while for spins Vk ≡ HF and wα
k = −wβ

k = wF . This notation obfuscates the meaning

somewhat, but makes the equations uniform. Recall that the DFT energy expression is
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defined by

E[ρ] =
∑

σ

Nσ
∑

i

〈

φiσ

∣

∣

∣

∣

−1

2
∇2

∣

∣

∣

∣

φiσ

〉

+

∫

vn(r)ρ(r)d
3r + J [ρ] + Exc[ρ

α, ρβ ] (17)

where the terms on the right hand side are, in order, the electronic kinetic, electron-nuclear

attraction, Coulomb and exchange-correlation energies. Requiring that equation (16) be

stationary with respect to variations of the orbitals, subject to their orthonormality, yields

the equations:

(

−1

2
∇2 + vn(r) +

∫

ρ(r′)

|r− r′|d
3r′ + vσxc(r) +

∑

k

Vkw
σ
k (r)

)

φiσ = ǫiσφiσ (18)

with Hermitian conjugate for φ∗
iσ. These equations are just the standard Kohn-Sham equa-

tions with the addition of some new potentials. These potentials are proportional to the

Lagrange multipliers, which illustrates the physical mechanism by which CDFT controls

charges and spins: it alters the potential in such a way that the ground state in the new

potential satisfies the desired constraint. Another way to say it is that the excited state

of the unperturbed system can be approximated by the ground state of the system in the

presence of the constraining potential. Thus, CDFT takes the fact that the KS approach is

exact for any potential and exploits it to obtain information about nominally inaccessible

excited states.

However, these constraint potentials are not yet fully specified — though the wk are given

as parameters, the Lagrange multipliers Vk are only implicitly defined by the constraints on

the fragment charges and spins. These constraints become clear when we attempt to make
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W stationary with respect to the Vi:

dW

dVk
=
∑

σ

Nσ
∑

i

(

δW

δφ∗
iσ

∂φ∗
iσ

∂Vk
+ cc

)

+
∂W

∂Vk
(19)

=
∑

σ

∫

wσ
k (r)ρ

σ(r)d3r −Nk (20)

= 0 (21)

where the eigencondition δW/δφ∗
iσ = 0 has been used. Note that only the constraint with

index k remains after differentiation, even when multiple constraints are imposed on the sys-

tem, and the stationary condition of the derivative being zero enforces the desired charge/spin

constraints.

The separate conditions of equations (18) and (21) imply that Vk and ρ must be deter-

mined self-consistently to make W stationary. This is somewhat daunting, as the Lagrangian

optimization is typically only a stationary condition — that is, it is not typically a pure max-

imization or minimization. As a practical matter, it is much more difficult to locate indefinite

stationary points than maxima or minima. For example, it is significantly harder to find a

transtition state (an indefinite stationary point) than an equilibrium structure (a minimum).

However, even though the CDFT stationary point is not a maximum or a minimum, it is easy

to locate, because one can show that the desired solution is a minimum with respect to ρ and

a maximum with respect to Vk.
52, 53 Thus, the stationary point can be solved for via alter-

nating between minimization along one coordinate (the density) followed by maximization

along the others (the potentials).

To see this, note that for any fixed Vk, equations (18) determine a unique set of orbitals,

φi[Vk]. These orbitals define a density ρ[Vk], which can then be used as input to W . In this

manner, one can think of W as a function only of Vk: W (Vk). We can work out the second
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derivatives of this function:53

∂2W

∂Vk∂Vl
=
∑

σ

Nσ
∑

i

∫

wσ
k (r)φ

∗
iσ(r)

δφiσ(r)

δ[Vlwσ
l (r

′)]
wσ

l (r
′)d3rd3r′ + cc (22)

=
∑

σ

Nσ
∑

i

∫

wσ
k (r)φ

∗
iσ(r)

∑

a6=i

φ∗
aσ(r

′)φiσ(r
′)

ǫiσ − ǫaσ
φaσ(r)w

σ
l (r

′)d3rd3r′ + cc (23)

= 2
∑

σ

Nσ
∑

i

∑

a>Nσ

〈φiσ|wσ
k |φaσ〉〈φaσ|wσ

l |φiσ〉
ǫiσ − ǫaσ

(24)

where first-order perturbation theory is used in evaluating the functional derivative δφiσ(r)/δ[Vlw
σ
l (r

′)].

The index i only covers the occupied orbitals of the constrained state, whereas the index

a need only cover the virtual orbitals, as the summand is antisymmetric in i and a. This

Hessian matrix is nonpositive definite because53

m
∑

k,l

Vk
∂2W

∂Vk∂Vl
Vl = 2

∑

σ

Nσ
∑

i

∑

a>Nσ

|〈φiσ|
∑m

k=1 Vkw
σ
k |φaσ〉|2

ǫiσ − ǫaσ
≤ 0 (25)

This holds because the KS method chooses the lowest-energy eigenstates as the occupied

orbitals, so for every occupied orbital i and virtual orbital a, ǫiσ ≤ ǫaσ. Thus, the overall

Hessian product is nonpositive, as desired, giving a stationary point as a maximum.

Having worked out the second derivatives, we see two features that simplify the CDFT

optimization procedure. First, the condensed version of W is globally concave in the Vk,

giving a unique fixed point which satisfies all the applied constraints. Thus, there can be

no confusion about local versus global maxima. Second, since both the first and second

derivatives of W (Vk) are easily computed, rapidly converging algorithms such as Newton’s

method can be used to locate its stationary point. Convergence to the constrained SCF

minimum can thus be achieved by means of a nested-loop algorithm with outer SCF loop

and inner constraint loop. The outer loop closely resembles a normal DFT calculation, with

SCF iterations being performed to optimize the orbitals. Within each step of the outer loop,
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a second loop of microiterations is performed to determine the Lagrange multipliers Vk that

make the density satisfy the charge and spin constraints (equations (10) and (12)). Because

the Vk contribute to the Fock matrix, the orbitals must be redetermined by diagonalization

of the Fock matrix at each microiteration step. Fortunately, the Vk contribution to the Fock

matrix is easy to calculate and a full build with exchange and correlation contributions is not

necessary, making the microiterations relatively cheap for atom-centered basis sets. After

the first few iterations of the outer loop, it is common for the inner loop to converge after

only two or three microiterations.

Essentially all available SCF codes use a convergence accelerator, such as direct inversion

in the iterative subspace (DIIS). Since CDFT introduces an extra layer of microiterations at

each SCF step, care is needed in incorporating CDFT into existing SCF codes so as to not

interfere with these accelerators. DIIS aids convergence by replacing the computed new Fock

matrix at a given iteration (of our “outer loop”) with a linear combination of it and the Fock

matrices from previous iterations. In modifying DIIS to support CDFT, the central principle

is that the extrapolation must be consistently done using the Fock matrix which is used to

determine the orbital coefficients (that is, the one which includes the constraint potentials);

however, a set of historic “core” Fock matrices which do not include the constraints must

also be retained for each macroiteration. The DIIS extrapolation coefficients obtained from

the constrained Fock matrices are then applied to the historic core Fock matrices to yield

an extrapolated core Fock matrix; the microiterations to determine the constraint potentials

add a constraint potential to this extrapolated core Fock matrix.

It is important to note that at stationarity, the Lagrangian, W (equation (16)), is equal

to the physical energy of the system, E (equation (17)). The energy in the presence of the

constraining potentials Vkwk is then a form of free energy,

F = E + VtotNtot + VspinMspin. (26)
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In accord with this free energy picture, we obtain the thermodynamic relations

dE(Nk)

dNk
= −Vk and

dF (Vk)

dVk
= Nk (27)

reflecting that E is a natural function of Nk but F is a natural function of Vk. It also follows

that d2E/dN2
k = −(d2W/dV 2

k )
−1, so that the concavity of W (Vk) implies convexity of E(Nk),

an important physical condition.

In addition to energy derivatives with respect to the internal parameters Vi and Ni, we

may also wish to compute derivatives of the energy with respect to external parameters such

as nuclear position. Such analytical gradients have been implemented for CDFT, making

possible ab initio molecular dynamics on charge-constrained states and parameterizations

of Marcus electron transfer theory therefrom, as will be seen in section 3. Consider the

problem of computing the derivative of the electronic energy (equation (17)) with respect to

the position of nucleus A. In addition to obeying E[ρCDFT] = W [ρCDFT, V
CDFT
k , NCDFT] at

convergence, W has the additional property that it is variational with respect to both ρ and

the Vi (in contrast to E[ρCDFT] which is not even a stationary point of the energy), which

allows the use of the Hellmann-Feynman theorem, writing

∇AW = ∇AE +
∑

i

Viρ∇Awi (28)

The first term is the standard gradient for unconstrained calculations, which includes the

Hellmann-Feynman force, Pulay force, and terms from change in DFT integration grid with

nuclear displacement; the second term represents the extra force due to the constraint con-

dition on the density. The form of this term is necessarily dependent on the form of the

population operator w used to define the constraint; for the Becke population scheme, these

terms have been computed in reference 131. With a Mulliken or Löwdin treatment of pop-

ulation, which depends on the AO overlap matrix, this term has a more complicated form;
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reference 38 performs the calculation for the Löwdin scheme. Oberhofer and Blumberger’s

plane-wave CDFT implementation using Hirshfeld’s population scheme has also implemented

analytical gradients; their expressions for the weight constraint gradient is in Appendix B of

reference 130.

Finally, we note that we have focused here on the implementation of CDFT in localized

orbital codes, but the method can equally well be implemented in plane-wave codes.130 The

primary difference is in the cost tradeoff — whereas diagonalization of the KS Hamiltonian

is cheap in localized orbitals it is expensive for plane waves. Thus the relative cost of the

microiterations is somewhat higher in a plane-wave-based scheme, but the SCF iterations can

be significantly faster, particularly for pure functionals applied to condensed phase problems.

2.5 Promolecules

Molecular dynamics follows a system away from the ground-state geometry, and similarly

molecular reactions and electronic excited state dynamics sojurn far from the ground-state.

In such situations, molecules and molecular fragments come in close contact while they

bounce around, jostle, relax, and react. CDFT is designed to construct electronic states of

fixed character at arbitrary geometries, even those where fragments overlap, but sometimes

it does not perform as well as might be hoped in such close-contact geometries. One of the

sorest impediments to its ability to do so is the choice of atomic population prescription.

In cases of close approach, the real-space constraint potentials must distinguish between

fragments in regions where the density is nonzero, so that assignment of density in that

transition region to fragment “A” or fragment “B” is ambiguous, a clear weakness of the

available charge prescriptions. The simplest example that shows this ambiguity is H+
2 , with

a single electron and two protons. Formally, we can constrain the electron to lie only on

one proton (“A”), but when the two protons begin to approach each other, any real-space-

based atomic population scheme will begin to assign some fraction of this electron to the
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second nucleus (“B”), for any physically reasonable density corresponding to a constrained

H−H+ configuration. Thus, the formal charge constraint putting a full electron on atom A

is unattainable with present charge prescriptions, and the numerical value of the constraint

must be adjusted to accommodate their failings.

This failure of formal charge/spin constraint values extends to the case of arbitrary

fragments, coming into play when constrained molecular fragments come in close approach,

as in nucleophilic substitution reactions; the promolecule formalism was pioneered to allow

CDFT to be used in precisely these types of situations. The sequence of steps involved in

the promolecule formalism is a bit complex and probably best understood using an example.

Take the typical SN2 reaction:

ClCH3 + F− ↔
{

[Cl− CH3 − F]−
}

↔ Cl− + CH3F

for which the natural reactant and product configurations are ClCH3(N = 0, S = 0)+F(N =

1, S = 0) and Cl(N = 1, S = 0)+CH3F(N = 0, S = 0) respectively. These formal charge and

spin values are exactly valid at infinite fragment separation; however, at small separation

there will be overlap between the fragments, and the reported charge and spin will deviate

from their formal values. The overlap is strongest at the reaction transition state, and the

formal charges and spins simply do not represent realistic constraint values for any population

scheme at that closest approach. The promolecule treatment corrects for these errors by

modifying the formal integer charge (spin) constraints into values that are appropriate for a

given charge prescription. The basic steps involved are illustrated in Figure 4.

The first step in the calculation is to break the system into the appropriate fragments —

e.g. F− and CH3Cl for the reactant configuration — maintaining the internal geometry of

each fragment (Figure 4a). One then performs separate calculations on each fragment with

the relevant total charge and total spin (Figure 4b). These converged fragment densities
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Figure 4: Construction of reactant and product promolecule densities for [F · · ·CH3 · · ·Cl]−.
(a) The system is divided into fragments, with atoms being apportioned to the fragments
corresponding to reactant (product) and the internal fragment geometry held fixed at the
transition-state values. (b) The ground-state density of the isolated reactant (product)
fragments is determined. (c) The fragment densities are superimposed to form the reactant
(product) promolecule density. Used with permission from reference 132.
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are the fragment promolecule densities — they approximate what an F− or CH3Cl density

should look like. The fragment promolecule densities are then arranged in the original

moelcular geometry and summed to obtain the total promolecule density, ρ̃ (Figure 4c). For

the example SN2 system in the reactant configuration, we obtain

ρ̃σr (r) = ρσClCH3
(r) + ρσF−(r) (σ = α or β) (29)

With this full promolecule density ρ̃(r), the actual constraint values used for the final reactant

CDFT calculation are

Ntot =

∫

w(r)
[

ρ̃αr (r) + ρ̃βr (r)
]

dr (30)

Mspin =

∫

w(r)
[

ρ̃αr (r)− ρ̃βr (r)
]

dr (31)

as depicted in Figure 5. These modified constraint values reflect the expectation that a

molecule constrained to be in the “reactant state” should, within the limits of the charge

prescription in use, look as much as possible like the superposition of the reactants brought

from infinite separation to the geometry in question. In many cases, the correction from the

promolecule density is small and can safely be omitted, particularly when the constrained

regions are on different molecules (as for charge transfer in organic semiconductors, section

5.6) or widely separated (as for molecular sensors, section 3.5). In other cases, though, the

correction is essential, as for the very small fragments illustrated in Figure 1, or for reaction

transition states that enter into CDFT-CI barrier height calculations (section 6.3). As the

fragments come from being well-separated into closer approach, the effect of the correction

grows smoothly, owing to the continuity of all functions involved. By the time the reacting

fragments reach the transition-state geometry, the correction can be larger than half an

electron! Nonetheless, the constraining potentials continue to enforce a consistent physical
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Figure 5: Computation of reactant- and product-like states for [F · · ·CH3 · · ·Cl]−. The total
promolecule density is integrated against the charge prescription function w(r) of the reac-
tant (product) fragment to obtain target constraint values. CDFT calculations with these
updated constraints produce the final reactant and product states. Used with permission
from reference 132.

picture throughout the entire reaction, and allow higher-level methods to be built atop that

picture.

2.6 Illustrations

In order to be concrete about how CDFT is used in practice, we now review two of the

early applications of CDFT that opened the door to its vast utility: impurities in metals

and long-range charge-transfer systems.

2.6.1 Metal Impurities

In bulk systems, a localized hole can be formed where the ejected electron does not localize

to a particular site, instead being absorbed into the band structure. In such bulk systems,

impurities tend to drive localization phenomena, and in fact the first published results using

CDFT were for cerium impurities in silver and palladium. Palladium and silver are transition
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metals, whereas cerium is a rare earth; as such, the most noticable distinction is the presence

of the cerium f orbtials, which is where we focus our interest. The f orbitals of rare earths

are generally decoupled from the overall band structure of the bulk, and thus they are vital

for these localization phenomena. One therefore focuses on controlling the f population

of the impurity atom while leaving the overall band structure unchanged (except for its

local screening response). The energy response to such a site population change, ∆E(∆Nf ),

measures how a charged impurity affects the local environment of a bulk system. In order

to induce such a population change, a constraining potential is applied; since the desired

population change is only in the f orbitals of the cerium impurity, the functional form of

equation (2) is appropriate. Applying a fixed extra potential Vf to the f orbitals gives

a constrained state with a deviation in f population ∆Nf and in energy ∆E(∆Nf ), as

illustrated in Figure 6. The figure makes it clear that it is easier to add or remove charge

from cerium in silver than in palladium — that is to say, cerium more easily traps electrons

in silver than in palladium. Further, while ∆E(∆Nf ) is very nearly symmetric for silver, it

is noticeably asymmetric for palladium, indicating that cerium more readily traps electrons

than holes in palladium.

Contemporary theoretical studies of cerium impurities postulated the existence of two

stationary solutions for the 4f wavefunction, the canonical one and an additional one with

a maximum outside the 5sp shell;133, 134 the existence of these states can be probed with

CDFT. Consider adding to the energy a Lagrange multiplier term of the form

V

[
∫

|r|2ρf (r)d3r − 〈r2〉
∫

ρf(r)d
3r

]

(32)

where 〈r2〉 is the target value that reflects the “size” of the f orbitals. When V is negative,

the resulting potential will be monotonically decreasing (for r > 0), repulsive for r2 < 〈r2〉,

and attractive for r2 > 〈r2〉, pushing electron density outwards from the nucleus. Now,
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Figure 6: (a) The strength Vf of the constraint potential as a function of the enforced number
of f electrons on a cerium impurity in palladium and silver (semirelativistic calculation). (b)
The change in energy as a function of ∆Nf for the same systems.
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Figure 7: Energy change (left scale) and f occupation (right scale) as a function of the
second moment of the f charge density for cerium in palladium (nonrelativistic calculation).

given the modern scheme, we could apply both the charge constraint and the size constraint

to explore the 4f/5sp transition. But in the original studies, only the size constraint was

applied, resulting in the ∆E(〈r2〉) and Nf(〈r2〉) curves in Figure 7. Clearly, only a single

minimum is found, suggesting that there is only one solution, which corresponds to the 4f

state being inside the 5sp shell. Indeed, as 〈r2〉 is increased, Nf falls off sharply, indicating

that it is more favorable to promote f electrons to the conduction band than have them

extend past the 5sp shell.

Note that all of these early studies on impurities used the approach of scanning over V

in order to qualitatively study charges and orbital sizes. At least in part, this is because

the inverse problem of solving for V given a target value of N is more difficult to solve.

More recently, it has become possible (cf Section 2.4) to directly solve for the precise value

of V required to attain, for example, unit charge or unit spin transfer. These technical

advances have thus opened up the possibility of studying long range charge-transfer, where

quantization of charge allows CDFT to make quantitative predictions about excited states.
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2.6.2 Long-range Charge-Transfer Excited States

As a representative application, consider the zincbacteriochlorin-bacteriochlorin (ZnBC-BC)

complex, an important model system for how charge transfer (CT) states are formed and

used to ferry electrons in the photosynthetic process of bacteria.45, 135 In one of the more spec-

tacular failures of LR-TDDFT, commonly used functionals fail to yield reasonable energies

for these CT states, giving excitation energies which are too small by >1eV and unphysically

flat as a function of site-site separation. These limitations have motivated the development

of range-separated hybrid functionals capable of describing long-range CT while maintaining

a good description of short-range bonding.136–140

When considering a more correct treatment of these CT states, we note that the BC

moieties are physically extended, with some twenty-four heavy atoms each arranged in a

plane. In the biological system, ZnBC and zinc-free BC are combined in a joint complex,

and charge-transfer states between the halves of the complex transfer electrons during pho-

tosynthesis. Understanding how these CT states behave at different geometries can help

illustrate the internal behavior of part of the incredibly complex photosynthetic process.

Because the BC moieties are well-separated from each other, it is natural to assign unit

charge to each. Furthermore, at large separation, the interaction between BCs should be

dominated by the 1/R Coulomb attraction between the opposing charges. To facilitate such

distance-dependent studies, a model system with an adjustable-length flexible linker has

been created,45 allowing for calculations ranging from 5.84 Å up to 9.0 Å separation. To

perform these calculations, though, the fragment regions must be determined. The BC moi-

ety contains a large number of conjugated π bonds, and thus an extra electron or hole would

be expected to delocalize throughout the whole construct. As such, the constraint is applied

to the entire (Zn)BC moiety, as opposed to some smaller piece such as half of it, or just the

zinc in the ZnBC case. With constraints in hand, the computed energies of ZnBC+BC− and

ZnBC−BC+ are computed and plotted against 1/R, showing the expected linear behavior
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Figure 8: The charge-transfer state energies of ZnBC-BC as compared to its ground-state en-
ergy at 5.84 Å separation. Lower line, Zn+BC−; upper line, Zn−BC+. Used with permission
from reference 52.

D A E+
D + E−

A E(∞)
N2 N2 −218.360411 −218.361386
H2O F2 −275.391972 −275.392850
C2H4 C2F4 −553.595853 −553.595591

Table 2: Charge-separated state energies extracted to infinite separation and the sum of
ionic donor and acceptor energies, in Hartree.

for both species (Figure 8). The excitation energies for the shortest-linker complex (right-

most point) agree nicely with previous reference calculations45 (3.79 and 3.94 eV versus the

accurate values of 3.75 and 3.91 eV, respectively), showing much better agreement than the

1.32 and 1.46 eV excitation energies computed from TDDFT.52

Having shown that CDFT charge-transfer states give the correct 1/R scaling expected of

electron-hole attraction, in order to give a full certification of accuracy, it remains to show

that the asymptotic limit of this 1/R dependence is correct. The infinite-separation limit

E(∞) is easily obtained by extrapolating E(1/R) to 1/R = 0. At that limit, donor and

acceptor are completely isolated, so the full-system energy E(∞) should just be the sum of

the isolated energies, E(D+) + E(A−); Table 2 shows these quantities for three systems. In

all three cases the extrapolated energy and sum of noninteracting energies agree to within
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1 millihartree, a difference attributable to errors in the point charge approximation at finite

separation and fitting errors. In order to get this agreement, unrestricted KS calculations

must be used for the constrained calculations to be consistent with the isolated fragment

calculations; restricted KS calculations yield correct scaling but an incorrect limit. With

both correct scaling and the correct asymptotic limit, CDFT is an excellent tool for studying

long-range charge-transfer states.

One can certainly wonder how it is that CDFT is able to describe these states so well,

even with semi-local functionals like BLYP, whereas LR-TDDFT fails miserably. There are

two insights that illuminate this finding. The first is that, by nature, LR-TDDFT is a

linear response method, whereas CDFT involves non-linear response of the density (via the

self-consistent determination of V and ρ). Thus, whereas TD-BLYP, as a linear response

method, misses much of the electron-electron interaction, this interaction is recovered when

higher order response is included, as in CDFT. The second insight derives from the fact that

CDFT is, at the end of the day, a ground state method. At the asymptotic limit, every CT

state separates into the ground states of the fragments with the appropriate charge and spin.

It is fairly awkward to describe these charged ground states as excited states of the neutral

system (as is done in TDDFT), but it is quite natural to describe them as ground states of

a different potential (as is done in CDFT). Thus, CDFT is in some sense complimentary to

TDDFT: the excited states for which TDDFT works well (valence states) are inaccessible

to CDFT, while many of the excited states that are challenging in TDDFT are naturally

treated in CDFT.

2.7 Future Challenges

CDFT has been developed as a robust framework for treating charge- and spin-constrained

electronic states within the ground-state KS DFT scheme, with computationally feasible

implementations that benefit from multiple analytical relations. Early applications revealed
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great reliability for long-range charge-transfer states, and gave insights to the behavior of

impurities in bulk systems; the following sections will continue on to describe more recent

applications of the framework as it has expanded into other realms of application. Looking

forward past these existing applications, there remain open areas for expansion. First, while

analytic first derivatives of the CDFT energy with respect to nuclear positions are widely

available, analytical Hessians have yet to be implemented. These Hessians would, for ex-

ample, allow for the prediction of IR spectra of charge transfer excited states. Along the

lines of using CDFT to correct commonly used functionals, the prospect of applying density

constraints within TDDFT is tantalizing. For example, applying constraints on the charges

of two fragments and maintaining those constraints through linear response would result

in the prediction of TDDFT excited states that involve no charge transfer between the two

states. That is to say, it would be an excitation spectrum that contained only neutral valence

excitations. As TDDFT is typically quite good for valence excitations, this might be a good

tactic if one wants to “clean up” a TDDFT spectrum that has been contaminated by unphys-

ically low CT states. Finally, the question of the best underlying population prescription

for use in CDFT is also open: though real-space schemes are preferred (over orbital-based

methods such as Löwdin), there are still any number of such prescriptions available in the

literature (e.g. Becke, Hirshfeld, Bader, Partition Theory...) Many of these have not even

been explored in the context of CDFT. Could one population scheme significantly expand

the applicability of CDFT? Indeed, how can we quantify when one real-space scheme is “bet-

ter” than the others? Thus, while CDFT in its present state is a useful tool for applications,

there are still a number of directions to be explored both in terms of the fundamentals of the

method (how do constraints interact with the charge definition?) and extending its practical

utility (e.g. by implementing Hessians).
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3 Application to Electron Transfer

3.1 Background: Marcus Theory

Electron transfer (ET) lies at the heart of chemical reactivity, as captured by the “arrow-

pushing” formalism in organic chemistry textbooks. Intermolecular ET reactions that pro-

ceed without bond breaking or bond formation are among the simplest chemical transforma-

tions, yet the kinetics of these reactions remain difficult to predict from first principles. ET

can also occur within a molecule, from one functional group to another, as a consequence

of thermal or photoinduced excitation. The quest for a quantitative understanding of ET

kinetics has been ongoing for well over 50 years and continues to gain practical significance

as demand for solar energy conversion accelerates.

The standard theoretical framework for ET reactions has been established for quite some

time and is referred to as Marcus theory.141 Several existing reviews detail the physical

foundations,142–144 applications,143, 145, 146 and extensions144, 147, 148 of Marcus theory, so we

provide only a brief summary here. Marcus theory is a classical transition state theory

of ET which assumes that the reactant and product electronic states are weakly coupled.

Furthermore, Marcus theory assumes that the molecule(s) undergoing ET are surrounded

by an environment that responds linearly to the ET event (linear response approximation).

In this limit, the free energy profiles of the two ET states can be represented by a pair of

crossing parabolas with identical curvature, illustrated in Figure 9.

Two parameters suffice to characterize the relative displacement and curvature of the

reactant and product free energy curves: the driving force −∆G, which constitutes the

free energy difference between reactant and product states, and the reorganization energy

λ, which quantifies the free energy penalty associated with forcing the reactant into an

equilibrium configuration of the product or vice-versa. The Marcus expression for the ET

rate is the classical transition-state theoretical rate obtained from the free energy profiles in
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Figure 9: Marcus parabolas depicting free energy as a function of an ET reaction coordinate
in different regimes. (a) The normal region,−∆G < λ. (b) The top region, −∆G ≈ λ. (c)
The inverted region, −∆G > λ.
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]

(33)

Here T is the temperature, kB is the Boltzmann constant, ~ is the reduced Planck constant,

and the pre-exponential factor is expressed in terms of thermodynamic quantities plus an

electronic coupling term Hab which will be considered in detail in section 5. According to eq

33, the ET activation energy ∆G‡ is given by

∆G‡ =
(λ+∆G)2

4λ
(34)

ET reactions are classified according to the relative magnitudes of −∆G and λ. Reactions

satisfying −∆G < λ are said to occur in the “normal” regime, while those in the Marcus

“inverted” regime satisfy −∆G > λ. Representative free energy curves for these two cases

are shown in Figures 9a and 9c. In the intermediate “top” region of Figure 9b, a negligible

activation free energy barrier results in the maximum ET rate for a given driving force. In

the inverted regime, the Marcus theory predicts a decrease of the ET rate with increasing

driving force; experimental evidence of Marcus inverted effects149 has reinforced the value of

the theory.
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Given the demonstrated utility of the Marcus model, methods to predict Marcus ET

parameters for real systems from first principles have proliferated in recent years. These

predictions are challenging because they call for a diabatic representation of the ET states,

whereas conventional electronic structure methods produce adiabatic states. In the adiabatic

representation, one of the ET states is often an excited state. It is possible to estimate

the driving force in the adiabatic representation from the energy difference of the ground

and excited states at their respective equilibrium geometries, but this calculation requires

optimization of the excited state geometry, which hampers its applicability to larger systems.

The reorganization energy λ presents further challenges to computation. It is fundamen-

tally a nonequilibrium property because it requires the energy of one ET state at the equi-

librium geometry of the other state.150 The reorganization energy is often partitioned into

two contributions: an inner-sphere reorganization energy associated with distortion of the

molecular geometry and an outer-sphere reorganization energy reflecting the rearrangement

of solvent to accommodate the new charge distribution. The outer-sphere reorganization en-

ergy often comprises the dominant contribution to the total λ,151, 152 so a proper description

of solvent effects is crucial.

Still, significant progress has been made towards prediction of reorganization energies. A

straightforward and popular approach is the four-point method,153 which treats reorganiza-

tion of the donor to its radical cation and of the acceptor to its radical anion independently.

This approach can be used with high-level electronic structure methods but does not account

for interactions between donor and acceptor, which cannot be neglected for intramolecular

ET. Alternatively, one can employ a diabatization scheme154 to compute energies for the two

ET states at either state’s equilibrium geometry. Adiabatic-to-diabatic transformations such

as the generalized Mulliken-Hush approach155 can be used for this purpose, or one can di-

rectly construct approximate diabats using tools such as empirical valence-bond methods,156

frozen DFT,157 or (as discussed below) using CDFT.
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In this section we highlight applications of CDFT to the construction of diabatic ET

states and to the computation of driving forces and reorganization energies. Special at-

tention is given to techniques for incorporating solvent effects and to the pairing of CDFT

with molecular dynamics (MD) simulations to obtain ET free energy profiles without direct

invocation of the Marcus model.

3.2 Diabatic ET States from CDFT

3.2.1 Choosing Suitable Density Constraints for ET

CDFT can be used to construct diabatic states for any ET reaction whose electron donor and

acceptor moieties are known in advance. Example systems include metal ions undergoing

self-exchange in solution,130, 158 charge-transfer states in extended molecules,53, 159 and donor-

acceptor interfaces in organic semiconductors.160 In ET systems with a neutral ground state,

the frontier orbitals of the ground and CT states are of the general form illustrated in Figure

10. In the ground state, both the donor and acceptor have closed shells. The transfer of one

electron from the donor HOMO to the acceptor LUMO defines the CT state. Considered as

isolated species, the donor and acceptor are both charged radicals after ET; hence the CT

state is also commonly dubbed a radical ion-pair state.

To obtain diabatic ET states from CDFT, one first defines which regions of the system

are to be associated with the donor or with the acceptor. Then, net charges (or a net charge

difference) are assigned to the donor and acceptor in accordance with the character of the

target state, as outlined in section 2. For example, to define the CT diabatic state in Figure

10, one may constrain the donor (acceptor) to have one fewer (more) electron than it would

possess as an isolated, neutral system. A diabatic representation of the neutral ground state

is obtained by constraining the net charges on the donor and acceptor to zero. In practice,

the constrained neutral state usually differs negligibly from the adiabatic ground state, so a
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Donor Acceptor

Figure 10: Frontier orbitals for the CT excited state (a) and the ground state (b) involved
in ET reactions. Adapted with permission from ref 53.
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ground state calculation can often suffice for this purpose.

As discussed in section 2, constraint regions are typically defined in terms of atomic pop-

ulations such as the Mulliken,125 Löwdin,126 Becke117 or Hirshfeld118 populations. However,

simpler constraining potentials have also proven useful in some related methods for studying

charge transfer. One important example is provided by the perturbed ground state (PGS)

method,161 a constrained-state approach to ET in which perturbing potentials are used to

explore how the strength of the perturbation affects the splitting between the two lowest-

energy states. The diabatic energies and the electronic coupling can both be deduced from

the PGS procedure, although the requirement to scan over the constraining potential makes

the method more computationally expensive than CDFT. In these studies, spherical well

potentials centered on the donor and acceptor and possessing opposite signs provided states

of sufficiently diabatic character to extract diabatic energies and couplings for hole transfer

in He2+ and in a simplified model of a peptide bond.161

3.2.2 Illustrations

The diabatic ET states of a diverse and growing number of systems have been determined

from CDFT calculations. Long-range CT-state energies of model systems such as the N2

dimer and stretched ethylene-tetrafluoroethylene obtained from CDFT match the sum of the

energies of the isolated radical ions.53 This correspondence confirms the expectation that

the CDFT approach to CT states mitigates the effects of self-interaction error. The proper

1/R depenence of the CT state energy on donor-acceptor distance R was also verified in the

zincbacteriochlorin-bacteriochlorin complex,52 where TDDFT obtains an incorrect scaling.45

To understand the structural consequences of ET, it is instructive to consider the de-

pendence of the diabatic energies on nuclear configuration. CDFT was used to construct

diabatic states for proton-coupled ET across a hydrogen-bonded bridge in a model bipyridine-

dinitrobenzene complex53 (Figure 11a). In this study, the position of a proton along the
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hydrogen-bonded bridge was varied from one side of the bridge to the other, and the dia-

batic energies were computed as a function of this proton coordinate. A +0.3 a.u. point

charge was affixed to the bipyridine of the donor to model the effect of a Ru center in the

real system. As shown in Figure 11b, two minima were found along the reaction coordinate,

corresponding to localization of electron density on either the donor or the acceptor. The

predicted reaction barrier height, 7 kcal/mol, is significantly lower than the 25 kcal/mol

barrier height predicted by a multiconfiguration SCF (MCSCF) calculation.162 The MCSCF

calculation, however, is essentially free of the dynamical correlation effects captured by any

DFT approach. Thus, much of the difference between barrier heights predicted by MCSCF

and CDFT can be attributed to dynamical correlation.

ET in mixed-valence compounds represents another challenge for DFT, particularly in

compounds defined as Class II within the Robin-Day classification scheme.163 The Class

II compounds possess two charge centers with different formal oxidation states, and ET

takes place intermittently between the two charge centers. The two formal oxidation state

pairs are diabatic states and are thus amenable to a CDFT treatment. A recent ex-

ample is provided by the characterization of the mixed-valence Fe(II)−Fe(III) complex

{Cp∗(dppe)Fe(C≡C−)}2(1,3-C6H4) (Figure 12c), which was reported from experiments to

exhibit charge-localized states on the Au(111) surface164 (dppe = 1,2-bis(diphenylphosphino)ethane).

Scanning tunneling microscopy (STM) of the mixed-valence complex, shown in Figure

12a, presented one bright and one dim region on each molecule, in agreement with CDFT-

simulated STM images of the molecule in Figure 12b.164 Given the enforced diabaticity

of the charge-localized CDFT states, the qualitative agreement between the simulated and

measured STM images provides strong evidence that charge localization is the correct inter-

pretation of the STM experiments on this Fe(II)−Fe(III) compound on Au(111). This feature

could make such compounds useful as components in solid-state molecular electronics.

The availability of analytic gradients for CDFT states enables fast geometry optimiza-
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of D−A and DA− states along a linear proton transfer coordinate. Adapted with permission
from reference 53.
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Figure 12: (a) Experimental and (b) simulated STM images of a mixed valence diiron com-
plex, along with (c) the ground state geometry of the Fe(II)−Fe(III) mixed-valence com-
pound. The difference in brightness between the two sides of the compound in the STM
images is indicative of charge localization.

tions for diabatic states,38 a prerequisite for computation of the inner-sphere reorganization

energy. The optimized geometry of the charge-localized states in a mixed-valence compound

can differ significantly from that of the delocalized state provided by a conventional DFT

calculation, as illustrated by the mixed-valence tetrathiafulvalene-diquinone anion [Q-TTF-

Q]−. Full geometry optimizations on the charge-constrained Q−-TTF-Q, with the excess

electron confined to one side of the molecule, produce C−C bond lengths differing by sev-

eral pm relative to the unconstrained DFT geometry of the [Q-TTF-Q]− anion, shown in

Table 3. For clarity, we emphasize that geometry optimization of the constrained state is

not constrained in the conventional sense of applying constraints to chosen nuclear degrees

of freedom; the only constraint in the optimization is the density constraint self-consistently

applied within the electronic Hamiltonian at each step of the optimization.

In the charge-localized state, the geometry of the quinone bearing the excess electron

resembles the bare quinone anion, whereas the geometry of the neutral quinone side re-
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Figure 13: The mixed-valence Q-TTF-Q anion. The quinone ring-numbering shown here is
used to describe bond lengths in Table 3.

Q-TTF-Q− Q-TTF-Q Q Q−

DFT C-neutral C-reduced
O-C1 1.246 1.226 1.268 1.226 1.227 1.273
C1-C2 1.464 1.481 1.450 1.481 1.487 1.452
C2-C3 1.370 1.359 1.378 1.359 1.345 1.375
C1-C6 1.470 1.491 1.450 1.489 1.487 1.452
C5-C6 1.358 1.342 1.376 1.343 1.345 1.375
α 168.5 171.4 160.2 166.7

Table 3: Geometries of the quinone groups in Q-TTF-Q− and Q-TTF-Q, obtained by con-
ventional (DFT) and constrained (C) calculations, with geometries of an isolated neutral (Q)
and anionic (Q−) 1,4-benzoquinone molecule. Reproduced with permission from reference
38.
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sembles that of the neutral quinone molecule. From these calculations, the inner-sphere

reorganization energy of [Q-TTF-Q]− is obtained as

λi = E(Q−-TTF-Q|Q-TTF-Q−)− E(Q-TTF-Q−|Q-TTF-Q−)

where E(A|B) represents the energy of state A at the optimized geometry of state B. Here,

the computed λi = 13.08 kcal/mol corresponds to slightly more than half of the estimated

total reorganization energy λ = 22 kcal/mol of [Q-TTF-Q]− in a 10:1 ethyl acetate/t-butyl

alcohol solution.165

In polar environments, the outer-sphere reorganization energy is often the dominant

contribution to the total reorganization energy. The ET driving force can also be significantly

modified by the environment, especially in polar solvents which preferentially stabilize CT

states. Next we consider methods to account for the influence of the environment on CDFT

energies and structures.

3.3 Incorporating Solvent Effects

The role of the environment in modulating ET properties is an essential feature of Marcus

theory.141 Figure 14 provides a schematic for nonadiabatic ET in polar media. Solvent

polarization, on average, acts to stabilize an electron localized on an electron donor. However,

thermal fluctuations of the solvent can bring the two diabatic states into a transient energetic

degeneracy, at which point the electron can hop to the acceptor with probability proportional

to the square of the electronic coupling.

At first glance, the mechanism illustrated in Figure 14 appears well-suited for a dielectric

continuum model of the solvent.166, 167 In the continuum models, the solute is placed in a

cavity carved out of a continuous dielectric medium characterized by its dielectric constant ǫ,

and the solvation free energy is obtained by solving the Poisson-Boltzmann equation for the
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Figure 14: Schematic of solvent reorganization accompanying ET. Reproduced with permis-
sion from reference 154.
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surface charge on the cavity induced by the dielectric response of the solvent to the solute

electron density. These continuum models typically make the approximation that the solvent

can be characterized by a frequency-independent dielectric constant ǫ. This approximation is

often quite good for ground-state solvation energies, especially in solvents lacking significant

nonelectrostatic interactions, e.g. hydrogen bonding or π-stacking.

However, the approximation of a single dielectric constant breaks down in immediately af-

ter electronic excitation of the solute, especially for CT states. The underlying reason is that

vertically excited states are out of equilibrium: the solvent electron density equilibrates with

the CT density of the solute, but the larger mass of the solvent nuclei causes orientational

polarization to take place on a slower timescale. Immediately after electronic excitation, the

solvent nuclear degrees of freedom remain in equilibrium with the ground state of the solute.

Rather than introduce a fully frequency-dependent dielectric ǫ(ω) to model this behavior, it

is convenient and practical to separate the solvent polarization response into fast and slow

components in accordance with solvent electronic and nuclear relaxation.168, 169 Electronic

response is characterized by the optical dielectric constant ǫ∞, which is the square of the re-

fractive index of the dielectric, while nuclear response is characterized by the zero-frequency

dielectric constant ǫ0.

The ability of CDFT + implicit solvent to provide ET driving forces and reorganization

energies was assessed for the small donor-acceptor dyad formanilide-anthraquinone (FAAQ)

in DMSO solution38 using the COSMO continuum solvent model.170 The predicted driving

force −∆G = 2.31 eV is in reasonable agreement with electrochemical studies which provide

estimates −∆G = 2.24− 2.68 eV.171, 172 These electrochemical estimates of −∆G probe the

one-electron reduced and one-electron oxidized states of FAAQ rather than directly probing

the zwitterionic CT state; unfortunately, a direct assessment of the driving force through an

experimental CT state energy is unavailable due to the state’s small oscillator strength.

The total reorganization energy of FAAQ obtained from CDFT calculations with COSMO
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solvent is λ = 0.6 eV, which amounts to less than half of the experimentally inferred

λ = 1.4 − 1.8 eV. The experimental estimate of λ was obtained within the linear re-

sponse approximation by comparison of CT state lifetimes of FAAQ and its ferrocenated

derivative FcFAAQ.171, 172 There are several viable reasons for the discrepancy between the

CDFT/COSMO and experimental λ, including an inadequate theoretical characterization

of the nonequilibrium state and the lack of configurational sampling of low-energy solute

conformers. In the following section, we will consider how explicit solvent models can be

used to address these and other shortcomings.

3.4 Molecular Dynamics and Free Energy Simulations

By including an explicit description of the solvent in the calculation of ET parameters, one

no longer needs to rely on assumptions such as linear response to attain a tractable model

of solvent effects; instead, one may sample the configuration space of the system through

Monte Carlo or molecular dynamics (MD) simulations to obtain a statistical description of

the ET energetics. However, the introduction of so many solvent degrees of freedom can

obscure the notion of an ET reaction coordinate describing collective solvent motions.

An elegant solution to this problem is to choose the energy gap ∆E between the diabatic

states as a reaction coordinate;173 this choice of reaction coordinate condenses all important

solvent motions onto a single quantity in which the free energy is quadratic in the limit of lin-

ear response.174 Using the energy gap as the ET reaction coordinate, a standard protocol for

the simulation of ET free energies in explicit solvent has emerged.173, 175–177 The procedure

is illustrated in Figure 15: first one runs long MD trajectories on one or both diabatic states

and samples ∆E along these trajectories (Figure 15a). Then a probability distribution for

the energy gap, P (∆E) is obtained by fitting the sampled energy gaps to a pre-determined

distribution, most often a Gaussian. (Figure 15b). Finally, free energy profiles along the en-

ergy gap reaction coordinate are computed through the relation P (∆E) = −kBT lnG(∆E).
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Figure 15: Simulation of ET free energy profiles in explicit solvent: (a) tracing the energy gap
along MD trajectories, (b) fitting the energy gap statistics to construct a probability distribu-
tion for the energy gap, and (c) producing ET free energy curves from the temperature-scaled
logarithm of the probability distributions. Reproduced with permission from reference 130.
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CDFT has recently become a popular choice for obtaining diabatic states for ET sim-

ulations in explicit solvent. Marzari and co-workers studied self-exchange in the aqueous

Fe2+−Fe3+ dimer using a penalty function approach to CDFT on the full aqueous system.158

In this study, ET parameters were first obtained with the PBE functional in the limit of

infinite separation of the two ions, where a constrained approach is not necessary. Instead,

it is possible to run MD on just one of the ions with the total system charge fixed at (3− r),

where r ∈ [0, 1] serves as an umbrella sampling parameter to obtain equilibrium configu-

rations of the system in oxidation states between +2 and +3. For each pair of sampled

configurations, the energy gap was obtained by calculating the energy of one configuration

at a total charge +2 and of the other configuration at a total charge +3, and taking the

difference. These gaps were fit to a Gaussian with coefficient of determination R2 = 0.9996

and a reorganization energy λ = 1.77 eV, compared to an experimental value of 2.1 eV at a

separation distance of 5.5 Å.

Figure 16: Diabatic free energy surfaces for ET in the aqueous Fe2+−Fe3+ system at finite
Fe−Fe separation, obtained using CDFT. The portion of the reaction coordinate sampled
using each of three values for the umbrella sampling parameter r is indicated by color.
Reproduced with permission from ref 158.

Computational access to the reorganization energy at realizable finite distances is hin-

dered by delocalization of density over both ions, a consequence of the self-interaction error.

To overcome the problem, Marzari and co-workers introduced a penalty functional, akin to
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CDFT, which was designed to steer the largest eigenvalue of the minority-spin occupation

matrix of the Fe2+ and Fe3+ ions towards the value they attain for isolated [Fe(H2O)6]
2+

and [Fe(H2O)6]
3+, respectively.158 Ab initio MD trajectories for Fe2+−Fe3+ in a periodic

box of 62 water molecules were obtained with the added penalty functional for a set of fixed

charge states Fe(2+r)+−Fe(3−r)+. The energy gap probability distribution constructed from

this data yield the free energy surfaces shown in Figure 16. The resulting reorganization

energy λ = 2.0 eV is only 0.1 eV below the experimental value. Excellent statistics were

achieved using only three values for the umbrella sampling parameter, corresponding to

equilibrium configurations of the reactant (r = 0) and product (r = 1), plus transition-state

configurations, (r = 0.5).

In addition to the penalty functional approach, the CDFT formalism as outlined in sec-

tion 2 has also been applied to MD simulation of ET free energies in explicit solvent.130

Oberhofer and Blumberger implemented CDFT energies and forces with a plane-wave basis

and with constraints defined in terms of Hirshfeld weights.118 They assessed the CDFT-MD

approach on a standard model system for ET simulations, the Ru2+−Ru3+ self-exchange

reaction in water. Various classical MD approaches have obtained a range of values for

the reorganization energy in this system, λ = 1.60 − 1.87 eV, depending on the particu-

lar water model employed.178 CDFT-MD simulations on the aqueous diruthenium system

were run with a charge difference constraint N = 1 imposed between the two ruthenium

hexahydrates. The evolution of the energy gap obtained from such a trajectory is depicted

in Figure 15a. Because the system possesses symmetric ET states, it is possible to obtain

probability distributions for the energy gap on either diabatic state — and hence, free energy

profiles for either state — using energy gaps sampled from only one diabatic state. As for

the Fe2+−Fe3+ system, the energy gaps can be mapped reasonably well onto a Gaussian,

resulting in parabolic free energy profiles possessing a reorganization energy λ = 1.53 eV. A

correction term +0.09 eV was applied to the reorganization energy to account for the exclu-
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sion of the outer-shell and bulk water from the constraint region.178 No direct experimental

probe of the reorganization energy is available for comparison to the CDFT-MD estimate

λ = 1.62 eV. However, an estimate λ = 2.0 eV obtained by applying several assumptions to

experimental data179 suggests that the CDFT-MD approach attains at least a qualitatively

correct picture of ET self-exchange between aqueous metal ions at finite separation.

The qualitatively correct reorganization energies obtained in the aqueous self-exchange

studies show that an explicit description of the solvent can capture intermolecular interac-

tions that the implicit models miss. However, the increase in computational cost associated

with a DFT description of the solvent can be prohibitive for larger systems. Therefore,

hybrid QM/MM models — which treat the solute (and possibly some nearby solvent) with

DFT or another QM method while using an empirical force field to describe the solvent —

have become popular in theoretical simulations of complex systems,180 including ET sys-

tems.177 It is straightforward to construct diabatic states from CDFT in the context of a

QM/MM model, provided one makes the common approximation that no charge is trans-

ferred between the QM and MM subsystems. Then, the standard machinery of electronically

embedded QM/MM can be used without modification for density-constrained QM/MM sim-

ulations.

A CDFT/MM approach was recently used to compute ET free energy profiles for charge

recombination in the FAAQ dyad introduced in section 3.3. In this study, polarizability of the

DMSO environment was incorporated through reparameterization of an existing force field181

to confer isotropic polarizabilities on the heavy atoms using a charge-on-spring model.182

Equilibrium configurations of each diabatic state were sampled from CB3LYP/MM MD

simulations and used to construct probability distributions that presented a greater degree

of skewness than was observed in the self-exchange studies.183 Making the linear response

approximation, the free energy profiles are Marcus parabolas with equal curvature, and

the reorganization energy obtained from the simulations is λ = 1.64 eV, within the range

53



λ = 1.4 − 1.8 eV inferred from experiment. The ET parameters obtained from this study

are shown in Table 4.

Basis set 〈∆E〉N 〈∆E〉CT λ −∆GCR ∆G‡
CR

3-21G 4.13 0.86 1.63 2.49 0.11
6-31G* 4.03 0.74 1.64 2.38 0.08

Table 4: ET parameters for FAAQ in DMSO obtained from CDFT-MD simulations: average
energy gap ∆E in the neutral (N) and charge transfer (CT) diabatic states, reorganization
energy λ, driving force −∆GCR and activation free energy ∆G‡

CR. All energies are in eV.
Reproduced with permission from reference 183.

In section 3.3, an implicit solvent approach determined λ = 0.6 eV for the same system.

The explicit model clearly reproduces the solute-solvent interactions in the experiment more

faithfully than the implicit model, albeit at greatly increased computational expense. The

success of the CDFT/MM approach in the case of FAAQ is especially promising because,

unlike in the ion self-exchange systems, ET in FAAQ is asymmetric and intramolecular; both

of these features should challenge the method, and yet the obtained reorganization energy

is quantitatively correct.

3.5 Related and Ongoing Work

The early successes of CDFT for describing ET states, together with the availability of fast

implementations of CDFT, are catalyzing a shift from proof-of-principle calculations towards

active use in the interpretation of experimental data.

The ability of CDFT to assist in the characterization of mixed-valence compounds was

illustrated in section 3.2 by the calculation of charge-localized geometries and by the simu-

lation of STM images of a mixed-valence compound. CDFT can also provide access to the

vibrational signatures of charge-localized states. This feature was exploited by Hoekstra and

co-workers in the interpretation of Raman spectra of the mixed-valence 4,4′-dinitrotolane

radical anion in several solvents.184 Optical spectra of the compound185 suggest an equi-
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librium between the charge-localized (Class II) structure and the charge-delocalized (Class

III) structure, the balance of which depends on the intrinsic reorganization energy λs of the

solvent. As an alternative test of this hypothesis, Hoekstra and co-workers obtained Raman

spectra of the radical anion in solvents with differing λs. They then calculated the rele-

vant vibrational frequencies of the geometry-optimized anion in its charge-delocalized and

charge-localized states, as obtained by conventional and constrained DFT, respectively. By

correlating differences between the gas-phase DFT and CDFT frequencies to spectral shifts,

they were able to assign the two sets of peaks in the Raman spectra to the charge-localized

and charge-delocalized states. The study provided further evidence that an equilibrium be-

tween two charge states exists in solution and depends on the solvent reorganization energy.

In addition to its role in the interpretation of spectroscopic measurements, CDFT is

also poised to broaden our understanding of the role of CT states in photophysical and

photochemical applications. For example, the relative energies of low-lying localized and

CT excited states can control the relative likelihood of radiative or nonradiative relaxation

to the ground state after photoexcitation. Taking advantage of this phenomenon, synthetic

chemists have designed a panoply of small-molecule sensors whose fluorescence is modulated

by the presence of a particular analyte.186 This switching behavior depends on small changes

in the relative energies of a localized excited state and a CT excited state, and thus it presents

a challenge for theoretical modeling within the framework of DFT. A recent study of the

localized and CT excited states in the zinc sensor Zinpyr-1 (ZP1) used TDDFT and CDFT to

characterize the local and CT excited states, respectively, in the absence and in the presence

of its Zn2+ analyte.187

CDFT calculations confirmed that the CT state in ZP1 is energetically inaccessible for

fluorescence quenching by photoinduced ET when the sensor is binding two Zn2+ ions. The

ordering of the excited states in the absence of Zn2+ was found to depend strongly on pH,

clouding the ability of the approach to provide a complete picture of the photophysics in ZP1.
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Figure 17: Decomposition of electron density in the CT state of ZP1 by functional group,
without and with zinc analyte. Reproduced with permission from reference 187.

Still, the CDFT approach provided supporting evidence for the hypothesis that the electron

donor in ZP1 is primarily the amine nitrogen of the dipicolylamine arm, with some minor

contribution from the pyridyl nitrogens. This evidence was obtained by decomposing the

Becke populations of the constrained CT state over the functional groups of the sensor, shown

in Figure 17. Both dipicolylamine arms donate electron density to the central xanthone ring

in bare ZP1; however, if one of the arms binds Zn2+, then ET from the corresponding arm is

mostly quenched, and the other arm donates a larger fraction electron density to compensate.

Together, the studies highlighted in this section have established that CDFT can pa-

rameterize diabatic potential energy surfaces on the fly with an accuracy nearing that of

ground-state DFT. This capability should prove valuable for real-time quantum and semi-

classical dynamics simulations which trace the evolution of the wavefunction describing the

ET system. Together with an explicit solvent model, CDFT calculations can provide access

to diabatic states of larger systems in strongly interacting environments. It will be interest-

ing to see how else this efficient scheme for constructing diabatic states might be applied to

further our understanding of ET processes.
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4 Low-lying Spin States

In systems with unpaired electronic spins, the energy spectrum of available spin states of-

ten underlies key physical and chemical properties. These states dictate, for example, the

strength of molecular magnets188 and the coordination chemistry and color of transition

metal complexes. Interconversions between spin states can influence the product distri-

butions of photochemical reactions189 and have direct bearing on the efficiency of charge

separation and recombination in organic photovoltaics (OPVs) and organic light-emitting

diodes (OLEDs).190

The full electronic structure of the system, as embodied in the N -electron wavefunction,

often represents a finer level of detail than is required to understand the spin properties of

the system. After all, in the ground and low-lying excited states of a molecule, most of

the electrons are spin-paired and can therefore contribute only indirectly to spin properties.

Instead, it is common practice to adopt a simplified local model of spin in which unpaired

electrons are assigned to local sites A, B, ... in accordance with chemical intuition. For

example, excess spin may be localized on a radical center in an organic molecule or on a

paramagnetic ion in a transition metal complex. The spin states and their energies are then

modeled as eigenstates of a Heisenberg Hamiltonian,191

Ĥ = −2
∑

A<B

JAB ŜA · ŜB. (35)

The coefficients JAB are the exchange coupling constants which describe the interaction

strength of unpaired spins A and B, and ŜA (ŜB) is the spin operator for the electron at site

A (B). Although this model is approximate,192 it effectively captures the important spin

degrees of freedom and enjoys widespread use.

The idea of parameterizing a Heisenberg Hamiltonian using ab initio data harkens back

to Nesbet193 and continues to be a popular way to model spin states. More recently, Clark
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and Davidson introduced a projection method194 to compute expectation values of local spin

operators from quantum chemistry calculations. This technique employs the Löwdin atomic

populations126 to define fragment projection operators PA, which are applied in turn to the

total spin to obtain local spin operators

SA =

N
∑

i=1

S(i)PA(i) (36)

where S(i) is the spin operator for electron i. In applications to simple closed and open-shell

molecules, this approach revealed relationships between expectation values of quantities such

as 〈ŜAŜB〉 and 〈Ŝ2
A〉 and the intuitive concept of chemical bond order.194 Several related

approaches to the definition of local spin states exist; for further reading on the topic, we

suggest the recent review by Reiher.195

Local spin operators are valuable tools for extracting information about spin from con-

verged electronic structure calculations. Moreover, provided a satisfactory definition of local

spin, it becomes possible to construct self-consistent electronic structure methods which are

intentionally steered to achieve a particular value of the local spin. Constrained DFT is

especially well-suited for this class of applications because CDFT constraints can be defined

over arbitrary local sites in the system.

In this section we review several studies in which CDFT has been applied to spin states.

In some cases, the spin is localized on one molecule in a larger system, while in others the spin

is localized on a particular site within a molecule, such as a metal center. In both cases, the

CDFT approach alleviates certain shortcomings with the conventional DFT description and

brings theory closer to agreement with experiment through more controlled approximations

to spin states.
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4.1 Tracing Out Constant-spin States

In certain situations, it can be useful to treat entire molecules as local spin sites within a

larger system. This picture is especially fruitful in the study of reactions between subsystems

of different spin symmetry, in which an adiabatic picture of the reaction can excessively

delocalize the spin and lead to an incorrect description of the reaction. CDFT has been used

to study reactions of this type. In a particularly striking illustration of this approach, CDFT

helped elucidate the origins of a long-standing disagreement between theory and experiment

concerning a fundamental process in surface science: the dissociative adsorption of molecular

oxygen on the (111) surface of aluminum.196

The probability that an oxygen molecule incident on the Al(111) surface will dissociate

and be adsorbed is known from experiments to depend strongly on the kinetic energy E of the

O2 molecule, a ground-state triplet.197 A plot of the adsorption probability as a function of

the O2 kinetic energy, known as a sticking curve, is shown in Figure 18. The sticking curve

shows that O2 molecules with very low kinetic energy are unlikely to be adsorbed. The

adsorption probability increases with increasing O2 kinetic energy until reaching a plateau

at higher energies.

Several theoretical treatments of the dissociative adsorption of O2 on Al(111), including

sophisticated first-principles investigations,198, 199 predicted near-unity sticking probability

regardless of O2 kinetic energy due at least in part to the lack of a barrier to dissociation

on the O2/Al(111) potential energy surface (PES). Scheffler et al. examined the adiabatic

PES in detail with the PBE and revised PBE (RPBE) functionals and observed spurious

fractional charge transfer from Al to O2 even at long distances.196 Spin conservation laws

strongly disfavor this partial quenching of the unpaired spin in triplet O2 at long distances.

To compensate for this shortcoming of the adiabatic PES, they introudced a spin-constrained

DFT approach to force the O2 molecule in the interacting O2/Al(111) system to remain in

its triplet ground state during their simulations.196
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The adiabatic and diabatic (triplet) sticking curves were computed through a three-

step procedure.200 First, the PES of the O2/Al(111) system was mapped along the six O2

degrees of freedom, with the metal surface held fixed. An analytical form for the PES was

then obtained through a neural network interpolation scheme.201, 202 Finally, thousands of

molecular dynamics (MD) trajectories were simulated on the analytical PES and the sticking

probabilities were calculated from statistical analysis of the trajectories.
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Figure 18: Experimental (black), conventional adiabatic DFT (blue), and triplet spin-
constrained DFT (red and green) initial sticking curves for O2 on the Al(111) surface. Re-
produced with permission from ref 200.

The adiabatic simulations generally presented barrierless pathways to O2 dissociation,

even if the Al degrees of freedom were included in the simulations. In contrast, CDFT

parameterization of the diabatic PES revealed barrier heights up to 0.9 eV, as illustrated

schematically in Figure 19. MD simulations on the diabatic PES gave sticking curves that

qualitatively agree with experimental data for moderate to high O2 kinetic energy (Figure
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18). At lower kinetic energies, the PBE functional showed an unphysical trend towards

higher sticking probabilities. This feature was rationalized in terms of the tendency of the

PBE functional to predict lower dissociation barriers for the O2/Al(111) system relative to

the RPBE functional. Several pathways were identified on the PBE PES which enabled

low-energy O2 molecules to undergo barrierless dissociation, artificially raising the sticking

probability.

Figure 19: Schematic of the diabatic (singlet and triplet) and adiabatic PES for O2 ap-
proaching the Al(111) surface. Z represents the O2–Al(111) distance. The diabatic triplet
PES was found to exhibit a barrier which is responsible for the experimentally observed
scattering of most incident O2 molecules at low kinetic energy. Reproduced with permission
from ref 200.

A magnetization density analysis of O2 at the barrier to dissociation illustrates one reason

behind the success of the constrained spin-density approach. In Figure 20, the magnetization

density of the system near the dissociation barrier is shown for (a) the pure ground-state

O2 triplet; for (b) the adiabatic O2 PES; for (c) a fixed spin moment (FSM) calculation in

which the total spin of the system is constrained but not localized on O2; and for (d) the

constrained diabatic O2 PES. The physical origin of the dissociation barrier is attributed to

enhanced Pauli repulsion at the O2/Al(111) interface, which is only evident in (d). The fixed

spin moment calculation in (c) shows a negligible dissociation barrier despite the constraint
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on total spin because the magnetization density of the triplet O2 is largely transferred to the

aluminum.

(a) (b) (c) (d)

Figure 20: Magnetization density cross-section of triplet O2 at the energetic barrier to its
approach to the Al(111) surface. Black dots represent O nuclei; white dots represent Al
nuclei. (a) Free O2 triplet, no aluminum. (b) Adiabatic O2/Al(111) calculation. (c) Fixed
spin moment calculation. (d) Spin-constrained calculation. Reproduced with permission
from ref 200.

Constrained DFT provided the earliest qualitatively correct first-principles theoretical de-

scription of the dissociative adsorption of O2 on Al(111). This reaction continues to attract

significant interest in surface science. More recent theoretical studies have employed nona-

diabatic surface-hopping MD simulations203 and have considered the roles of self-interaction

error204 and memory effects205 on adsorption at metal surfaces. In these studies, CDFT

provides a convenient way to capture nonadiabaticity by forcing molecules to preserve their

proper spin states as they begin to interact. In the next section, we consider applications

in which spin constraints are applied on an intramolecular scale in order to describe single

molecules with several spin centers.
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4.2 The Heisenberg Picture of Molecular Magnets

The promise of tunable magnetism at the single-molecule level has driven a vast and growing

body of research in molecular magnetism that is too large to review here. The interested

reader may find several reviews discussing the scope of candidate structures,206, 207 the range

of applications,207 and the underlying physics.188, 208 Molecular magnets generally possess

one or more metal centers on which most of the spin density is localized. In this section, we

discuss how CDFT has been used to enforce spin localization when it is artificially diminished

due to limitations of available density functional approximations; but first, we summarize

some features of other density functional approaches to molecular magnetism.

The Heisenberg Hamiltonian (equation (35), also sometimes referred to as the Heisenberg-

Dirac-van Vleck or HDVV Hamiltonian) is a common starting point for theoretical models

of molecular magnetism. Semi-empirical or ab initio methods may be used to compute

the exchange couplings J , which in turn determine the energies of the available spin states.

Most molecular magnets are too large to describe using correlated wave-function methods, so

DFT is the more commonly employed tool for computing the exchange couplings. Within the

Kohn-Sham formalism, the difficulty arises that certain spin states may not be representable

by a single Kohn-Sham determinant with available density functional approximations. For

example, in a system with two unpaired electrons, the singlet spin state |Ψs〉 is a linear

combination of two Kohn-Sham determinants,

|Ψs〉 =
1√
2
(|↑↓〉 − |↓↑〉) (37)

The |↑↓〉 and |↓↑〉 determinants are referred to as broken symmetry (BS) states because they

are not eigenfunctions of Ŝ2. Note that the highest-spin state of a given multiplet is always

representable by a single determinant, e.g. for two unpaired electrons the high-spin triplet

can be described by the determinant |↑↑〉.
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Noodleman proposed a way to extract exchange couplings from the BS states209 by treat-

ing each BS state as an uncoupled spin state, i.e. a state in which the unpaired electrons are

each assigned a local site and spin such that they reproduce the z component of the total

spin of the state. For the case of two metal centers A and B, the BS-DFT exchange coupling

is given by

JAB =
EBS − EHS

4SASB
(38)

where EHS (EBS) is the energy of the high-spin (low-spin) state. An alternative formula

has been proposed210 that treats the low-spin BS state as an approximation to the coupled

low-spin configuration with 〈Ŝ2〉 = (SA − SB)(SA − SB + 1) rather than the uncoupled

configuration with 〈Ŝ2〉 = (SA − SB)
2,

JAB =
EBS − EHS

2 (2SASB + SB)
(39)

An expression in terms of the 〈Ŝ2〉 value of the relevant Kohn-Sham determinants has also

been proposed,211

JAB =
EBS − EHS

〈Ŝ2〉HS − 〈Ŝ2〉BS

(40)

This expression can be thought of as an interpolation between the uncoupled and coupled

spin approximations in Equations 38 and 39, respectively.39

Notwithstanding the many successes of the BS approach,212 the method is known to over-

stabilize singlets, resulting in JAB values that are too negative.213, 214 Further, from a formal

perspective, the existence of BS states is an artifact of approximations to the exchange-

correlation functional:39 the exact exchange-correlation functional takes spin symmetry fully

into account and therefore obtains the exact ground state of each spin configuration.215 Thus,

BS states obtained from inexact exchange-correlation functionals are not rigorous approxi-

mations to the uncoupled spin states; in particular, the spatial extent of excess spin density
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in BS states is uncontrolled.

As an alternative approach to the uncoupled spin states, CDFT can be used to enforce

localization of the unpaired spins on their assigned centers.39 For example, in a hetero-

bimetallic complex with metal centers A and B, one might constrain the spin density on

metal center A to integrate to one net α (↑) spin while also constraining the spin density

on metal center B to integrate to one net β (↓) spin. The CDFT exchange coupling is then

computed according to

JAB =
E↑↓ −E↑↑

4SASB

(41)

These local spin states are a more controlled approximation to the uncoupled spin states than

those defined through the BS approach,39 and their single-reference character is well-suited

to available density functional approximations.

Complex JAB (cm−1)
CDFT Eq. 38 Eq. 39 Eq. 40 Expt.

[CuII
2 (MeC(OH)(PO3)2)2]

4− -16 -139 -70 -139 -31a

[(Et5dien)2Cu
II
2 (µ-C2O4)]

2+ -44 -133 -67 -132 -37b

[MnII(NH3)4Cu
II(oxpn)]2+ -128 -284 -237 -278 -16c

[(µ-OCH3)V
IVO(maltolato)]2 -83 -89 -45 -89 -107d

[Ph4P]2[Fe
II
2 OCl6] -124 -163 -136 -160 -112e

[MnIIIMnIV(µ-O)2(µ-OAc)DTNE]2+] -128 -168 -134 -165 -110f

[Cu2(DMPTD)(µ2-N3)(µ2-Cl)Cl2]CH3CN 112 113 57 110 84g

[Cu2(µ-OH)2(bipym)2](NO3)2·4H2O 57 112 56 111 57h

[(Dopn)CuII(OH2)Cr
III(OCH3)L](ClO4)2·H2O

i 23 10 7 10 19j

[(Dopn)CuII(µ-CH3COO)-MnIIIL](ClO4)2·H2O
i 75 48 38 48 55j

areference 216; breference 217; creference 218; dreference 219; ereference 220; f reference 221;
greference 222; hreference 223; i) L=1,4,7-trimethyl-1,4,7-triazacyclononane; jreference 224.

Table 5: Magnetic exchange couplings for different dinuclear complexes obtained by CDFT
and the indicated BS-DFT approaches, with experimental results for comparison. Modified
with permission from ref 39.

Rudra et al. demonstrated the advantages of the CDFT approach to magnetic exchange

couplings relative to the BS approach for a diverse collection of magnetic transition-metal

complexes.39 Comparing the CDFT exchange couplings with couplings obtained from sev-
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eral BS-DFT prescriptions, shown in Table 5, it is clear that CDFT offers comparable to

superior accuracy relative to BS calculations for both antiferromagnetically (J > 0) and

ferromagnetically (J < 0) coupled centers. CDFT predicts qualitatively correct exchange

couplings whereas BS-DFT couplings show some tendency to overestimate the strength of

these interactions.

Figure 21: (a) Spin density of a low-spin state of a tetranuclear iron cluster, determined from
BS-DFT (left) and CDFT (right). The spin density is significantly more localized on the
metal centers in the CDFT calculation. (b) Ground-state spin density of the Fe8 molecular
magnet from CDFT calculations. Green (blue) isosurfaces represent net α (β) spin density.
Reproduced with permission from ref 225.

The CDFT approach to exchange couplings is applicable to the more general case of

several local spin sites, as shown by Rudra and co-workers225 in a computational study of

frustrated molecular magnets such as the tetranuclear iron cluster [Fe4O2(O2CCH3)7(bpy)2]
+

shown in Figure 21a. This study demonstrated that the difficulty of describing low-spin

excited states with BS-DFT leads to predictions for molecular magnets that sometimes

contradict experimental findings, whereas the CDFT results were at least in qualitative

agreement with experiment in each case. For example, CDFT predicts the experimentally

known antiferromagnetic interaction for the weaker of the two exchange couplings in the

tetranuclear iron cluster, whereas the interaction is ferromagnetic in BS-DFT. Delocalization

of the spin density of low-spin states in BS-DFT (left side of Figure 21a) artificially stabilizes

these states relative to other states, resulting in an incorrect sign for the coupling. Note that
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the spin density in CDFT is mostly localized on the iron centers in Figure 21a despite the

fact that the ligands were also included in the constraint regions. The spin-frustrated ground

state spin density of the Fe8 cluster obtained from CDFT and shown in Figure 21b agrees

with data from polarized neutron diffraction and 57Fe NMR experiments.226, 227 Thus, CDFT

calculations can quantify the relative energetics of complicated spin systems, including those

arising in frustrated molecular magnets.

Broken symmetry methods remain popular because they are well-studied and readily

available; nevertheless, the CDFT approach to exchange couplings holds promise for future

studies of molecular magnetism for two reasons. First, CDFT allows control of the spin lo-

calization, which can be quite useful in locating the various spin states. Though not widely

publicized, the biggest challenge in BS-DFT is usually getting the various spin states to

converge. CDFT circumvents this obstacle by giving the user manual control over which

localized spin pattern the calculation converges to, making the calculations much more reli-

able. Second, CDFT offers an even-handed description of ground and excited states. In the

following section, we illustrate the latter point by focusing on the splitting between a special

pair of spin states: the lowest singlet and triplet charge transfer excited states in dimers of

organic dyes.

4.3 Singlet-Triplet Gaps of Intermolecular CT States

The relative populations of singlet and triplet states in organic semiconductors (OSCs) di-

rectly affect the efficiency of organic light-emitting devices (OLEDs) and organic photo-

voltaics (OPVs). In the case of OLEDs, free electrons and holes in the OSC associate at a

donor-acceptor interface to form charge-transfer (CT) excited states. These CT states may

be generated with either singlet or triplet spin. Charge recombination of the CT state to

form a localized electron-hole pair, or exciton, generally takes place with retention of spin

character. Singlet excitons are efficient light emitters, because the relaxation to the ground
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state via fluorescence is spin allowed. The analogous transition from the triplet exciton is

forbidden. Hence, triplet formation is considered an indirect loss mechanism for OLEDs, and

the relative populations of singlet versus triplet CT states formed at the interface influence

the overall efficiency of the OLED.

If free electrons and holes associate randomly in an OLED, one expects a 3:1 statistical

ratio of triplet to singlet CT states. In practice, some OSCs exhibit this ratio while others

obtain a larger fraction of singlet CT states.228–230 Enhancement of the singlet pathway is

certainly beneficial for the efficiency of OLEDs, but the mechanism underlying this enhance-

ment is not immediately clear. Initial proposals invoked Marcus inverted region behavior:

the triplet exciton is lower in energy than the singlet, so the free energy of charge recom-

bination from the CT state to the singlet exciton will be smaller than that for the triplet,

∆GCR
S < ∆GCR

T . Since ∆GCR is on the order of 1 eV and the reorganization energy λ is on

the order of 0.1 eV, the recombination is in the inverted regime and the singlets will form

faster than the triplets. Thus, if one assumes facile spin randomization in the CT state,

then the kinetics dictate enhanced singlet exciton generation because they are formed more

frequently.190

Figure 22: Exciton formation pathways for nearly degenerate CT states (top) and for ∆EST <
0 (bottom). S and T label singlet and triplet excitons, respectively. Reproduced with
permission from Ref. 231.
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An alternative hypothesis is that the ratio of singlet versus triplet excitons is governed

by the energy gap between the singlet and triplet CT states, ∆EST = E (3CT) − E (1CT).

To explore the role of the energy gap on the relative rates of singlet and triplet exciton

formation, Difley et al. used CDFT to compute the energies of these CT states and obtain

∆EST directly.231 Their investigation centers on the observation that, for systems in the

Marcus inverted region, a large ∆EST discourages intersystem crossing; thus fluorescence in

an OSC may be enhanced by a small ∆EST or precluded by a large ∆EST.

Contrary to the common (Hund’s rule) assumption, it was found that ∆EST < 0 for the

CT states of the studied chromophore dimers. As shown in Table 6, the magnitude of the

splitting varies from a few meV to over 100 meV depending not only on the particular dimer

but even on the translational offset of the donor relative to the acceptor in the solid state.

∆EST (meV)
Chromophore 3-21G 6-31G*
α-Alq3

a -2 -2
β-Alq3

a -6 -7
δ-Alq3

b -60 -74
1-R1-dpa

c -58 -61
4-R2-dpa

c -1 -5
4-R3-dpa

c -30 -42
Zn(sada)2

d -102 -102
[Zn(bbp)2]

2+ e -67 -57
[Zn(tpt)2]

2+ e -19 -48
[Zn(tpy)2]

2+ e -85 -89

Table 6: ∆EST .
aAlq3 = tris(8-hydroxyquinoline)aluminum(III) bAlq3 = tris(8-

hydroxyquinoline)aluminum(III) cdpa = 2,2′-dipyridylamine, R1 = pyrenyl, R2

= (1-pyrenyl)phenyl, R3 = 4′-(1-pyrenyl)biphenyl dZn(sada)2 = bis[salicylidene(4-
dimethylamino)aniline]zinc(II) ebbp = 2,6-bis(1H -benzimidazol-2-yl)pyridine, tpt =
2,4,6-tris(2-pyridyl)-1,3,5-triazine, tpy = 2,20′:6′,2′′-terpyridine Adapted with permission
from ref 231.

The negative singlet-triplet splittings predicted using CDFT were rationalized using a
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perturbation theory-based expression for the splitting,

∆EST = − t2

∆E
+K (42)

where t is an intrinsic electron hopping rate between donor and acceptor, while ∆E describes

the energy gap between the initial state and virtual states in the system that facilitate

hopping. The second term K is the usual exchange integral which stabilizes the triplet.

On the other hand, the first term, which describes kinetic exchange, tends to stabilize the

singlet, as illustrated in Figure 23. This exchange process stabilizes the singlet CT state

because of the transient pairing of spins, which is an inaccessible configuration for the triplet

CT state.

Figure 23: Illustration of the kinetic exchange mechanism. The process of exchanging spins
involves transient spin-pairing; this process favors the singlet CT state because Pauli re-
pulsion prevents this type of kinetic exchange in the triplet CT state. Reproduced with
permission from ref 231.

To assess the kinetic exchange hypothesis, Difley et al. approximated the hopping term

t by donor-acceptor orbital overlaps S and studied how ∆EST and S vary as a donor and

acceptor are laterally displaced from one another. Figure 24 shows that the variation in

HOMO/LUMO S2 along the displacement coordinate tracks the variation in ∆EST rather

well for poly-p-phenylene and for DCM. This proportionality suggests that the kinetic ex-

change term −t2/∆E is the dominant factor controlling ∆EST in these dimers and that the

kinetic exchange stabilization is dominated by HOMO/LUMO interactions.

Interest in understanding and tuning ∆EST is only expected to grow as research into

OLEDs and OPVs increasingly turns to the manipulation of spin states to increase per-
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Figure 24: ∆EST (thick solid red curve) and squared orbital overlaps for poly-p-phenylene
(top) and DCM (bottom) as a function of layer monomer displacement. Squared overlaps (in
arbitrary units) are shown for: HOMO/LUMO (thick dashed blue line), HOMO−1/LUMO
(thin solid black line), and HOMO/LUMO+1 (thin dashed green line). Reproduced with
permission from ref 231.
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Figure 25: Quantum efficiency of a heavy metal doped OLED (X-OLED) device versus
control OLED. The efficiency enhancement (thick red line) is also shown, plotted against
the right axis. Reproduced with permission from ref 235.

formance.232, 233 Insights into the role of ∆EST in modulating singlet versus triplet exciton

generation have already been brought to bear on OLED design. Segal et al. incorporated

an iridium complex (FIrpic)234 as the electron transport layer of an OLED to enhance spin

randomization during exciton formation through increased spin-orbit coupling.235 The re-

sulting extrafluorescent OLED (X-OLED) demonstrated nearly threefold enhancement of

the quantum efficiency (Figure 25). It has also been pointed out233 that spin control of

CT-state generation appears to be a more promising route to achieving long-lived CT states

in small-molecule donor-acceptor dyads than the exploitation of Marcus inverted region be-

havior in these systems. Reliable first-principles calculations of ∆EST will prove valuable

in the interpretation of ongoing time-resolved EPR236 and CINDP experiments237 that can

probe ∆EST in OLED and OPV matrerials.

4.4 Related and Ongoing Work

The use of constraints on the spin density is finding application in several other areas of

chemistry and physics. One promising use of the technique is in the suppression of spin
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None All Ligands Experiment

〈Ŝ2〉 2.1266 0.7525 0.7525 (0.75)
Aiso -340 -1 -284 -219
Adip -30 -145 -145 -115.2

Table 7: 〈Ŝ2〉 values, isotropic and anisotropic components of the hyperfine coupling constant
A (in MHz) for the [Mn(CN)5NO]2− complex obtained via unconstrained (None), fully con-
strained (All), and ligand-constrained (Ligands) calculations with the BHPW91 functional.
Adapted with permission from ref 238.

contamination in unrestricted Kohn-Sham (UKS) calculations.238 By taking advantage of a

previously proposed approximate density-based metric239 for 〈Ŝ2〉,

〈Ŝ2〉 = S(S + 1)−
∫

R={r | ρα(r)−ρβ(r)<0}
(

ρα(r)− ρβ(r)
)

d3r (43)

Schmidt et al. fixed a target value of 〈Ŝ2〉 and solved the UKS equations subject to the

constraint defined by equation (43) on the density.

This spin contamination constraint is useful not only for eliminating spin contamina-

tion from UKS calculations, but also for restricting spin contamination only to regions of a

system where spin polarization is anticipated on physical grounds. The hyperfine coupling

tensor A, which describes the interaction of an electronic spin S and a nuclear spin I via

the Hamiltonian H = S · A · I, is an experimentally observable probe of spin polarization;

thus, DFT modeling of hyperfine couplings is especially sensitive to the description of spin

polarization. Spin-contamination constrained calculations on the transition metal complex

[Mn(CN)5NO]2− bring predictions of the anisotropic component of the hyperfine coupling

constant within 30% of the experimental value, whereas the unconstrained calculation dis-

agrees with experiment by more than 70%, as shown in Table 7. The spin contamination

constraint was also applied to compute diabatic dissociation curves for the OF radical. This

approach was able to correctly predict the OF distance at which the cross-over from singlet

to triplet character is expected to occur.
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Constrained density functional methods are also becoming standard in computational

studies of nanoscale magnetization in metallic clusters and bulk metals. Because magneti-

cally excited states (i.e. magnons) in metals240 do not necessarily correspond to stationary

points on the adiabatic PES, these states require an approach in which the magnetization

is constrained. A common approximation in DFT modeling of magnetic configurations in a

metal is the atomic sphere approximation (ASA),241 in which the spin density is projected

onto a pre-defined local spin quantization axis95 within a sphere around each atom prior to

evaluation of the exchange-correlation energy. The ASA is a further approximation beyond

the local spin density approximation. It has been shown242 that constraining the density

with the ASA can result in magnetizations which are not parallel to the self-consistently

determined magnetic fields which produce them — a situation which is technically not sta-

tionary and leads to drastically incorrect predictions of the moment magnitudes for Ni and

Co metal.95

Gebauer and Baroni used a constrained DFT approach to study magnetic excitations

from the spin-spiral ground state of bcc iron.243 Unlike charge and spin constraints in

CDFT — which are enforced by an external electric potential — their magnetization con-

straint is enforced by an external magnetic potential which depends self-consistently on the

density. Calculations of the magnon frequencies in bcc iron yielded a dispersion curve in

near-quantitative agreement with experiments on pure iron at 10 K.243 A comparative study

of ASA and constrained LSDA descriptions of magnetic configuarations in Fe, Ni, and Co

revealed that constrained LSDA is not only more accurate for predicting magnetic moments

in metals, but it is also more robust to the choice of approximate representation of the

magnetization density than the ASA.95

Across a diverse set of applications, the CDFT description of spin states has proven useful

for computing spin-dependent observables from first principles. Furthermore, in studies of

molecular magnets and OLEDs, CDFT has provided physical insights, such as the trend for
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singlet CT states to lie energetically below their triplet counterparts. CDFT is an important

step towards quantitative first-principles descriptions of spin energetics and dynamics which

may contribute to the understanding and development of next-generation spin-dependent

technologies. Further, constrained spin states form a suitable basis for configuration interac-

tion methods such as CDFT-CI (discussed in section 6), which gives accounts for couplings

between spin states.
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5 Coupling CDFT States Together

The previous sections have shown a variety of applications wherein CDFT is used to produce

localized diabatic states which are then analyzed to yield information about electron trans-

fer, CT-state dynamics, molecular magnets, and more. Diabatic states such as these have

a long history in chemistry, being incorporated into valence bond theories of bonding and

models for molecular energy surfaces, with a strong continuing presence in the diverse spread

of methods for their determination.155, 156, 244–261 Diabatic states do not change character as a

function of nuclear position and as such are at the core of many qualitative pictures of molec-

ular electronic structure, including the charge-transfer states of section 3 and the uncoupled

spin states of section 4. But to fill out the diabatic picture, electronic couplings between

these diabatic states are also needed, describing how population flows between the diabats

as the system evolves. This is in contrast with the adiabatic (Born-Oppenheimer) picture,

where electronic states are always taken to be eigenstates of the electronic Hamiltonian with

no direct coupling to each other, no matter the geometry of the system. Nonetheless, the

diabatic picture proves itself quite useful, producing PESs for dynamics that vary slowly

with nuclear coordinates and thus avoid sharp changes where errors can accumulate. Addi-

tionally, diabats are invoked to assign vibronic transitions in spectroscopy and for qualitative

descriptions of molecular bonding (as for the LiF example of Figure 42), electron transfer (cf

section 3), and proton tunneling. However, since the diabatic states are not eigenstates of the

electronic Hamiltonian, chemistry (that is, reactions) in the diabatic basis must necessarily

incorporate multiple diabats, and the diabatic coupling between them:

Hab =
〈

Ψa

∣

∣

∣
Ĥ
∣

∣

∣
Ψb

〉

. (44)

These couplings aid in determining the rate of electron-transfer processes (cf equation (33))

as occur in organic semiconductors (OSCs)160, 262–264 and solution electrochemistry,265–268 and
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also govern energy transfer in photochemistry.269–271 In addition to these direct applications,

the couplings can be combined with the diagonal diabatic energies as an alternate route to

adiabatic energies, as will be explored in section 6.

In this section we describe how to compute the coupling HAB;
47, 54, 55, 132, 272 we then

compare these couplings with results from other coupling prescriptions that have seen use,

and describe how our scheme fits in with the landscape of other proposed approaches to

diabatic couplings. Finally, we give a few illustrations of how diabatic couplings may be

used in the context of chemical or electronic transformations.

5.1 Evaluating CDFT Couplings

Given two electronic states |Ψ1〉 and |Ψ2〉, the coupling between them is just the matrix

element of the Hamiltonian,

HAB = 〈Ψ1|Ĥ|Ψ2〉 (45)

The behavior of this coupling is in general quite complicated, but there are simple cases

that can be more easily understood. Considering a system that includes electron donor

and acceptor moieties, natural descriptions of |Ψ1〉 and |Ψ2〉 would be to have an electron

on the donor and acceptor, respectively. If the moieties are spatially removed from each

other, the coupling is dominated by overlap between the tails of the wavefunctions on the

two fragments. Since the tail decays exponentially, the coupling is also expected to decay

exponentially with donor-acceptor separation as a result of this “through-space” coupling.273

However, when the donor and acceptor are joined by a bridge moiety, the coupling can be

increased due to a superexchange mechanism involving the electrons on the bridge, a form

of “through-bond” coupling.274, 275

It is a bit difficult to see how equation (45) can be computed in the context of CDFT.

The exact expression is writen in terms of the wavefunctions for donor and acceptor, but
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KS theory only gives us the density of each state. The KS wavefunctions, |Φ〉, are fictitious

determinants that are constructed to give the correct density. Hence, in practice we need

some approximate (but hopefully accurate) prescription for computing the coupling betwen

two CDFT states. The most common prescription for this task was provided in ref 54.

Here, we note that if the diabatic states are defined by constraints, then neither of the exact

wavefunctions, |Ψi〉, is an eigenstate of the Hamiltonian. Rather they are eigenstates of Ĥ

plus the relevant constraining potential Viwi(r):

[

Ĥ + Viwi(r)
]

|Ψi〉 = Fi|Ψi〉. (46)

We can therefore manipulate equation (45) to read:

HAB =
〈

Ψ1

∣

∣

∣
Ĥ
∣

∣

∣
Ψ2

〉

(47)

=

〈

Ψ1

∣

∣

∣

∣

∣

Ĥ + V1ŵ1(r) + Ĥ + V2ŵ2(r)

2
− V1ŵ1(r) + V2ŵ2(r)

2

∣

∣

∣

∣

∣

Ψ2

〉

(48)

=

〈

Ψ1

∣

∣

∣

∣

F1 + F2

2
− V1ŵ1(r) + V2ŵ2(r)

2

∣

∣

∣

∣

Ψ2

〉

(49)

=
F1 + F2

2
S12 −

〈

Ψ1

∣

∣

∣

∣

V1ŵ1(r) + V2ŵ2(r)

2

∣

∣

∣

∣

Ψ2

〉

(50)

Thus, the coupling only requires the free energies Fi (introduced in eq 26 in section 2), the

overlap between the states and the matrix elements of a one-electron potential between the

states. This is certainly simpler than the many electron matrix element we started with, but

it still requires the (unknown) wavefunctions |Ψi〉. Hence, at this point we approximate the

true wavefunctions by their KS surrogates (|Ψi〉 ≈ |Φi〉) to arrive at a formula for the CDFT

diabatic coupling:

HAB ≈ F1 + F2

2
SKS
12 −

〈

Φ1

∣

∣

∣

∣

V1ŵ1(r) + V2ŵ2(r)

2

∣

∣

∣

∣

Φ2

〉

(51)
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Approximating the exact wavefunction with the appropriate KS determinant is an uncon-

trolled approximation and it must be tested in practice. As a whole the approximation holds

up well, but it is obvious that a more rigorous definition of the diabatic coupling in CDFT

would be a significant discovery. For now, we will move forward with the approximation of

equation (51).

In the framework of CDFT, the diabatic states |Φ1〉 and |Φ2〉 are not mutually orthog-

onal, so we must perform an orthogonalization procedure in order to produce a physically

meaningful coupling Hab (note the use of lower case indices for orthogonal states). Toward

this end, we may begin with the Hamiltonian in the non-orthogonal basis, and transform it

into an orthogonal basis via the symmetric Löwdin orthogonalization.47 Putting

H′ =



















H11 H12 · · · H1N

H21 H22 H2N

...
. . .

...

HN1 HN2 · · · HNN



















(52)

and

S =



















1 S12 · · · S1N

S21 1 S2N

...
. . .

...

SN1 SN2 · · · 1



















(53)

the desired Hamiltonian in the orthogonal basis is then

H = S−1/2H′S−1/2 (54)

The final couplings Hab are the elements of the H matrix, [H]ab. The orthogonalization pro-

cedure can sometimes induce drastic changes in the nature of the basis states — e.g. when
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two of the nonorthogonal basis states are symmetric with respect to a swap of spin indices,

they orthogonalize to a singlet and a triplet state. Since the triplet state has essentially zero

coupling to the other singlet states produced, this phenomenon is quite easy to recognize.

In any case, at the end of this orthogonalization process, we have obtained electronic cou-

plings Hab in an orthogonal diabatic basis, starting from the nonorthogonal diabatic states

and their couplings HAB. Unfortunately, this route for orthogonalization is not unique, and

other techniques can be used.276 The ambiguity here is tied to the fact that diabatic states

are themselves non-unique. The differences between different orthogonalized bases is ex-

pected to be rather small in physical applications, and the differences vanish entirely when

the couplings are used in a CI approach (as discussed in the next section). However, the

somewhat fuzzy nature of Hab needs to be kept in mind as we discuss its application.

5.2 Electron Transfer Couplings and Energy Gaps

One of the most important applications of the diabatic coupling is to electron transfer, as

Hab plays an important role in computing the Marcus rate (equation (33)). As such, there

is a long (and growing) list of alternative schemes for computing the coupling, and we must

briefly review a few such expressions before going on to evaluate the CDFT coupling.

Perhaps the most natural way to obtain Hab is to try to extract it from the adiabatic

energies of the system. An example of this is given in Figure 26, which shows two generic

diabatic energy curves and illustrates qualitatively how Hab splits the two diabats to obtain

two adiabats. It is easy to quanify this relationship: at the crossing point, the diabatic states

are degenerate and the Hamiltonian is of the form

H =







E Hab

Hab E






(55)

80



!"#$%
&'#$#()%&

!"#$
&

*+'#$#()%

*+'#$#()%

,-#)(./%0..1+'/#2-%

3
/
-
14
5
%

Figure 26: Schematic of the interplay of diabatic states, adiabatic states and the diabatic
coupling. Where the diabatic states cross, the adiabatic states avoid one another and the
gap between the two adiabats is given by twice the diabatic coupling (Hab). Far from the
crossing, the diabats and adiabats are very similar.

which has eigenvalues E± = E±Hab. Clearly, the difference between the eigenvalues is twice

the off-diagonal element, so the coupling element is determined as

Hab =
E(S1)− E(S0)

2
(56)

Thus, for reactions where the two-state approximation is valid, approximations toHab may be

obtained solely from adiabatic energies. At least one of the adiabatic energies is necessarily

an excited state energy; it can be approximated using Koopmans’ theorem277 or TDDFT

excitation energies,278 as well as higher-order wavefunction-based methods.279 This energy-

gap method bears a striking resemblance to how magnetic exchange couplings in transition-

metal complexes are computed from the energies of the high-spin and broken symmetry

states in section 4.

Of course, equation (56) only gives us one value of the coupling — the value at the
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crossing point. If diabatic state energies are also available in addition to the ground-state

energy, we can use that information to compute the coupling at an arbitrary point along the

reaction coordinate. One of the simplest such coupling prescriptions relies on the analytical

relationship between the diabatic energies, couplings, and the adiabatic energies for a two-

state system; when the diabatic states are orthogonal, the coupling between diabats is equal

to:

|Hab| =
√

(E −EA)(E −EB) (57)

where E is the ground state energy and EA and EB are the two diabatic energies. The

orthogonality assumption can also be relaxed by including the overlap element S = SAB

giving:

|Hab| =
√

(E − EA)(E − EB) + S (E−EA)+(E−EB)
2

1− S2
(58)

where once again a Löwdin orthogonalization has been performed to obtain Hab.
269 We

henceforth refer to equation (58) as the mixed adiabatic-diabatic coupling, or just the mixed

coupling.

Molecular systems have more than two states; however, a two-state approximation is

valid for a multi-state system when the two states considered are energetically well-separated

from the other states. In this case, the (full) conversion between adiabats and diabats largely

preserves the two-state subsystem and the formulas which are exact for a two-state system

are a good approximation for the real system.

In what follows, we will see that despite the apparent theoretical advantages, these meth-

ods all perform quite poorly in conjunction with DFT, primarily due to SIE.

5.3 Applications

Given the preceding expressions for the coupling, we now proceed to investigate their accu-

racy. The square of the electronic coupling is proportional to the rate of transitions between
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the two diabatic states via Fermi’s golden rule. When considering charge transfer between a

spatially separated donor and acceptor, the rate is primarily governed by tunneling, which is

expected to decay exponentially with the separation. Thus, one sanity check for any coupling

prescription is to verify that it decays exponentially at large separations. The first study of

the CDFT coupling (equation (51)) found this decay to be present for a prototypical homonu-

clear diatomic hole transfer system, Zn+
2 , shown in Figure 27. The behavior was tested for

Figure 27: Electronic coupling matrix element |Hab| for hole transfer in Zn+
2 versus Zn–Zn

distance. Straight lines represent best linear fits; squares are the couplings from using Löwdin
population and triangles the couplings from using the Becke weight population. Used with
permission from reference 54.

two different choices of the charge prescription underlying CDFT; both schemes yield similar

decay factors, but the Becke weight population scheme gives consistently smaller couplings.

Figure 32 will show that the Becke scheme gives better agreement with other schemes that

have been used as reference values, in line with our expectation that real-space population

schemes (like Becke’s) are more reliable than AO-based ones (like Löwdin’s). In any case,

this initial application supports the validity of the approximations made to obtain equation

(51).
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Going a step further, recent theoretical work has used CDFT couplings from equation

(51) to classify bridged ferrocene systems as exhibiting through-space coupling or through-

bond coupling for a wide variety of bridge moieties, as ilustrated in Figure 28.265 As the

data in Table 8 show, CDFT predicts the qualitatively correct trend of exponential decay

of the coupling with distance, while comparison with experimental results suggests that the

CDFT couplings only slightly overestimate the couplings.265 These results argue strongly

for the accuracy and efficiency of the CDFT coupling.

At the same time, these mixed valence compounds expose significant problems with the

energy gap formulae, as also shown in Table 8. Using either the HOMO-LUMO energy gap

or the mixed diabatic coupling gives a gross overestimate of the overall coupling and the

wrong distance dependence — the coupling either remains flat or increases with increas-

ing separation! These errors are particularly noticable for the saturated bridges, where the

CDFT coupling decays to almost nothing for the longest (12-carbon) bridge, but the other

formulae predict unphysically large couplings. The conjugated bridges (which are expected

to have some delocalization) are not immune to this form of error, with the values from

the mixed coupling formula (equation (58)) growing larger as the bridge length increases,

while the actual couplings should decrease with increasing separation. Figure 28 gives in-

sight into why the energy gap methods fail. For ferrocenes separated by a twelve-carbon

saturated bridge, the HOMO and LUMO are both fully delocalized (unphysically) over the

metal centers, which is problematic for functionals with significant SIE. Meanwhile, for long

unsaturated bridges, the HOMO and LUMO actually have more amplitude on the bridge

than on the donor and acceptor, which is almost certainly incorrect. Indeed, because the

HOMO and LUMO are always delocalized, the adiabatic ground-state energy is too low

(because of reduced self interaction error), which causes the mixed diabatic coupling to be

too large and the HOMO-LUMO gap to be artificially increased (the so-called band gap

problem280), leading to large couplings from the HOMO-LUMO gap as well.

84



Figure 28: HOMO and LUMO surfaces for series of ferrocene systems with different-length
bridges. (a) saturated (CH2)n linkages. (b) monounsaturated conjugated linkages. The
delocalization of the frontier orbitals is chemically unphysical in (a), leading to couplings
that are too large. Used with permission from reference 265.
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Fe-bridge-Fe+ Hab from HOMO-LUMO gap Hab from eqn (58) Hab from CDFT
Fe− Fe+ 16.6 6.8 3.26

Fe− CH2 − CH2 − Fe+ 5.5 2.4 0.88
Fe− (CH2 − CH2)3 − Fe+ 2.8 13.3 0.15
Fe− (CH2 − CH2)6 − Fe+ 1.7 13.9 0.03
Fe− CH = CH− Fe+ 14.4 13.8 3.22

Fe− (CH = CH)3 − Fe+ 13.6 18.9 3.42
Fe− (CH = CH)6 − Fe+ 14.2 21.5 1.02

Table 8: Coupling elements for bridged diferrocene systems. CDFT couplings are more
physical than those computed using the ground-state DFT energy, which suffers from delo-
calization error. Data taken from reference 265.

The CDFT prescription for the coupling avoids these errors by using the diabatic states

directly. The degrees of localization and self-interaction in both diabatic states are the

same, and thus these terms largely cancel when taking energy differences involving just those

diabatic states. The above results show that the CDFT coupling (equation (51)) behaves

in the ways expected for an electronic coupling element, in contrast to energy-gap-based

methods for obtaining diabatic couplings. This result is perhaps a bit surprising in that the

less accurate method (i.e. the energy gap prescription) is more rigorous. This discrepancy

is primarily attributable to the limitations of commonly-used functionals: it appears that

the energy-gap coupling is simply more sensitive to errors in the functional than the total

energy is.

It is important to note that the diabatic picture does not always predict an exponential

decay — it also lends itself to the Condon approximation that the coupling is insensitive to

(transverse) nuclear motion (e.g. relaxation within the donor or acceptor fragment).281 The

availability of CDFT couplings permits investigation of the validity of this approximation

for intramolecular electron transfer, by computing the coupling element as a function of the

reaction coordinate. Table 9 shows the variation in the electronic coupling along the reac-

tion coordinate for intramolecular charge transfer in the mixed-valence tetrathiafulvalene-

diquinone (Q-TTF-Q) anion discussed in section 3. In the anion, the excess electron localizes
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on one of the quinone rings, causing some out-of-plane distortion of the structure. Here, as

the reaction coordinate moves from q=1 to q=-1 the conformation changes from “electron on

left” to “electron on right”. As the data make clear, the electronic coupling changes very lit-

tle over the full domain of the reaction coordinate, showing that the Condon approximation

is reasonable for this system.

q(±) |Hab|
1.0 2.89
0.8 2.95
0.6 3.00
0.4 3.03
0.2 3.05
0.0 3.06
-0.2 3.05
-0.4 3.03
-0.6 3.00
-0.8 2.95
-1.0 2.89

Table 9: The electronic coupling element |Hab| (kcal/mol) for Q-TTF-Q anion as a function
of the charge-transfer reaction coordinate. q = −1 corresponds to charge fully localized on
the left quinone, and q = 1 to charge localized on the right. Data taken from reference 54.

5.4 Exciton-CT Coupling

CDFT provides diabatic electronic states, and couplings between them. In some cases,

though, it is of interest to compute an electronic coupling between a CDFT diabatic state

and an excited state obtained from other means. For example, in photovoltaic cells, one is

typically interested in charge separation emanating from an excited state of the system.263

These localized, charge-neutral, excited states are typically referred to as “excitons”. Sim-

ilarly, in light-emitting devices, one is interested in charge recombination events that form

excitons, which subsequently luminesce. In these situations, the Marcus rate expression

(equation (33)) still applies, but either the “donor” or “acceptor” state is itself an excited
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state of the system — it cannot be written as the ground state of the system in an alter-

nate potential and is thus not accessible via CDFT. Hence, in computing the Hab coupling

element, equation (51) cannot be used because one of the states is not a constrained state.

In most cases, the exciton state is well-described by TDDFT, while the charge separated

state is well described by CDFT (as illustrated above). We thus require a formula for the

coupling that applies when one of the states derives from CDFT while the second comes

from TDDFT.

In order to accomplish this goal, we need to be able to associate an approximate wave-

function with a TDDFT excited state. Just as was the case for KS-DFT, this is problematic

because TDDFT only provides access to the excited state density and not the excited state

wavefunction. However, each linear-response TDDFT state can be associated with a sum of

Slater determinants

|Ψex〉 =
∑

ia

cia |Ψa
i 〉 (59)

The sum runs over singly excited states, with Ψa
i being the Slater determinant obtained by

taking the ground-state KS wavefunction and replacing occupied orbital i with virtual orbital

a. The coefficients cia = xia+yia are simply related to the canonical x and y TDDFT ampli-

tudes.282 This form for the TDDFT wavefunction reproduces the exact TDDFT transition

density, and so in this sense can be thought of as the “wavefunction” for the excited state.

Inserting this |Ψex〉 into the CDFT coupling formula, the coupling element then involves

sums of overlaps and constraint potential matrix elements between the CDFT state and the

singly-excited determinants which comprise |Ψex〉.

However, the computational efficiency of the direct route is rather poor: with a sum

over O(N2) singly-excited states and an O(N3) coupling calculation for each, the overall

complexity is O(N5), which is impractical for large systems. However, the scaling can be

reduced to O(N3) by using a Thouless rotation283 to convert the sum over single excitations
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into a sum of just two determinants. The core idea of the Thouless rotation is to convert the

representation of the exciton from a sum of Nocc · Nvirt singly-excited determinants into a

difference of two Slater determinants made of slightly perturbed occupied orbitals. Putting

φi(±ǫ) ≡ φi ± ǫ
∑

a

cai φa (60)

as these perturbed occupied orbitals, we build the Slater determinants Φ(±ǫ):

Φ(±ǫ) = Φ± ǫ
∑

ia

caiΦ
a
i +O(ǫ2). (61)

The TDDFT state is then written as

|Ψex〉 =
∑

ia

caiΦ
a
i = lim

ǫ→0

(

Φ(+ǫ)− Φ(−ǫ)

2ǫ

)

(62)

with only two Slater determinants. This procedure is discussed in more detail in reference

262.

These coupling elements are still in the basis of the TDDFT and CDFT states, which are

in general non-orthogonal (as the different constrained states were in section 5.1). As before,

a Löwdin transformation can convert the states into an orthogonal basis. However, for this

system, there is an alternate method available which definitively preserves the labeling of

states as exciton or CT. The CDFT population operator ŵ — used to define the constraint

potential V ŵ — provides a measure of degree of charge-transfer, and the eigenstates of ŵ

form an orthogonal basis for the Hamiltonian.55 The matrix elements of ŵ were used in

computing the couplings (equation (51)), so there is minimal extra work in computing them.

Solving

WC = nSC (63)
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for the state vectors C which diagonalize the weight matrixW of ŵ in the nonorthogonal basis

of exciton and CT states yields the orthogonal eigenstates. Transforming the Hamiltonian

(and thus the couplings) into this new basis gives the orthogonalized couplings Hab. The

eigenvalues n of the weight matrix are also significant, directly assessing the degree of charge

transfer in the orthogonal diabats, making clear the distinction between charge-transfer and

local exciton states.

As a simple example, the coupling between local exciton states and a charge transfer

state has been studied for the triphenylene · · · 1,3,5-trinitrobenzene system as a function

of intermolecular separation.262 These two molecules were chosen as typical representatives

of an organic donor/acceptor interface, where triphenylene acts as the donor and 1,3,5-

trinitrobenzene the acceptor. As such, there is a low lying donor→acceptor CT state that

crosses three different localized exciton states. From the TDDFT calculations, the desired

exciton states are easily identified by examining the the attachment and detachment den-

sities, as shown in Figure 29. The excitons are easily identified as having attachment and

Figure 29: Attachment/detachment density plots for triphenylene:1,3,5-trinitrobenzene that
show (a) nonlocal/CT and (b) localized exciton electron densities. The red (green) regions
have excess (reduced) electron density compared to the ground state. Used with permission
from reference 262.

detachment densities localized on a single molecule, while the CT state has the attachment

and detachment densities on different molecules. Choosing only the three lowest exciton
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states from the TDDFT calculation and computing the coupling of each exciton to the CT

state gives the results in Figure 30. The strong coupling of the third excited state to the
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Figure 30: The electronic coupling between the CDFT CT state and three locally-excited
TDDFT states for triphenylene · · · 1,3,5-trinitrobenzene. The coupling to the first excited
state is quite small, and the coupling to the third shows strong variation with separation on
this length scale. All the couplings tend to zero at large separations. Used with permission
from reference 262.

charge-transfer state indicates that it is likely to be a significant contributor to charge sep-

aration for this system, whereas the first excited state has a much smaller coupling and

should be less important, showing that it is not always sufficient to only consider the first

exciton state in assessing the performance of OLED or photovoltaic systems. For this organic

heterodimer, the nonadiabatic transition from local exciton state to diabatic charge-transfer

state provides insight into the application of the materials in photoelectronics, providing a

mechanism by which to understand the relaxation of a photoexcitation into free carriers or

the reverse process.262
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5.5 Alternative Coupling Methods

The desire to study chemistry in terms of diabatic states and the couplings between them

is far from a new idea, being well-understood for several decades at least.284–287 Strictly

diabatic states which diagonalize the nuclear momentum coupling vector are not possible

in general,286 but this has not prevented a proliferation of approximate routes to diabatic

states over the years.154–156, 244–261, 288–290 In this section, we briefly describe a few often-used

approaches to diabatic couplings in order to place the CDFT coupling formula in context.

One of the earliest methods used to obtain approximate diabatic states relies on broken-

symmetry (BS) solutions of the SCF equations.291, 292 As discussed in Section 4.2, when

treating magnetic or diradical systems, unrestricted KS calculations will sometimes converge

to solutions in which the α and β orbitals differ. These states are not spin eigenstates

(hence the broken symmetry moniker) but perhaps more importantly, they typically involve

localization of spin and/or charge on certain parts of the molecule. These BS states can thus

play a role very similar to CDFT states. The interpretation of BS states as diabats is tenuous,

as it is not even possible to be certain that a given system will have BS KS solutions at all.

For example, in the classic case of H2 dissociation, the KS equations have no BS solutions

at short bond lengths. However, past a critical distance (the Coulson-Fischer point) BS

solutions appear and are, in fact, energetically lower than the spin-restricted solutions. In

this sense, CDFT states should be thought of as a more reliable BS state because one can

always generate the physically desired state using a constraint, while it is not clear if the

same state will exist in the BS approach.

Nonetheless, the orbitals (and thus wavefunctions) of these BS states can be used to

compute coupling matrix elements of the Hamiltonian, as was done in the early work of

Farazdel et al. for intramolecular electron transfer using BS Hartree-Fock states.291 Below,

we will summarize their results, noting that the relevant BS determinants can come either

from Hartree-Fock or Kohn-Sham calculations. For BS states, one directly computes the
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electronic coupling matrix HAB = 〈ΨA|H|ΨB〉 including both the one- and two-electron con-

tributions. The algebra for these matrix elements in terms of non-orthogonal determinants

can be worked out with complexity similar to a DFT energy evaluation.293 Once again,

the couplings need to be orthogonalized to obtain the physical coupling Hab, and this can

be done either using the Löwdin prescription or by finding the eigenvalues of the Hamilto-

nian in the diabatic basis and using the energy gap formula (equation (57)). We note that

when this direct coupling formula is used for KS states, one is once again implicitly assum-

ing the KS determinant is the true diabatic wavefunction, which is in general not justified.

Nonetheless, the direct coupling formula and the CDFT coupling capture much of the same

physics. Consider the direct coupling between CDFT KS states (HAB = 〈ΦA|Ĥ|ΦB〉) com-

pared against CDFT couplings from equation (51). For the simple molecule LiH, Figure 31

compares the behavior of these two prescriptions for the coupling between the orthogonalized

ionic (Li+H−) and neutral states.294 The couplings are clearly in qualitative agreement and

exhibit the same exponential decay behavior.

Directly computing the coupling element between diabatic states is far from a unique

route to couplings; on the other end of the spectrum are methods that compute diabatic

couplings directly from a set of adiabatic states. There are a large number of such meth-

ods245, 248, 249, 253, 254, 258, 259 of which one deserves special discussion at present: the generalized

Mulliken-Hush (GMH) prescription.155, 256 GMH is widely used for electron transfer prob-

lems, and it is often taken as the definitive reference method for computing diabatic couplings

(see Figure 32). We therefore spend a bit of time discussing this alternative. The core idea of

the GMH method is to define diabatic states as the eigenstates of the dipole moment opera-

tor in the basis of the low-lying adiabatic states. This makes physical sense: the eigenvalues

of the dipole will be the extreme values and the desired neutral and CT states will have very

small and very large dipole moments, respecively. Thus, given a set of N adiabatic states

(e.g. from CASSCF theory), GMH first constructs matrix elements of the dipole operator
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matrix element of the Hamiltonian (“direct”).
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and then diagonalizes this matrix in the basis of the adiabatic states.155, 256 GMH also allows

for multiple diabats to have charge localized on a given site, which are forced to be locally

adiabatic with respect to each other as the assumption of zero transition dipole moment is

not reasonable in that case.256 The GMH diabats are automatically orthogonal, and so the

diabatic coupling is obtained by transforming the diagonal adiabatic Hamiltonian into the

basis of dipole eigenstates; the physical coupling(s), Hab, are just the off-diagonal elements

of the transformed Hamiltonian. For two-state symmetric systems, GMH reproduces the

energy gap method.

The GMH and CDFT couplings are very different in execution: the former requires

some pre-existing route to adiabatic excited states (e.g. TDDFT) while the latter only

requires ground state calculations in alternative potentials. In GMH, diabatic states and

their couplings are deduced from the adiabats, while in CDFT diabatic states are constructed

directly. Finally, in GMH there is a clear route toward exact diabatic couplings (by improving

the adiabatic excited states) while in the latter the route toward exact couplings is somewhat

murky. The primary reason GMH (and related methods) deserve mention here is that, like

CDFT, GMH defines the diabatic states with relation to an operator. That is to say, in

GMH one chooses diabatic states as eigenstates of the dipole moment, much as in CDFT

one chooses diabats as states with defined charge. Thus, while the technical operations

involved are quite distinct, the two methods share a common picture of diabatic states as

being “special” with respect to some physical operator.

When producing multiple adiabatic energies is too expensive, cheaper alternatives to

coupling elements are available. Making the approximation that only the HOMO of the

donor and the LUMO of the acceptor contribute to the coupling drastically simplifies the

computation of a direct coupling element between diabats: the coupling is then computed

as the matrix element betwen those two orbitals; this is known as the fragment orbital (FO)

method. Using single orbitals necessitates treating the donor and acceptor as independent
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systems (as otherwise the distinction between donor and acceptor orbitals is dubious at best),

so they cannot respond to each others’ environment — all information about polarization and

intermolecular interactions is thus lost. In practice, the LUMO of the acceptor is computed

as the HOMO of the reduced acceptor, so that occupied orbitals are used on both sides

of the matrix element.272 By treating donor and acceptor as separate systems, it is easy

to enforce the charge (spin) localization involved in the reactant and product states — the

component subsystems are just systems with (half-)integer charge (spin). Difficulties arise

from the use of separate systems, though, if there are bonds between donor and acceptor, or if

there is significant mutual polarization between donor and acceptor.272 Figure 32 shows the

behavior of the FO-DFT coupling as a function of internuclear separation for the zinc dimer

cation system from section 5.3, as well as CDFT couplings and the Generalized Mulliken-

Hush (GMH) method described below. The FO-DFT method has a noticeably different
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Figure 32: GMH, CDFT (plane-wave), CDFT (AO), and FO-DFT methods compared for
diabatic coupling elements decaying with separation for the zinc dimer cation. Reprinted
with permission from reference 272.

exponential decay factor than the other methods (as seen by the slope on the graph), as well

as a substantially smaller coupling magnitude (up to a factor of two, more pronounced at
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smaller separations). This discrepancy is attributed to the lack of polarization in the FO-

DFT orbitals, as the HOMO of the CDFT system is found to be slightly polarized towards

the acceptor.272

As in Figure 32, the GMH method is frequently used as a reference for comparison

with other routes to diabatic electronic coupling elements. In the data presented there,

the decay constants for zinc dimer cation placed the GMH value between the FO-DFT and

CDFT-determined decay constants, and the difference in the magnitude of the coupling

between GMH and CDFT is attributable to the differing definitions of diabatic states.272

Nonetheless, GMH calculations require some care to obtain meaningful results, as they take

as input multiple adiabatic states (wavefunctions), and the determination of adiabatic excited

states is much less robust than the existing treatments for adiabatic ground states. For

example, the commonly-used (for small systems) CASSCF approach is sensitive to the choice

of active space and the number of states included in the state averaging;295, 296 furthermore,

the GMH method can require a determination of which diabats are localized on the same

site, a decision which is hard to make programmatically. Many of these difficulties can be

overcome by defining the diabatic states as many-electron extensions of Boys localization.245

This approach allows a GMH-like scheme to be applied transparently to large active spaces

and multiple fragments.

Yet another alternate route from nonorthogonal fragment or CDFT states to diabatic

couplings is taken in the work of Migliore,297, 298 which uses the adiabatic ground state to

avoid directly computing coupling elements. This is similar in spirit to equation (58) but

avoids using the ground-state energy (which is known to be unreliable for DFT transition

states). Given diabatic states A and B (assuming a two-state framework), some algebraic

manipulation shows that the coupling between the states is related to their overlap (SAB),

the energy gap between the diabatic states (∆EAB = EA − EB) and the overlap of each
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diabat with the ground state (a ≡ 〈ΨA|Ψ0〉 and b ≡ 〈ΨB|Ψ0〉) via:298

Hab =

∣

∣

∣

∣

ab

a2 − b2
∆EAB

(

1 +
a2 + b2

2ab

)

1

1− S2
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∣

∣
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∣

(64)

Results for this coupling formula as applied to hole transfer in a π-stack of two DNA bases

show that the coupling is relatively independent of basis set size, and compares reasonably

with GMH and CASSCF-based methods.298 Effectively, by replacing the adiabatic energy in

equation (58) with the overlaps a and b (which contain the same information) one arrives at

an expression that appears to be somewhat less sensitive to SIE effects. There are reasons

to suspect that equation (64) is not completely immune to SIE, however; note that for the

mixed valence systems in Figure 28 a ≈ b so that a2−b2 ≈ 0 and the coupling of equation (64)

becomes potentially divergent for non-vanishing ∆EAB. Thus, equation (64) should be used

with some caution.

5.6 Illustrations

5.6.1 Electron Transfer

One of the most obvious uses of the diabatic coupling is in the prediction of electron transfer

rates, in accord with the Marcus rate expression of eq (33). For example, we can return to

the FAAQ dyad discussed in section 3.3. There, we saw that CDFT molecular dynamics

in explicit solvent was capable of correctly describing the free energy landscape for charge

recombination from the CT excited state (FA+-AQ−) to the ground state, including the

accurate prediction of the driving force (∆G) and reorganization energy (λ). In order to

complete the Marcus picture, then, we need the diabatic coupling Hab between the states,

which is easily obtained using eq (51). However, since the reaction is occurring in a fluctuat-

ing environment, we cannot speak of only a single value of Hab — rather, we need to speak

of the distribution of Hab values in the ensemble of reactant and product configurations. To
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Configurations 〈Hab〉 σH

Gas Phase
Neutral 0.90 0.15
CT 0.73 0.18

DMSO
Neutral 0.61 0.12
CT 0.25 0.06

Table 10: Mean electronic couplings and deviations for the neutral and CT configurations of
FAAQ in the gas phase and in DMSO solution. Energies in eV. Taken from reference 183.

put it a different way, we do not want to make the Condon approximation at the outset.

If there are significant variations in the coupling as the reaction progresses, we want to see

this, which requires re-computing the coupling at every snapshot of the simulation. This can

be done, and results in the data in Table 10. Several things are clear from the data. First,

the Condon approximation is reasonably accurate in these simulations, with the coupling

fluctuating by only 10-20% for a given state. This is reassuring, as it means the Marcus

picture of ET being driven by energy gap fluctuations (rather than fluctuations in Hab) is

likely valid for this molecule. Second, it is clear that the presence of solvent reduces the

magnitude of the coupling, sometimes significantly. This point is important because it calls

into question the standard protocol of using gas phase couplings in condensed phase simu-

lations.244, 299 Finally, it is interesting to note that the couplings in the neutral ground state

and the CT excited state are different, suggesting that the Hab values for charge separation

are somewhat different than those for charge recombination.

Overall, the couplings above overestimate the experimentally deduced couplings by about

fivefold, which is not terrible agreement given the exponential sensitivty of Hab to distance.

Moving forward, we expect to see significant advances in the understanding of condensed-

phase ET rates as CDFT becomes more widely applied.
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5.6.2 Triplet Energy Transfer

One can use diabatic states to discuss energy transfer as well as electron transfer. In partic-

ular, CDFT offers a clean description of triplet excitation energy transfer (TEET). TEET

is thought to play a role in photoprotection of the photsynthetic light harvesting complex;

triplet excitations on chlorin moieties are efficiently transferred to neighboring carotenoids,

preventing oxidative damage.300, 301

In general, to predict the rate of TEET using the Marcus expression (eq (33)) one requires

reactant (product) diabatic states where the triplet is localized on the donor (acceptor).

These diabatic states are readily accesible in CDFT by constraining the spin, as discussed in

section 4. From this point, the manipulations are strictly analogous to the case of electron

transfer — one can define a driving force, reorganization energy and coupling term, and for

the present we will focus on the coupling. The usual CDFT coupling formula of eq (51)

applies to TEET, as do the approximate methods of eqs (57) and (58). Of course, the

adiabatic state used for the triplet system will be the lowest triplet state, but otherwise the

manipulations are strictly analogous.269, 302 For consistency with the literature, we refer to

the TEET coupling from equation (56) as the “splitting method”, and also use the mixed

coupling of equation (58). Figure 33 shows the couplings computed by these methods for

a stacked pair of formaldehyde molecules. Results for the mixed coupling applied to CHF

states are notably absent from the plot, as these numbers are much larger than those of the

other methods, rising from 3000 to 5000 meV as the distance increases! The CDFT mixed

coupling results (shown) are also non-physical, with the coupling not decaying to zero at

infinite separation (the singularity is just the sign of the coupling changing, on the log scale).

The enormous errors for this model are consistent with the poor behavior seen when using

the energy gap expression for electron transfer (cf Figure 28). For TEET, the unphysical

results can be closely tied to fractional spin error, analagous to the fractional charge error

frequently discussed in the context of DFT’s self-interaction error.302 By contrast, the direct
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Figure 33: Triplet energy transfer coupling elements for stacked formaldehyde molecules
using several different methods. (a) HF, with the coupling between broken symmetry states,
CHF states, and the splitting method as applied to CIS excited-state energies. (b) PBE, with
the CDFT coupling, mixed coupling, and splitting method as applied to TDDFT excited
states. Adapted with permission from reference 269.

methods for computing the coupling (CDFT and BS) are successful at producing couplings

of the proper magnitude and with the proper exponential decay as a function of distance.

In particular, for PBE the CDFT results very closely parallel the splitting results, which are

equivalent to the GMH predictions for this case.

5.6.3 Charge Transport in Organic Semiconductors

Organic semiconductors (OSCs) are a promising class of new materials. In an OLED de-

vice, they can be used as the active element in thin, efficient and flexible displays.303 In a

photovoltaic cell, they can be used as inexpensive, large area elements for converting solar

energy into useful electricity.304 In both of these applications, the ability of the material to

transport charge (electrons and/or holes) is crucial to device performance, and improving

the charge mobilities in OSCs is an ongoing area of research.305 When used in conjunction

with QM/MM simulations, CDFT is an extremely promising tool for studying charge trans-

port in these soft, amorphous systems, as illustrated in Figure 34 for the particular example

of a semicrystalline OSC composed of tris(8-hydroxyquinolinato)aluminum (Alq3).
160 On a

large length scale (e.g. tens of nanometers) the structure of the material is modeled using
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Figure 34: Cartoon illustration of the QM/MM method. Left: many unit cells of the bulk
material form the MM region. Center: A small QM region is selected within the simulation
box. Right: The electronic structure of the QM region in the electrostatic environment of
the surrounding molecules. Used with permission from reference 160

molecular mechanics. One then selects a few (e.g. one or two) molecules from the solid and

performs QM/MM calculations to determine the desired parameters (e.g. exciton energy,

reorganization energy, coupling. . . ). Finally, one repeats this process hundreds or thousands

of times at thermally sampled configurations to obtain ensemble averages. In this manner,

CDFT combined with QM/MM simulations provides a means to describe electron dynamics

in complex environments at a moderate computational cost.

Charge transport in these materials is thought to proceed via a “hopping” mechanism.

Basically, one envisions mesoscopic diffusion arising from a series of electron-transfer reac-

tions between nearby molecules (or even within molecules, in the case of polymers). Each

of these electron transfer events is governed by the Marcus rate expression, and this rate

in turn is controlled by the electronic coupling. Thus, for electron (hole) transfer, we de-

sire coupling elements of the form 〈A−A|Ĥ|AA−〉 (〈A+A|Ĥ|AA+〉), where A ≡ Alq3 in this

case. Since CDFT is used to localize the carrier on the appropriate molecule, equation (51)

applies directly to determine these couplings. Applying this prescription to compute elec-

tron and hole transfer couplings in Alq3 results in the distributions shown in Figure 35.160

Here, the couplings are distinguished by the approximate lattice vector along which transfer
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Figure 35: The electron and hole coupling distributions. Distributions are shown for nearest
neighbors along three different lattice vectors. The inset shows the effect of smearing the
MM charges from point charges into Gaussian distributions. Used with permission from
reference 160.

occurs. There is clear separation between the different lattice vectors, indicating that over

the course of the simulation (several ns) a given pair of molecules tends to retain the same

relative orientation. The latter observation is consistent with the known glassy behavior of

most OSCs. The second obvious feature is that electron transport accounts for most of the

stronger couplings, with the holes being clustered more densely at smaller couplings. The

existence of very large couplings suggests that electron transfer (and thus electron transport)

should be more facile than hole transfer (and thus hole transport) in Alq3. This prediction is

consistent with the experiments, which find the electron mobility in Alq3 is 100x as large as

the hole mobility.305 Indeed, the electron couplings are large enough to suggest that electron

transport might occur via delocalized states (band-like transport), which would represent a

fundamental shift in the understanding of this material.

The simulations above on Alq3 are illustrative of how CDFT QM/MM can be used in

OSCs, but really only represent a foretaste of the capabilities of the method — similar

calculations can be used to evaluate CT state eneries, charge separation and recombination
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rates, absorption and emission spectra and a host of other important material properties.

The main impediment to progress is the disorder of the systems, which makes computing the

relevant properties time-consuming. But as computational power increases, it seems certain

that simulations of this type will guide the microscopic understanding of OSCs.

5.7 Future Work

In the solid-state and solution, for charge, singlet, and triplet energy transfer, diabatic cou-

plings cotrol the flow of charge and energy between localized states. The results summarized

above suggest that the CDFT formula for this coupling (equation (51)) gives an accurate

and computationally reasonable approximation to this important quantity. However, the

situation is far from perfect.

First, it is extremely difficult to get theory and experiment to agree to better than an

order of magnitude for Hab. Sometimes the theory is too high, sometimes too low, and the

couplings tend to have a worryingly strong dependence on the basis set and the quality

of the underlying wavefunction. Some prescription that gives consistent agreement with

experiment is clearly desirable.

Second, there are cases where the CDFT coupling itself returns unphysical values. In

some cases (cf Table 1) we can understand these errors as arising from a poor choice of

atomic populations or a catastrophic failure of the underlying functional. However, occa-

sionally the wavefunctions look qualitatively correct and yet still the couping is off by an

order of magnitude or more. It is not clear what causes this unusual behavior. A funda-

mental understanding of these issues may involve decomposing different contributions to the

coupling, as has recently been done for diabatized CIS states.306

Finally, it would be extremely useful to have analytic gradients of the CDFT coupling

(eq (51)) as a function of nuclear position. Among other things, these gradients would allow

us to further explore the validity of the Condon approximation and (in conjunction with the

104



CDFT-CI method described in the next section) make it possible to perform excited state

molecular dynamics for low-lying electronic excited states.

The above wish list of future improvements notwithstanding, the CDFT coupling provides

a useful tool for the analysis of charge and energy transfer in real problems and completes

the diabatic picture that naturally arises from applying density constraints to the system.
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6 Parameterizing Model Hamiltonians with CDFT

In the previous section, we saw how to treat CDFT states as diabatic states and compute

diabatic couplings between them. Combined, these allow for construction of a complete

diabatic picture of a system, accounting for the entire electronic Hamiltonian, by mapping

the full N -electron system into a (much much smaller) diabatic basis.55 Condensing the full

system into an easily-computed small basis is a classic example of using a model Hamilto-

nian to describe a complex system, and in this respect CDFT shares many features with

empirical valence bond theory156, 307 and Van-Vleck transformations in multireference theo-

ries of correlation.308 Model Hamiltonians also abound in the computational sciences, with a

great variety of functional forms that are each largely designed for a particular class of phys-

ical system: Hubbard309, 310 and Pariser-Pople-Parr (PPP) models311, 312 for π-conjugated

molecules; LDA+U313 and dynamical mean field theory314 for localized orbitals in metals;

Heisenberg models for magnetic systems;191 exciton models for photosynthesis.315 When

using a model Hamiltonian form to describe a physical system, it is usually desirable to

use ab initio data to parameterize the model so as to have a numerical connection with the

actual physics. The relationship between ab initio theory and model form sometimes grows

quite intertwined, as in the ab initio tight binding method316, 317 and dynamical mean-field

theory.314 In many cases, the underlying physics captured by a model Hamiltonian can be

probed using CDFT, whether by producing a particular spin configuration of a magnetic

system, adding extra charge to a single site to probe the Coulomb repulsion, or adding static

correlation to a reaction transition state, or even combinations of these effects. Due to the

diverse and varied nature of both applications and methodology, it is easiest to arrange these

applications by the physical problems they address: charge hopping and delocalization,318–321

spin systems,225, 322, 323 strong correlation,55, 132 and electronic excited states.47, 324
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6.1 Charge Hopping

Broadly speaking, conduction is usually modelled in one of two ways: by invoking delocalized

states, as in the band theory of metallic conduction325 or using localized states in the hopping

formalism.326 Both models arise out of the same tight-binding (TB) model in which electrons

occupy fixed sites that have both an energy ǫ and also a coupling tij to other sites;

H =
∑

i

ǫic
†
ici +

∑

ij

tij(c
†
icj + c†jci) (65)

where the c† and c operators are the standard second-quantized creation and annihilation

operators. Within chemistry, this model is more commonly referred to as extended Hückel

theory. The relative magnitudes of the energy and coupling determine whether hopping or

band transport dominates.325 When tij/(ǫi − ǫj) is large, delocalization results; localized

“hopping” transport occurs when tij/(ǫi−ǫj) is small. The latter regime is typically referred

to as Anderson localization.327

Now, the tight binding approximation completely neglects electron-electron interaction,

which will clearly influence charge transport. The Hubbard Hamiltonian adds the on-site

electron repulsion terms to the TB formula:

H =
∑

i

ǫic
†
ici +

∑

ij

tij(c
†
icj + c†jci) +

∑

i

Ui
ni(ni − 1)

2
(66)

where ni ≡ c†i,αci,α+ c†i,βci,β. Most notably, this Hubbard model is the basis for the LDA+U

method.328

In the above model Hamiltonians, ǫi and tij are single-particle terms, with a variety of

different routes for approximation from ab initio data.56, 61 In particular, it is quite common

to derive effective values of ǫ and t directly from the KS Hamiltonian.79 Meanwhile, the most

reasonable route to the on-site repulsion term U is provided by CDFT. Specifically, because
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Ui penalizes only states where site i is doubly charged, we can easily probe Ui with CDFT

by increasing the charge on the site in question. In particular, if the Hubbard expression is

correct, the dependence of the change in total energy (∆E) due to a change in the number

of electrons (∆Ni) should be approximately quadratic:

∆E = α(∆Ni)
2 +O((∆Ni)

3) (67)

The linear term vanishes irrespective of the approach because of charge equilibration in the

ground state: if dE/dNi was non-zero, the system could lower its energy by adding (or

subtracting) electrons from the ith site. Thus, both the model Hamiltonian and an ab initio

energy will vary approximately quadratically with the charge on a given atom. Further, for

the Hubbard model, the magnitude of α will depend strongly on U ; large U will tend to lead

to large α. Thus, by comparing ∆E(∆N) from CDFT calculations with the corresponding

Hubbard results, “ab initio” values of U can be obtained.

This prcedure is illustrated in fig 36.318 Here the U parameters for polyyne are extracted

by varying the charge on one of the carbons. Clearly, the parabolic approximation is excel-

lent, supporting the use of the Hubbard model for this linear chain. It is also interesting to

note that HF and DFT give essentially identical model parameters for this system.

One can of course use the same procedure to treat other molecular wires, such as the

technologically more relevant case of polyacetylene.329, 330 Here, the carbon backbone is

nonlinear, so there are three structural isomers to consider: the all-trans form, as well as the

cis-trans and trans-cis isomers, which differ in whether the long or short bonds are parallel to

the molecular axis. Meider and Springborg computed Hubbard parameters for these three

isomers with the standard parabolic fit to obtain U .319 These simulations went further,

exploring whether the long-range electron-electron interactions neglected in the Hubbard

model were relevant for the polyacetylene systems. To this end, they also parameterized an
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Figure 36: Finding U for an idealized carbyne (C ≡ C−C ≡ C−· · · ) by fitting ∂2E/∂∆N2 to
a parabola. Constrained DFT results from calculations with LMTOs with rMTS = 1.187 au
and bond lengths 2.375 and 2.70 au, in a basis with two sets of s, p, and d functions per atom.
Four carbon atoms were included in the simulation cell, with periodic boundary conditions.
“HF” is for calculations in a finite model system with eight carbons. Taken from reference
318.
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Parameter all-trans cis-trans trans-cis
tn,n±1 3.35,2.88 3.44,2.59 3.14,2.86
tn,n±2 -0.25 -0.16 -0.18
U 10.6 10.5 9.9
Unn 0.2 0 1.0

Table 11: Hubbard parameters for the three isomers of polyacetylene, in eV. “cis-trans” has
the short (double) bonds parallel to the polymer axis, and “trans-cis” has the long (single)
bonds parallel to the axis. The two values given for the nearest-neighbor hopping integrals
correspond to the shorter and longer bonds, respectively.

extended Hubbard model that adds Coulomb interactions between nearest-neighbor sites:

H =
∑

i

ǫic
†
ici +

∑

ij

tij(c
†
icj + c†jci) +

∑

i

Ui
ni(ni − 1)

2
+
∑

i

Unnnini+1 (68)

Once again a numerical fit to the total energy as a function of (constrained) charge variation

on a site is used to determine the values of the Ui and Unn parameters, though as Unn is

the coefficient for a joint variation of population on two adjacent sites, a two-dimensional

fit is needed with diagonal and cross terms.319 As shown in Table 11, the computed values

for Unn are quite small, suggesting that the Hubbard model is a good approximate Hamil-

tonian for polyenes, as well. Interestingly, though, while the Coulomb repulsion is local, the

longer-range next-nearest-neighbor hopping terms tn,n±2 are large enough to affect the band

structures of the polyacetylene isomers.319

Hubbard-like models are equally useful in understanding bulk systems, especially for

high-Tc superconductors where the regions of parameter space that apply to the supercon-

ducting phase are not well-known. CDFT has been applied in this context to understand

the electronic structure of the superconducting phase of lanthanum cuprates.321 Here, the

conduction is thought to occur between the copper d orbitals with the oxygen p orbitals

moderating the conductance either through charging or superexchange. Thus, to model this

system one requires three extended Hubbard parameters (Ud, Up and Udp) which require

various constraint potentials to be applied to copper and oxygen (specifically using eq (2)).
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For example, applying a fixed potential shift of 0.2 Hartree to the copper d orbitals in a 2×2

supercell of La2CuO4 gives the results in Figure 37.321 The d DOS changes dramatically

with the shift, with significant contribution being pushed past the Fermi level in compar-

ison to the unconstrained case. Indeed, the integral of the d density is reduced by 0.370

electrons, but 0.144 electrons are gained in the s + p channels, indicating that some 40%

of the screening of the perturbation is on-site. Capturing the relevant charge response and

screening effects is a delicate matter, but ultimately the authors were able to find a single set

of Hubbard parameters that accurately reproduced the CDFT charge fluctuations: Ud=10.5

eV, Up=4 eV and Upd = 1.2eV . These parameters in turn place some important constraints

on contemporary models of high-Tc superconductivity. Approaches of this type are quite

closely related to the widely used LDA + U approach,72 which we consider more closely in

section 7.1.

6.2 Spin Models

The spin states of open-shell systems are perhaps the most obvious case where a model

Hamiltonian could be useful. Here one has a manifold of nearly degenerate spin states that

are energetically separated from all the other excited states of the system. It is therefore

natural to develop models in which all the extraneous degrees of freedom (e.g. charges,

orbitals, electron repulsion integrals, etc.) are integrated out and only the relevant spin

degrees of freedom remain. Of course, these reduced Hamiltonians contain parameters that

must be determined, and once again CDFT can play an important role in this process.

As a first example, consider the Heisenberg Hamiltonian (cf section 4)

Ĥ = −2
∑

A<B

JAB ŜA · ŜB (69)

As we have seen, CDFT does an excellent job of determining the exchange couplings JAB
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Figure 37: The effect of the constraining potential on different channel-specific partial DOSs.
Solid lines represent the partial DOS for various orbitals of a copper atom in the uncon-
strained system, and dashed lines are the partial DOS when a 0.2 Hartree potential was
applied to the d channel of that copper atom. Taken from reference 321.

112



Figure 38: Depiction of the exchange coupling interactions between spin-5/2 FeIII ions in
Fe8. The Fe8 system is of particular note as it is a single-molecule magnet; a wide spread of
phonomena such as macroscopic quantum tunneling, steplike hysteresis, and the potential
for molecular magnetic data storage devices have led to interest in this class of molecules.
Fe8 in particular is noteworthy for having strong spin frustration, so that the details of the
microscopic interactions can greatly affect the overall behavior. LS1–LS8 are the different
spin configurations used to compute ranges of values for the couplings. Used with permission
from reference 225.

that go into this Hamiltonian, by accurately predicting the energies of the uncoupled spin

states (also known as Ising states). These uncoupled spin states are not (in general) eigen-

solutions of the Hamiltonian at hand, but they are well-represented by single determinants

and have localized spins so that their energies are well-reproduced by common functionals.

The eigenstates of equation (69), on the other hand, typically involve linear combinations

of many uncoupled states. Phrased in the language of quantum chemistry, the associated

wavefunctions have significant multireference character. As such, they are poorly repre-

sented in traditional DFT, even with constraints. However, by using CDFT to determine

the exchange couplings and then using the model Hamiltonian to predict the eigenstates,

the energy spectra of complex magnetic systems becomes accessible.

This methodology has been applied to quite complex systems — an eight-center spin net-

work for the “ferric wheel” system is depicted in Figure 38.225 In this case, CDFT was used

to determine the eight low spin configurations (LS1-LS8) and these configurations were used

to extract the four unique exchange couplings. Note that the eight spin configurations shown

overdetermine the four symmetry-unique couplings, so that the derived couplings will de-

pend somewhat on which spin states are included in the fit. Depending on the configurations
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chosen, one obtains couplings in the ranges: −130 ≥ J1 ≥ −143cm−1, −14 ≥ J2 ≥ −21cm−1,

−42 ≥ J3 ≥ −47cm−1, and −10 ≥ J4 ≥ −18cm−1; these compare quite well to the exper-

imental ranges −120 ≥ J1 ≥ −140cm−1, −20 ≥ J2 ≥ −25cm−1, −35 ≥ J3 ≥ −41cm−1,

and −15 ≥ J4 ≥ −18cm−1. In contrast, the couplings obtained from broken-symmetry DFT

state energies for this complex are qualitatively incorrect, even producing some couplings

of the wrong sign. The accurate parameterization of this Hamiltonian paves the way for

subsequent quantum mechanical modeling of this molecule — including looking at quan-

tum tunneling of the magnetization331 and the dynamics of the molecular spin moment in

a magnetic field.243 In these situations, the accurate quantum wavefunction will involve a

linear expansion in terms of 68 = 1, 679, 616 spin configurations — a situation that would

be completely hopeless using a single-configuration method like KS-DFT!

Not all systems are amenable to the Heisenberg Hamiltonian. In particular, magnetism in

metallic systems fails to conform to the Heisenberg picture because the unpaired spins are not

necessarily localized — instead one often deals with itinerant magnetism. In general, CDFT

is not as amenable to these problems, but we should highlight one recent application that

succeeded in treating magnetism in FeAl with the help of CDFT.323 The standard approach

for enforcing localization in metals is LDA + U , which we discuss further in section 7.72

Briefly, LDA + U takes a standard LDA calculation and adds Hubbard U terms to certain

atoms — typically d or f -block metals. This simple correction is enough to qualitatively

correct the magnetic behavior of many systems where traditional DFT fails. However, there

is an ambiguity in LDA + U that results from the double counting of electron repulsion

terms between the LDA energy expression and the Hubbard U term. There are two limiting

cases — the around mean field (AMF) and fully localized (FL) limits — where the double

counting correction can be worked out. Because AMF always lowers the total energy and

FLL raises it, interpolating between the two limits subject to the constraint that the total

energy correction is zero seems a reasonable prescription.323 To enforce the physical idea
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Figure 39: Magnetic moments of FeAl for AMF and the “DFT” flavors of LDA+U compared
with the results of Mohn et al.332 Taken from reference 323 (“this work” in the caption).

that the energy correction should be zero, one of course uses constrained DFT. That is

to say, one uses constrained DFT on top of LDA + U to obtain a unique prescription for

the double counting correction. The constraint is (as always) enforced via a corresponding

Lagrange multiplier, which in this case appears as (U − J)/2. For a given U , the energy

and J are then determined self-consistently so as to minimize the total energy subject to

the constraint that the double counting correction is zero. It is convenient to characterize

the system with an interpolation parameter, α. When α = 0, the AMF limit is attained;

α = 1 corresponds to the FL limit. The behavior of α as a function of U in the magnetic

system FeAl (shown in Figure 39) is quite fascinating. For small U , α is small, showing

that the itinerant AMF limit is nearly attained; in contrast, the system is more intermediate

between the two limits for large U . The behavior in the hysteresial region is of note, where

paramagnetic and ferromagnetic solutions coexist.

One can also use CDFT to make reduced Hamiltonians that describe simultaneous charge

and spin motion in conjugated molecular wires.322 Within the realm of quantum chemistry,

there is a long history of the use of qualitative molecular orbital theory to describe such
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systems. One important representative from this family is the PPP model, which can be

cast as an extended Hubbard model with generic two-site Coulombic repulsion:311

Ĥ = −β
N−1
∑

j

∑

σ

(

ĉ†j,σĉj+1,σ + ĉ†j+1,σĉj,σ

)

−
N
∑

j,k

Γj,kn̂j +
1

2

N
∑

j,k

Γj,kn̂jn̂k (70)

Γj,k =

(

r0|j − k|+ 1

g

)−1

(71)

The adjustable parameters are β and g. Once again, the CDFT is useful in parameterizing

the model based on ab initio data. Because conduction under finite bias probes states

far from the ground state, it is not possible to parameterize β and g based simply on the

parabolic behavior of the charge around the ground state, as done in Figure 36. Instead, a

somewhat qualitative fitting approach needs to be taken, similar to early scanning techniques

used161, 320 to attain target values for localized charge. Toward this end, Figure 40 shows the

behavior of Ntot and Mspin over a range of applied potentials, both from CDFT and from the

PPP model. The overall slope of the Ntot curve is controlled by the β parameter while the

slope of the Mspin curve is controlled by g, effectively fixing values of β = 0.16 and g = 0.55

in the model. In this case, the PPP parameters so obtained are within a factor of two of

values previously suggested.333

It is clear from the curves that the PPP model has excellent agreement with ab initio

HF, but it does a less impressive job reproducing B3LYP. This discrepancy is attributable to

the presence of SIE in B3LYP — indeed, by artificially introducing SIE into the PPP model

(PPP-SIE in the figure) one obtains a model Hamiltonian that tracks the B3LYP results

very well.

With these model parameters in hand, it is possible to use high-level correlation tech-

niques based on the generator coordinate method334–337 to explore the dynamics of charge

conduction through these wires. These simulations allow for the treatment of quantum wave-
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Figure 40: B3LYP and Hartree-Fock calculations on a polyacetylene wire C50H52, with
corresponding PPP calculations for a 50-site chain, and “PPP-SIE” with artificially reduced
exchange term, showing the dependence of population difference Ntot (source minus drain)
upon spin-independent constraining potential Vtot with fixed spin-dependent potential of
Vspin = 0.272V , and net spin difference (source minus drain) Mspin upon spin-dependent
potential Vspin with fixed spin-independent potential Vtot = 1.36V . Shown for the anion
C50H

−
52 (a,c) and cation C50H

+
52 (b,d). Taken from reference 322.

117



functions that involve millions of determinants and wires that are significantly longer than

those which can be easily accessed using DFT or TDDFT. These correlated calculations

show the disturbing trend that most functionals shift the transport gaps of these wires in

the wrong direction. True many-body correlation causes the gap to increase, as the system

approaches a Mott insulator transition,338 while all common functionals narrow the gap sig-

nificantly. Thus, once again we see that using CDFT in conjunction with a simple model

Hamiltonian extends the reach of modern DFT.

6.3 Static Correlation

One of the biggest challenges remaining for quantum chemistry is the proper treatment

of systems with strong (static) correlation.339, 340 Reaction barriers,132, 341, 342 bond disso-

ciation55, 343, 344 and conical intersctions46, 47, 345 all involve significant static correlation and

remain the bêtes noires of computational methods, including DFT. Static correlation is

loosely defined by the inability of a single determinant to correctly capture the nature of the

wavefunction; this breakdown of the single-determinant approximation is nicely illustrated

by an example. Consider the dissociation of a heteronuclear diatomic molecule such as LiF

to infinite separation.346, 347 At short distances, the wavefunction is dominated by the ionic

configuration, |Li+F−〉, which is well represented by a single determinant and therefore (by

definition) has little or no static correlation. However, at long distances, the wavefunction

will be dominated by the covalent singlet state |Li↑F↓〉 + |Li↓F↑〉 which is not a single de-

terminant. Thus, the molecule transitions from weak correlation at short bond lengths to

strong (static) correlation at large distances. DFT traditionally has difficulty describing

these types of strong correlation, since KS theory is traditionally formulated with just a

single determinant. Multi-determinant KS methods have been attempted,348 but are not in

common use. Furthermore, in the LiF case, there is an additional complication due to SIE:

pure semilocal DFT does not even dissociate to neutral fragments, but to an unphysically
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stabilized fractionally charged |Li+δF−δ〉 state.349 The intermediate region is even more of a

challenge, as an accurate method must navigate the transition from ionic to neutral, which

involves commanding the balance between static correlation, weak dynamic correlation and

SIE.

An elegant solution to this problem is to embrace the multiconfigurational nature of the

system and introduce multiple Kohn-Sham determinants into the description of the system.

The intermediate regime might then be described as

Ψstretched = c1Φionic + c2Φneutral (72)

c21 + c22 = 1 (73)

The ci form the CI vector of a model Hamiltonian, in the basis of the (as-yet unspecified)

Φionic and Φneutral. CDFT provides an easy framework to produce these chemically intuitive

states by enforcing a combination of charge and spin constraints to the system. The CDFT

energies then form the diagonal elements of this model Hamiltonian, whilst the off-diagonal

elements are populated by the coupling elements of section 5.47, 54, 55, 132, 272

This formalism can be readily generalized to the case of N states generated by arbitrary

constraints:
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where the S terms incorporate the non-orthogonality of generic CDFT states. By anal-

ogy to conventional configuration-interaction (CI) methods which build and diagonalize an

interaction matrix between Hartree-Fock determinants, this method is termed CDFT-CI, us-
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Figure 41: Dissociation curve of LiF as computed with various CDFT-CI prescriptions in a
6−311G++(3df, 3pd) basis set. Optimized-orbital coupled cluster doubles calculations350, 351

with a second-order correction [OD(2)] results are included as a reference. Used with per-
mission from reference 55.

ing interactions between CDFT Kohn-Sham determinants to produce better approximations

to the true energy eigenvalues of the Hamiltonian.55 CDFT-CI is quite remarkable in its

generality — all of the other model Hamiltonians described in this section have been explic-

itly designed for a particular problem, or particular narrow class of problems. In contrast,

CDFT-CI is less a single model Hamiltonian form and more a framework for constructing

custom models — there is flexibility to use an arbitrary set of constrained states as the basis

for the model Hamiltonian. Choosing these basis states (tailored for the particular system of

interest) then defines the Hamiltonian, which CDFT-CI computes and diagonalizes to yield

energies, CI vectors, and other one-electron properties.

Returning to the system which motivated this discourse, the dissociation curve for LiF

using CDFT-CI is shown in Figure 41, within a four-state basis of Li+F−, Li−F+, Li↑F↓, and

Li↓F↑. Results are presented for CDFT-CI using two different functionals; both perform well,

with the hybrid B3LYP yielding the best results. As expected, passing through the dissoci-

ation region shows a smooth transition from ionic to neutral for all three curves, as tracked
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Figure 42: Weights of configurations in the final ground state of LiF. Used with permission
from reference 55.

quantitatively by following the CI vectors, shown in Figure 42. The crossover between ionic

and neutral basis states occurs at 6.6 Å, as expected from where the Coulombic attraction of

the ions equals the difference of electron affinity and ionization potentials.55 Unlike conven-

tional DFT, all the CDFT-CI curves show the correct dissociation limit in Figure 41. The

accuracy of BLYP and B3LYP around the equilibrium geometry is preserved, indicating

that the CDFT-CI prescription does not spoil conventional DFT in regions with little static

correlation. The PESs are accurately described everywhere — at the equilibrium geometry,

at infinite separation, and in the troublesome region in-between where static correlation is

strongest.

Static correlation also plays a significant role in intra- and intermolecular rearrangements,

such as elementary reaction steps. The greatest challenge to DFT is at the reaction barrier,

where bond breaking leads to strong static correlation,341, 352 and traditional functionals

are known to predict poor reaction barrier heights.349, 353–355 Simple two-state CDFT-CI

provides an alternative route to reaction barrier heights as follows. First, we assume that

two basis states (“Reactant” and “Product”) are sufficient to construct a diabatic picture of
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LSDA CLSDA-CI PBE CPBE-CI B3LYP CB3LYP-CI
mean error -16.7 -8.9 -10.0 -3.4 -5.0 1.2

mean absolute error 16.7 10.0 10.0 4.2 5.1 2.5

Table 12: Errors in system energy in kcal/mol for a set of 64 hydrogen transfer, heavy atom
transfer, and nucleophilic substitution reactions, using a variety of functionals. Regular DFT
and CDFT-CI results are contrasted.

the reaction. The wavefunction at the transition state is then a linear combination of these

configurations. In this case, we can construct a good model Hamiltonian from two CDFT

states — one constrained in accordance with the reactant fragments, the other in accord

with the products. We then obtain the transition-state energy from the lowest eigenvalue

of the CDFT-CI secular equation. The results of this method for a set of 64 reactions

taken from the HTBH38/04 and NHTBH38 databases341 are shown in Table 12.132 The

CDFT-CI barrier heights are typically improved by a factor of 2-3, which is significant; it

is approximately the difference in quality attained when going from a pure functional to a

hybrid.

The set of reactions includes many examples of hydrogen atom transfer, heavy atom

transfer (e.g. from CH3 + FCl ⇋ CH3F + Cl), and nucleophilic substitution, largely be-

tween halogens and methyl groups. For these isogyric reactions, the difference between the

“reactant state” and “product state” at the transition-state geometry is merely whether the

electrons of the transferring group mingle with the reactant fragment or the product frag-

ment, a seemingly minor condition when the written reaction does not involve charge transfer

amongst fragments. Nonetheless, CDFT will produce different constrained states for these

different conditions, and assembling a model Hamiltonian with their energies and coupling

produces energy eigenvalues that are quite accurate. Explicitly constraining charge and spin

to be localized reduces the effects of the DFT SIE which plagues ordinary ground-state

calculations, especially at reaction transition states.

The reasons why CDFT-CI is so successful are relatively clear: by using CDFT states as
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the basis for the CI we are able to effectively control the impact of SIE on the calculations

and include dynamic correlation through the CDFT energies. By performing a CI calculation

on top of the CDFT states, we add back in the static correltation that is artificially missing

from the localized CDFT solutions. As a result, CDFT-CI seems like a well-balanced tool

for the description of static correlation in molecular systems.

6.4 Excited States

Electronic excited states play a central role in the function of optoelectronic devices such

as LEDs,356 photoswitches,357 and photovoltaics,358 but the accurate description of these

states is probably the greatest unsolved problem in quantum chemistry at present. As we

have already seen, CDFT can describe a small handful of excited states directly (i.e. those

involving long-range charge or spin separation). However, when CDFT is integrated into an

appropriate model Hamiltonian, the range of excited states amenable to simulations expands

dramatically. The reasons for this are twofold: the reduced Hamiltonian simulations are

typically much faster than DFT calculations, so that larger systems can be simulated, and

the simplicity of the model Hamiltonian often allows for a much more sophisticated treatment

of electron correlation in the excited state. Both of these ideas were illustrated briefly above

using the PPP model of polyacetylene to describe conduction dynamics. In this section, we

focus on the final frontier of electronic excited states.

As a starting point, it would be ideal if one could accurately treat linear optical properties,

such as the absorption and emission spectra of a system. Toward this end, let us consider

the absorption spectrum of GaAs, shown in Figure 43.324 The experimental spectrum is

rather poorly reproduced by the independent particle approximation (IPA), particularly at

low energies, where the electron-hole attraction is most pronounced. In order to account for

electron interactions, we can supplement the IPA in much the same way we added electron-

electron repulsion terms to the tight binding model to obtain PPP. In this case, adding all
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Figure 43: The optical absorption spectrum of GaAs. Circles represent experimental data
from references 359 and 360, the thick red line is downfolded-CDFT CIS calculations, and
the thin green line is from IPA calculations. Taken from reference 324.

two-center Coulomb repulsion terms results in the CNDO model,361, 362 which can be pa-

rameterized using CDFT exactly as described above. To transform the plane-wave DFT

basis into a site model, maximally localized Wannier functions (MLWFs)61, 363, 364 are used,

and CDFT calculations determine U and a screened Coulomb repulsion Vij . One can then

take the derived CNDO calculation and perform CIS (configuration interaction with single

excitations) to approximate the spectrum in the presence of interactions, as shown in the

Figure. Clearly, the intensity of the low-energy excitation peak is suitably enhanced, in-

dicating that the proper physics has been restored. It should be noted that the resulting

CNDO-CIS calculations are much faster than the associated TDDFT spectrum, and yet the

simpler calculation captures the important effects.

GaAs exemplifies the typical situation for solids, where a large set of excitations from the

ground state are collectively important for describing the optical properties. In chemistry,

one often has the opposite scenario: the low-lying excited states are often dominated by
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only a handful of very important configurations. CDFT-CI excels in this regime, choosing a

small handful of relevant configurations from chemical intuition to be the extent of the CI

calculation. This formal picture is particularly important for the description of conical inter-

sections — the seams of true degeneracy between electronic states in the high-dimensional

configuration space.295, 345 At any such intersection, there are two directions in which the

degeneracy is broken (arising from the two conditions that the energy gap and coupling must

both go to zero at the intersection), so a three-dimensional plot shows only a single point of

intersection, resembling a dual-lobed cone (hence the name).

A complete discussion of these fascinating objects is beyond the scope of this review.

For the present purposes, we merely note that these topological features are particularly

challenging for single reference methods, as the proximity of the ground and excited state

necessarily introduces extremely strong multiconfigurational character into the system.46, 347

As TDDFT is a single-reference method, we expect it to fail qualitatively in the description

of conical intersections, and this is indeed the case. For example, Figure 44(a) shows the

TDDFT energies of water near its linear geometry, where symmetry dictates there must be

a conical intersection.47 The ground state potential surface is not bad, particularly at short

distances, but TDDFT fails to describe even the qualitative topology of the intersection

correctly: instead of finding a cone, TDDFT predicts a double seam. By comparison, the

CAS(6,9) calculation (with 3057 determinants) shown in Figure 44(b) provides an accurate

depcition of both the ground and excited state around this intersection. In order to describe

this system correctly within the context of DFT, we turn to CDFT-CI. Our CI space spans

just four physically motivated configurations: HO−H+, H+OH−, H↑OH↓, and H↓OH↑. No

single one of these states is a good approximation to the ground or excited state of H2O near

the intersection. But by taking linear combinations of these states, CDFT-CI produces the

conical intersection in Figure 44(c), which is quantitatively correct. CDFT-CI has a further

advantage over CAS in that CAS cannot include any dynamic correlation, which the DFT
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Figure 44: The conical intersection for linear water, shown as computed via TDDFT,
CAS(6, 9) (six electrons in nine orbitals) and a four-state CDFT-CI. Used with permission
from reference 47.
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functional treats inherently; expensive corrections above CAS such as CASPT2 or MRCI

are needed to introduce dynamic correlation into the computed states. Thus, CDFT-CI

successfully leverages the ability of hybrid DFT functionals to describe dynamic correlation

in combination with a description of static correlation among a hand-picked basis of spin-

and charge-constrained states. Combined, they produce a custom model Hamiltonian that

allows for a very concise and accurate description of the electronic energy manifold near this

conical intersection. Overall, it would appear that the method holds significant promise for

the description of low-lying excited states in molecular systems.

6.5 Conclusion and Future Work

As demonstrated in this section, the use of CDFT to parameterize model Hamiltonians proves

to be a quite general tool, with applications to the band structure and excitation spectra of

electronic solids, magnetic systems, conduction, molecular rearrangement and PES crossings.

Once a particular Hamiltonian form has been parameterized, calculations using the model

can be extended to larger systems or high-level computational techniques which would be

prohibitively expensive as DFT calculations. We thus recognize the overarching theme that

model Hamiltonians extend the reach of traditional DFT calculations both in terms of system

size and accuracy.

There are, of course, a variety of prescriptions being used to connect the CDFT calcula-

tions to the models in the applications above. Among these, the CDFT-CI scheme is perhaps

the most flexible and promising, as long as only a handful of states are chemically relevant.

In this scheme, CDFT energies and couplings provide a diabatic basis for Ĥ that yields both

the ground and excited states of a very general class of systems over a variety of conditions.

This framework should be quite flexible, and may make ab initio molecular dynamics on elec-

tronic excited states more accessible to larger systems. Along these lines, the main hurdle

to be overcome is the implementation of analytical gradients of the CDFT-CI energy with
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respect to nuclear position (i.e. nuclear forces). Such an advance would allow for efficient lo-

cation of non-symmetry-required CIs and excited-state molecular dynamics. Likewise, there

is still room for innovation in the area of using CDFT to parameterize model Hamiltonians

of predetermined form — models for studying intersystem crossing in three-spin systems are

a prime candidate for such CDFT treatment.365 Between the array of specialized models and

the generic flexibility of CDFT-CI, CDFT has been indispensible in turning simple model

Hamiltonians into accurate tools that yield chemical insight.
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7 Related Approaches

The preceding sections illustrated how CDFT addresses several outstanding challenges in

DFT while extending its range of applicability to situations where a diabatic representation

is appropriate. Of course, other approaches have been proposed and implemented to address

many of these needs. Not surprisingly, some of these alternatives share key attributes with

CDFT.

In this penultimate section, we highlight new and ongoing developments in DFT that

share common goals with the CDFT approach. We focus in particular on the reduction of

self-interaction error in charge- and spin-localized systems, the generation of diabatic states

through orbital localization, and the even-handed treatment of ground and excited states.

7.1 Overcoming Self-interaction Error in Approximate Density

Functionals

Most density functional approximations harbor some degree of self-interaction error (SIE).

Early studies of SIE were motivated by the observation that many approximate exchange-

correlation functionals cannot supply an exchange-correlation energy that exactly cancels

the Coulomb self-interaction of an arbitrary one-electron density.366 The more general and

more recently developed concept of many-electron SIE354 frames this error as the deviation

from linearity of the energy as a function of the number of electrons.367, 368 In practice,

SIE in pure density functionals often manifests itself as a delocalization error, as it tends to

incorrectly favor delocalized densities.36, 280 Global hybrid functionals with a large admixture

of Hartree-Fock exchange can present the opposite (localization) error. For reviews on SIE,

see refs 369 and 140; here we focus on methods that adopt standard functionals and attempt

to correct or control the SIE, in the same spirit as CDFT. In particular, we highlight how

CDFT and three other approaches — explicit self-interaction correction, DFT + U , and
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range-separated hybrids — achieve some of the same goals.

The effects of SIE are most severe in systems with significant fractional electron charac-

ter.349 Stretched H+
2 provides a simple example: semilocal functionals predict a much lower

energy for the delocalized electron density H+0.5−H+0.5 than for the localized one H+−H,

even at infinite separation. The tendency of semilocal functionals to favor delocalized den-

sities for mixed-valence compounds is another manifestation of this effect. Through the

application of charge constraints, CDFT mitigates the over-delocalization effect at the cost

of some degree of arbitrariness in the definition of the constraint itself; nevertheless, the ben-

efits of reducing the fractional electron character of the system with CDFT are tangible in

the successes of CDFT-CI for properties involving stretched systems, such as barrier heights

and conical intersections.

Many-electron SIE is also at the heart of the band gap problem,369 which has direct bear-

ing on the accuracy of LR-TDDFT for CT excitation energies. The band gap problem refers

to the discrepancy between the Kohn-Sham orbital energy difference ǫLUMO−ǫHOMO obtained

with semilocal functionals and the band gap, i.e. the difference between the electron affinity

and the ionization potential. In LR-TDDFT, the Kohn-Sham orbital energy difference is

the zeroth-order approximation to the excitation energy, and while higher-order corrections

provide reasonably accurate valence excitation energies, these higher-order terms tend to

zero for CT states.44 The CDFT prescription for CT states entails a direct construction of

the CT state density, thus circumventing the band gap problem and its consequences for

LR-TDDFT.

Targeted efforts to correct for SIE have been ongoing since the first implementations

of density functional approximations for practical calculations. The original Perdew-Zunger

SIC introduces an orbital-by-orbital correction to the SIE which increases the computational

complexity considerably.366 The corrected functionals lead to improved orbital energies, but

their performance for chemically significant quantities such as bond lengths and reaction
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barrier heights proved worse in many instances than their uncorrected counterparts.370–372

Unger introduced a related SIC which is closer in spirit to CDFT because it is formulated in

terms of atomic density fragments defined in real space;373 however, its practical application

to molecular systems remains largely unexplored. The development of functionals that afford

piecewise-linear energies as a function of electron number367 is a major outstanding goal in

approximate DFT and should enhance the predictive power of DFT for chemical properties

and reactivity in the ground state.

The DFT+U methods mentioned in section 6 provide another way to mitigate the effects

of SIE. In the DFT + U approach, one takes a typical LDA or GGA calculation and adds

Hubbard U terms (q.v. Section 6.1) to certain atoms — for example, d or f -block metals.

One then tunes the value of U (either on empirical grounds, using CDFT or linear response64)

and then performs a new calculation where the LDA Hamiltonian is supplemented by the new

on-site repulsion terms. By penalizing doubly-occupied orbitals on the the metal, delocalized

states are disfavored (since they are superpositions of all possible local charge states) in favor

of localized, fixed-charge states. This is how DFT + U partially compensates for SIE.

The charge-localized states generated by LDA + U are qualitatively correct in an array

of different Mott insulators and exotic conductors, so LDA + U has a wide impact: it has

been used to understand magnetism in lanthanum cobaltates,374 to describe the electronic

structure of perovskites75 and correlated metals323 and to predict redox potentials of tran-

sition metal systems,375 among other applications. The U correction can also be used to

penalize non-integer populations on electron donors and acceptors in ET applications.376

Furthermore, DFT+U has shown promise in correcting the failure of LDA and GGA func-

tionals to predict the ground state spin multiplicity of certain transition metal complexes377

and of adatoms adsorbed on graphene.378 To illustrate, in Figure 45, the energy of sev-

eral low-lying spin states of the pentacoordinate heme-imidazole complex, Fe(II)P(Im), are

plotted against the value of the Hubbard U parameter. The plot shows that the DFT+U
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ground state crosses over from the triplet to the quintet around U = 2 eV; the quintet is the

experimentally observed ground state and is recovered for physically reasonable values of U .

Figure 45: Dependence of low-lying spin state energies of Fe(II)-P(Im) on the Hubbard U
parameter. Reproduced with permission from ref 377.

The physics of DFT+U and CDFT are quite similar: both methods mitigate or remove

SIE from existing functionals. The role of the Hubbard U in DFT + U is replaced by the

constraining potential V in CDFT. Thus, depending on one’s perspective, DFT+U is either

an extension of CDFT (as the U parameter can be determined via CDFT) or as a parallel

method that accomplishes many of the same aims in a different context.

Of course, we wouldn’t need to correct for SIE if we had the exact density functional;

by extension, we can anticipate that better approximate functionals will suffer less severely

from many-electron SIE. As an example, we consider the class of functionals known as range-

separated138–140 or long-range corrected136, 379 functionals, which have been shown to be more

robust to the effects of SIE140 than their conventional hybrid counterparts. These functionals

employ a judicious balance of exact and semilocal exchange, beyond the simple admixture
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employed in global hybrid functionals. The success of global hybrids can be attributed to

cancellation of delocalization error in the semilocal exchange functional by localization error

introduced by exact exchange.280 However, this error cancellation is incomplete in global

hybrids; in particular, it fails to recover the correct asymptotic behavior of the exchange-

correlation potential.380 Range-separated functionals recover the correct 1/R asymptote

and are becoming widely adopted. Their use in LR-TDDFT calculations137 shows particular

promise.

As an example of how long-range correction schemes and CDFT can accomplish similar

goals, we consider the lowest CT state of the ethylene-tetrafluoroethylene dimer (C2H4—

C2F4) as a function of intermolecular distance. This complex is an exemplar for both the

failures of LR-TDDFT with conventional hybrids44 as well as the successes of the range-

separation approach.137 Figure 46 shows the energy of the CT state as predicted by LR-

TDDFT with the global hybrid PBE0 and a long-range corrected variant, as well as by

CDFT with the B3LYP global hybrid; each curve is shifted so that its zero of energy occurs

at intermolecular separation R = 5 Å. Without range separation, LR-PBE0 severely under-

estimates the energy of the CT state at long distances because of the incorrect asymptotic

form of the exchange-correlation potential, whereas its long-range corrected variant tracks

the −1/R reference curve quite well. CDFT also correctly describes the distance-dependence

of the CT state energy, without the need for a long-range correction scheme.

In the forseeable future, the improvement of range-separated hybrids could potentially

cure SIE problems in DFT and TDDFT, at least for practical purposes. In this situation,

methods like CDFT and DFT+U would no longer be needed to avoid unphysical delocal-

ization and poor CT excited states. However, even with a practically exact functional,

CDFT could still play a useful role in constructing diabatic states and parameterizing model

Hamiltonians for complex problems, as discussed below.
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Figure 46: Energy of the CT state of the ethylene-tetrafluoroethylene complex as a function
of intermolecular distance for LR-TDDFT and CDFT. LR-TDDFT with the long-range
corrected functional LC-ωPBE0 and CDFT both correctly track the −1/R curve, in contrast
with LR-TDDFT using conventional hybrids.
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7.2 Orbital Localization Approaches to Diabatic States

Density constraints provide a conceptually simple route to diabatic states, but in some cases

the self-consistent determination of the constraining potential can be difficult to achieve.

There exists a complementary class of self-consistent methods, known as block-localization

(BL) methods,261 which construct diabatic states by assigning atomic basis functions to pre-

defined molecular fragments and solving the HF or KS equations while forcing the density

matrix to be block diagonal with respect to these fragements.381 The MOs produced in BL-

HF and BL-DFT calculations are each fully localized on one of the fragments, hence they

are sometimes referred to as absolutely localized molecular orbitals (ALMOs).382 ALMOs

are mutually orthogonal within each block, but are nonorthogonal in general across blocks.

Nevertheless, the technique has been successfully used to accelerate SCF calculations on

weakly interacting systems, where it is also known as locally projected SCF for molecular

interactions (SCF MI).382

Like CDFT, BL-DFT carries some of the concepts of valence bond (VB) theory into the

realm of first-principles calculations. Its connections to the construction of diabatic states

has been highlighted by Cembran and coworkers.383 BL-DFT provides a natural vehicle for

the analysis of VB constructs such as resonance structures. Mo and coworkers illustrated

this connection by examining the DFT and BL-DFT descriptions of the allyl radical, cation

and anion.381 The vertical resonance energy,

Eres
v = E(BL-DFT|DFT)−E(DFT|DFT) (75)

and the adiabatic resonance energy,

Eres
a = E(BL-DFT|BL-DFT)−E(DFT|DFT) (76)
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were both obtained, where E(A|B) represents the energy obtained by method A at the

optimized geometry from method B. The resonance energies and optimized geometries are

shown in Table 13.

Delocalized structure Localized structure Resonance energy
allyl R0 R1 R2 vertical adiabatic
radical 1.378 1.323 1.509 32.1 23.2
cation 1.377 1.328 1.472 51.1 46.3
anion 1.390 1.336 1.508 48.5 41.8

Table 13: Optimal C−C bond lengths (Å) and resonance energies (kcal/mol) in allyl systems
from DFT (delocalized, hence only one unique bond-length R0) and BL-DFT (localized, with
shorter and longer C−C bond lengths R1 and R2). Reproduced with permission from ref
381.

Bond lengths for the localized structures are comparable to typical C−C single- and

double-bond lengths; thus BL-DFT produces resonance structures that are in keeping with

the tenets of basic VB theory. The BL-DFT resonance energies of the allyl cation and

anion are similar, amounting to roughly twice the resonance energy of the allyl radical. The

elucidation of formal charge states in small systems like allyl can present a challenge for

CDFT because the short charge separation distance enhances the sensitivity of the energy

to the definition of the constraint regions. The reduced flexibility in the definition of the

constraints in BL-DFT makes the BL-DFT approach less precise but still provides a valuable

tool for the analysis of VB states from first principles.

A powerful extension of the block localization technique to treat large systems, such as

a collection of solvent molecules, at an approximate QM level has been developed by Gao

and coworkers.384–386 The general strategy consists of solving the HF or KS equations for

each solvent molecule subject to the electric field due to a collection of point charges asso-

ciated with the surrounding molecules. These point charges are derived from the localized

wavefunction of the corresponding solvent molecules, thus introducing an additional layer

of self-consistency to be satisfied; nevertheless, the approach offers a viable route to de-
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scribe, for example, a solvent or protein environment, in a framework based on a product

wavefunction for the entire system.

BL-DFT has found several applications in the decomposition of molecular interaction

energies into contributions such as multipole interactions, polarization and charge-transfer

effects, as recently reviewed in ref 387. Mo et al. identified the polarization of benzene

in benzene-cation complexes as a significant, sometimes dominant, contribution to the in-

teraction energy,381 underscoring the need to account for polarizability in classical simula-

tions of biologically relevant processes such as transport through ion channels. Khaliullin

and coworkers used a BL-DFT approach to decompose the interaction energies of the wa-

ter dimer,388 aqueous metal ion clusters,389 small donor-acceptor complexes,390 and weakly

bound organometallic complexes.389 They used this information to quantify the role of CT

in the binding energies of these complexes.

Figure 47: Illustration of two major ALMO contributions to intermolecular CT-induced
bonding in the water dimer. Nearly opaque orbitals are occupied, while the more transparent
orbitals are virtual. Reproduced with permission from ref 388.

Figure 47 exemplifies how BL-DFT calculations can inform and assess the rationalization

of weak interactions like hydrogen bonding, back-bonding, and hyperconjugation in terms

of overlap between occupied and virtual MOs. Here, CT in the water dimer is decomposed

in terms of complementary occupied-virtual orbital pairs (COVP) for a geometry in which

both protons of one water are equidistant from the oxygen of the other water. Altogether,

the CT contribution to the binding energy was found to be a minority component which
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becomes minimal at the orientation depicted in Figure 47. It is also at this geometry where

more than one donor orbital contributes substantially to the CT effect.

Overall, CDFT and BL-DFT share much in spirit, as both techniques generate localized,

self-consistent diabatic states in a DFT framework. However, because of the restricted form

of the density matrix invoked in BL-DFT, the primary focus in BL-DFT applications has

been on intermolecular interactions and the simulation of large condensed phase systems.

7.3 Balanced Treatment of Ground and Excited States in DFT

Density functional theory is formally a ground-state theory;3 several challenges hinder its for-

mal extension to excited states.391–394 Nevertheless, DFT-based methods that can describe

ground and excited states on the same footing are highly desirable for practical calculations

on large systems with several important electronic states. CDFT and CDFT-CI meet this

challenge by describing diabatic states as ground states in the presence of different constrain-

ing potentials. Diagonalization of the CDFT-CI Hamiltonian then provides both ground and

low-lying excited adiabatic states.

Another way to extend the machinery of ground-state Kohn-Sham DFT to excited states

is to construct higher-energy Slater determinants self-consistently from the Kohn-Sham or-

bitals.8, 395 This is usually accomplished by occupying the KS orbitals in a prescribed non-

Aufbau manner at each step of the SCF procedure. This procedure goes by several names:

∆SCF,396 ∆DFT,26 excited state DFT,397 and — delightfully — constrained DFT398, 399

(Here the constraint is on the KS orbital occupations rather than on the density).

The idea behind the ∆SCF approach to excited states was first presented by Ziegler, Rauk

and Baerends for the computation of multiplet energies in the context of the Xα method.395

Their work highlights the fact that single-determinant SCF calculations of excited states

do not necessarily yield spin eigenfunctions. For example, the lowest singlet excited state

of a closed-shell molecule is an open-shell species whose correct description requires two
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determinants (Figure 48). Ziegler and coworkers proposed a sum rule that corrects single-

determinant ∆SCF energies for spin contamination; in the case of the open-shell singlet, the

purification formula is

Es = 2E↑↓ −E↑↑ (77)

where E↑↓ and E↑↑ represent the energies of the mixed and triplet determinants of Figure

48, respectively.

Figure 48: Four singly excited determinants form a basis for one singlet and three triplet
spin eigenfunctions. SCF calculations produce single determinants, so some form of spin
purification is required to obtain the energy of the pure singlet. Adapted with permission
from ref 400.

The SCF equations are often more difficult to converge for electronic states with non-

Aufbau orbital occupations, and this is a potential drawback of the ∆SCF method. Modern

SCF algorithms are so efficient at seeking the global energy minimum that it can be difficult

to maintain non-Aufbau occupations through SCF convergence. However, there are no formal

limitations to the convergence of ∆SCF states, and several techniques have been proposed

and implemented to retain the target configuration, including the maximum overlap method

(MOM),401 the constrained orthogonality method (COM),402 and SCF metadynamics.403

With the development of practical tools for obtaining ∆SCF states, a number of inter-

esting applications have surfaced in recent years. ∆SCF has proven capable of describing

a wide variety of excited states — from valence excitations in dyes404 and in proteins405 to
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core excitations406 and Rydberg states397 — with errors typically only a fraction of an eV in

each case. ∆SCF has been shown to provide similar,404 and in some cases, superior406 per-

formance to the more frequently employed LR-TDDFT. For example, Robinson and Besley’s

∆SCF/MM simulations of the UV/Vis spectrum of the ET protein plastocyanin405 achieved

an accuracy comparable to that of a more expensive multireference configuration interaction

(MRCI) approach, while LR-TDDFT significantly underestimates the excitation energies for

the two most prominent peaks in the spectrum (Figure 49). These encouraging applications

point to a bright future for ∆SCF.

Figure 49: Comparison of simulated UV-Visible spectra of plastocyanin evaluated with
TDDFT and with the MOM approach to ∆SCF. Experimental reference spectra are shown
in red. Reproduced with permission from ref 405.

Although the Ziegler sum rule, equation 77, is a convenient way to correct the energy of a

∆SCF state for spin contamination, it does not provide access to a spin-adapted density, nor

to any other spin-adapted one-electron properties. It is thus desirable in some situations to

achieve spin adaptation of the ∆SCF state at the level of the KS orbitals. These observations
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motivated the development of the restricted open-shell Kohn-Sham (ROKS) methods.407, 408

Filatov and Shaik derived ROKS by analogy to Roothaan’s vector coupling formalism for

restricted open-shell Hartree Fock (ROHF) theory,409 and they found multiplet energies in

reasonable agreement with experiment for a range of small molecules,410 shown in Table

14. Frank and coworkers established ROKS as a computationally efficient DFT method for

excited state molecular dynamics.408, 411 Arguments disfavoring restricted open-shell calcu-

lations in the context of Kohn-Sham DFT have appeared in the literature,412 but it should

be noted that these arguments address ROKS for ground states of high-spin systems and do

not apply to the low-spin excited states under consideration here.

Molecule LDA BLYP BP86 FT97 Expt.
O2 1.06 0.97 1.01 1.08 0.97
SO 0.77 0.72 0.78 0.80 0.73
C+

2 1.35 1.04 1.20 1.23 1.37
H2CO 3.36 3.38 3.32 3.42 3.50

Table 14: Lowest molecular excitation energies (in eV) from ROKS calculations. Reproduced
with permission from ref 410.

ROKS has been successfully applied to the calculation of excited-state potential energy

surfaces413 and nonadiabatic coupling vectors,400 among others. A considerable practical

advantage shared by ROKS and CDFT is their accessibility for MD simulations, bestowed

by the similarity of their implementation to that of ground-state DFT. The spirit of the

ROKS approach has been extended to systems exhibiting significant static correlation in the

ground state through the restricted ensemble-referenced Kohn-Sham (REKS) method,414

and these methods together supply an efficient scheme for studying complex photochemistry

such as photoisomerization processes in a molecular rotor.415

Looking forward, we note that ∆SCF determinants can, in principle, provide a well-

tuned, compact set of reference states for a CI calculation. Thom and Head-Gordon have

used SCF metadynamics403 to obtain a basis of ∆HF reference states for CI calculations of
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the ground and low-lying excited states of LiF and O3.
293 These calculations suggest that

multireference schemes based on ∆SCF states could be a practical complementary approach

to CDFT-CI for obtaining ground and low-lying excited states with similar accuracy from a

low-dimensional CI calculation. Future work should establish the strengths and weaknesses

of ∆SCF states as a basis for multireference calculations.
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8 Conclusion

The purpose of this review is threefold: to motivate and introduce the CDFT formalism; to

summarize the diverse body of applications to date; and to offer some guidance to prospec-

tive users. There are likely dozens of creative ways that the ideas behind CDFT could be

synthesized into new contexts and unexplored applications; thus, even when approximations

to the XC functional eliminate the original motivating need for CDFT, we anticipate that

the ideas presented in this review will retain much of their value for applications in other

areas.

In this review, we emphasized the usefulness of CDFT as a practical strategy for several

important problems. CDFT offers a degree of control over the effects of self-interaction error

in approximate XC functionals, thereby combating the tendency of semilocal functionals

to over-delocalize the density. The charge constraints in CDFT provide a natural way to

define diabatic states for electron transfer with limited empiricism. These constraints also

define a prescription for calculating the properties of certain excited states, such as charge-

transfer and low-lying spin states, with ground-state DFT calculations. Couplings between

CDFT states can be exploited to obtain accurate adiabatic states for systems with significant

static correlation, and CDFT states and couplings can be exploited to construct physically

motivated models of complex phenomena. Together, these features make CDFT a versatile

and practical tool for modern density functional studies.

Several noteworthy limitations of CDFT were addressed in the preceding sections. CDFT

applies real-space constraints on the density, and the constraints are defined by partitioning

of the density according to an atomic population scheme. This introduces two ambiguities.

First, assigning nuclei to the various constraint regions entails applying some degree of

chemical intuition, and there may not be an obvious, unique, best choice for this partitioning.

Second, the form of the constraint potential depends on the population scheme, and there is
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some arbitrariness inherent in how any of these prescriptions carves up the density. From the

perspective of obtaining excited-state information from ground state calculations, another

major limitation of CDFT is that it can only describe a subset (albeit an important subset)

of electronic excitations. Likewise, CDFT might not be the right tool for modeling certain

diabatic states.

We close with some thoughts about future horizons for CDFT. Established evidence

that CDFT provides a computationally efficient framework for modeling diabatic ET states

should fuel further CDFT studies of ET in solution and of charge transport in OSCs, with the

long-term goal of quantifying the energetics and kinetics of energy conversion from excitons.

These simulations can inform the rational design of optimized artificial photosynthetic ar-

chitectures and organic electronics, eventually advancing cheaper PV materials and brighter,

more durable OLED displays. CDFT studies of ET processes in complex molecular archi-

tectures may also lead to improved chemical sensors and perhaps even to novel reactivity.

Regarding the CDFT method itself, the most promising avenue for advances concerns the

electronic coupling. What is the most accurate prescription for computing the coupling?

Is there a more rigorous formulation waiting to be uncovered? What about derivatives

of the electronic coupling? These are often assumed to be zero or negligibly small, and

they are difficult to probe experimentally; but CDFT provides a way to quantify them in

principle. Finally, there is ample room for more extensive application of CDFT and CDFT-

CI to a range of important model and real-world problems: charge transport in graphene,

exciton-CT dissociation kinetics, photochemical bleaching, proton-coupled electron transfer

mechanisms, singlet fission, and double excitations are all tempting candidates for investi-

gation with CDFT techniques. We anticipate that experimental and theoretical work on

many of these problems — and many more we haven’t conceived of — would benefit from

the quantitative insights that CDFT has been shown to deliver.
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[76] Pajda, M.; Kudrnovský, J.; Turek, I.; Drchal, V.; Bruno, P. Phys. Rev. B 2001, 64,

174402.

[77] Imai, Y.; Solovyev, I.; Imada, M. Phys. Rev. Lett. 2005, 95, 176405.

[78] Shorikov, A. O.; Lukoyanov, A. V.; Korotin, M. A.; Anisimov, V. I. Phys. Rev. B

2005, 72, 024458.

[79] Yamasaki, A.; Chioncel, L.; Lichtenstein, A. I.; Andersen, O. K. Phys. Rev. B 2006,

74, 024419.

[80] Anisimov, V.; Korotin, D.; Streltsov, S.; Kozhevnikov, A.; Kuneš, J.; Shorikov, A.;
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[259] Köppel, H.; Gronki, J.; Mahapatra, S. J. Chem. Phys. 2001, 115, 2377–2388.

[260] Song, L.; Gao, J. J. Phys. Chem. A 2008, 112, 12925–12935.

[261] Mo, Y.; Gao, J. J. Phys. Chem. A 2000, 104, 3012–3020.

[262] Difley, S.; Voorhis, T. V. J. Chem. Theory Comput. 2011, 7, 594–601.

[263] Zhu, X.-Y.; Yang, Q.; Muntwiler, M. Acc. Chem. Res. 2009, 42, 1779–1787.

162



[264] Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L.

Chem. Rev. 2007, 107, 926–952.

[265] Ding, F.; Wang, H.; Wu, Q.; Van Voorhis, T.; Chen, S.; Konopelski, J. P. J. Phys.

Chem. A 2010, 114, 6039–6046.

[266] Hush, N. S. J. Chem. Phys. 1958, 28, 962–972.

[267] Hush, N. S. Chem. Phys. 1975, 10, 361–366.

[268] Creutz, C.; Newton, M. D.; Sutin, N. J. Photochemistry and Photobiology A: Chemistry

1994, 82, 47–59.

[269] Yeganeh, S.; Van Voorhis, T. J. Phys. Chem. C 2010, 114, 20756–20763.

[270] Silbey, R. Annu. Rev. Phys. Chem. 1976, 27, 203–223.

[271] Dexter, D. L. J. Chem. Phys. 1953, 21, 836–850.

[272] Oberhofer, H.; Blumberger, J. J. Chem. Phys. 2010, 133, 244105.

[273] Mikkelsen, K. V.; Ratner, M. A. Chem. Rev. 1987, 87, 113–153.

[274] McConnell, H. M. J. Chem. Phys. 1961, 35, 508–515.

[275] Hoffmann, R.; Imamura, A.; Hehre, W. J. J. Am. Chem. Soc. 1968, 90, 1499–1509.

[276] Sidis, V.; Kubach, C.; Fussen, D. Phys. Rev. A 1983, 27, 2431–2446.

[277] Paulson, B. P.; Curtiss, L. A.; Bal, B.; Closs, G. L.; Miller, J. R. J. Am. Chem. Soc.

1996, 118, 378–387.

[278] Hsu, C.-P.; Fleming, G. R.; Head-Gordon, M.; Head-Gordon, T. J. Chem. Phys. 2001,

114, 3065–3072.

163



[279] Kurlancheek, W.; Cave, R. J. J. Phys. Chem. A 2006, 110, 14018–14028.

[280] Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Phys. Rev. Lett. 2008, 100, 146401.

[281] Sponer, H.; Teller, E. Rev. Mod. Phys. 1941, 13, 75.

[282] Casida, M. E. In Time-Dependnet Density Functional Response Theory for Molecules ;

World Scientific, 1995; pp 155–192.

[283] Thouless, D. J. Nucl. Phys. 1960, 21, 225–232.

[284] Smith, F. T. Phys. Rev. 1969, 179, 111–123.

[285] Baer, M. Chem. Phys. Lett. 1975, 35, 112 – 118.

[286] Mead, C. A.; Truhlar, D. G. J. Chem. Phys. 1982, 77, 6090–6098.

[287] Zener, C. P. R. Soc. London 1932, 137, 696–702.
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