
MIT Open Access Articles

The Real Cost of Software Errors

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Zhivich, Michael, and Robert K. Cunningham. “The Real Cost of Software Errors.” IEEE
Security & Privacy Magazine 7.2 (2009): 87–90. © 2012 IEEE

As Published: http://dx.doi.org/10.1109/MSP.2009.56

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/74607

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/74607

Secure Systems
Editor: Sean W. Smith, sws@cs.dartmouth.edu

	 MARCH/APRIL 2009 ■ 1540-7993/09/$25.00 © 2009 IEEE ■ COPublished by the IEEE Computer and Reliability Societies� 87

Michael
Zhivich and
Robert K.
Cunningham

MIT Lincoln
Laboratory

rely on software’s correct operation.
Here, we’ve compiled several ex-
amples from diverse critical systems
that demonstrate just how deadly
software errors can really be.

Patriot Missile Defense
System Failure
Patriot is the US Army’s mobile
surface-to-air missile defense
system, which was designed to
defend against aircraft, cruise
missiles, and short-range ballistic
missiles. On 25 February 1991, a
Patriot system failed to track and
intercept an incoming Iraqi Scud
missile at an army base in Dhah-
ran, Saudi Arabia. The failure let
the Scud missile reach its target,
killing 28 American soldiers and
wounding roughly 100 others (see
www.fas.org/spp/starwars/gao/
im92026.htm).

The failure’s cause was a round-
ing error resulting in a clock drift
that worsened with increased op-
erational time between system re-
boots. The original design assumed
that the Patriot system would be
fielded in a mobile fashion and
thus frequently moved—the oper-
ational cycle was supposed to be 14
hours. The system in Dhahran was
running for far longer—roughly
100 hours, resulting in a clock
skew of 0.34 seconds. Although
this percentage error might seem
small, it was sufficient to miscal-
culate the incoming missile’s lo-
cation. The Patriot system verifies
that an incoming object is a target
for interception by computing a
“box” based on the first radar con-
tact with the object, a known mis-
sile speed, and a time counter. A
radar contact within the predicted

Estimating the cost of these er-
rors is difficult because the effects
of a single critical system’s failure
can have profound consequences
across various sectors of the econ-
omy. The US National Institute of
Standards and Technology (NIST)
estimates that the US economy
loses $60 billion each year in costs
associated with developing and
distributing software patches and
reinstalling systems that have been
infected, as well as cost from lost
productivity due to computer mal-
ware and other problems that soft-
ware errors enable (see www.nist.
gov/public_affairs/releases/n02
-10.htm). The amount spent
cleaning up from any particu-
lar virus is staggering—the Love
Bug virus (2000) cost an estimat-
ed US$8.75 billion worldwide,
whereas CodeRed (2001) weighed
in at $2.75 billion and Slammer
(2003) at $1.5 billion (see www.
computereconomics.com/article.
cfm?id=936).

Worse yet, software problems
don’t stop with crashing brows-
ers, zombie computers sending
spam, or credit-card number theft.
Critical infrastructure systems, in-
cluding the power grid, petroleum
refineries, oil and gas pipelines,
water treatment plants, and nuclear
power plants, all rely on industrial

automation systems to perform
data acquisition and real-time
control. The software operating
these systems suffers from similar
errors as its enterprise counter-
parts; however, failures in these
domains are much more severe.
The August 2003 blackout in the
northeastern US occurred, in part,
because of a software fault in GE’s
XA/21 alarm-management sys-
tem. A memory corruption error
triggered by a race condition sent
the system into an infinite loop,
thus leaving the operator with-
out updated information about its
state. Had the system been work-
ing correctly, the operator could
have prevented the cascading fail-
ures and minimized the damage.1
Estimated costs associated with
this blackout were between US$7
and $10 billion (see www.icfi.
com/Markets/Energy/doc_files/
blackout-economic-costs.pdf).

Given that software errors are
so costly, an astute reader might
ask why the software industry isn’t
doing more to prevent them. A
common answer, even from some
software security professionals,
is that software errors aren’t suf-
ficiently important because they
“don’t kill people.” Unfortunately,
this statement indicates a misun-
derstanding of just how much we

S
oftware is no longer creeping into every as-

pect of our lives—it’s already there. In fact,

failing to recognize just how much everything

we do depends on software functioning cor-

rectly makes modern society vulnerable to software errors.

The Real Cost
of Software Errors

Secure Systems

88	 IEEE SECURITY & PRIVACY

box would confirm target detec-
tion, but the clock skew caused the
system to miscalculate the box’s
boundaries, so it didn’t register
the second radar contact with the
high-speed missile.

The ultimate irony in this di-
saster is that the army had already
worked out a software fix for this
problem—the updated software
arrived at the base just one day
too late.

Radiation Treatment
Overdoses
Although we might expect deaths
due to military systems (faulty
or otherwise), fatalities resulting
from medical systems designed to
heal are more concerning. A fairly
well-known failure in a linear ac-
celerator, known as Therac-25,
resulted in several cancer patients
receiving deadly radiation over-
doses during their treatment be-
tween June 1985 and January 1987
at several oncology clinics in the
US and Canada. The dosages were
later estimated to be more than
100 times greater than those typi-
cally used for treatment.

A race condition was partly to

blame for these accidents. Therac-25
was an improvement over the
Therac-20 model; it was smaller
and cheaper, and it utilized fewer
hardware components. One change
from the Therac-20 model replaced
hardware circuitry that acted as a
safety interlock—ensuring proper
positioning of shielding surfaces
and preventing the electron beam
power level from exceeding a pre-
defined maximum regardless of
operator input—with a software
implementation. The software
bug was triggered when a quick-
fingered operator issued a specific
set of commands at a control ter-
minal; the display information on
the operator’s screen was incon-
sistent with the device’s actual op-
eration and prevented the operator
from recognizing that an error had
occurred. The same bug existed in
the Therac-20 model’s software,
but the hardware safety interlock
prevented the system from deliver-
ing fatal radiation dosages.2

A more recent case of deadly
overdoses in radiation treatment
occurred at the Instituto Onco-
logico Nacional in Panama City
in 2001. Treatment-planning

software from Multidata Systems
International resulted in incor-
rectly calculated radiation dosages.
Twenty-eight patients received ex-
cessive amounts of radiation, with
fatal consequences for several. Op-
erators triggered the software er-
ror by attempting to overcome the
system’s limitation in the number
and configuration of shielding
surfaces used to isolate an area for
irradiation. The operators found
that by drawing an area with a
hole in it, they could get the sys-
tem to dispense the right dosage
in the correct location. However,
unknown to them, drawing such
a surface in one direction resulted
in a correct calculation, whereas
drawing the surface differently
resulted in an overdose. We can’t
blame the software alone for these
incidents—the operators were sup-
posed to perform manual calcula-
tions to ensure that the dosage the
software computed was appropri-
ate. They ignored this important
check due to lax administrative
procedures at the medical institu-
tion (see www.fda.gov/cdrh/ocd/
panamaradexp.html or www.fda.
gov/bbs/topics/NEWS/2003/
NEW00903.html).

Bellingham, WA,
Pipeline Rupture
Critical infrastructure systems,
like military and medical systems,
also depend on software for robust
and secure operation. Operators
rely on supervisory control and
data acquisition (SCADA) systems
to provide accurate, real-time in-
formation in order to assess the
system state correctly and operate
it reliably. Although critical infra-
structure systems include physical
safeguards in conjunction with
computerized SCADA systems, a
software failure that prevents the
operator from seeing the system’s
actual state can result in a cata-
strophic failure.

On 10 June 1999, a 16-inch-
diameter pipeline ruptured in
Bellingham, Washington, releas-

Secure Systems

	 www.computer.org/security� 89

ing 237,000 gallons of gasoline
into a creek that flowed through
Whatcom Falls Park. The gasoline
pools ignited and burned an area
covering approximately 1.5 miles
along the creek. Two 10-year-old
boys and an 18-year-old man died
as a result of this accident, and
an additional eight injuries were
documented. The failed pipe-
line’s owner, the Olympic Pipe-
line Company, estimated the total
property damages to be at least
US$45 million.

The rupture itself occurred due
to a combination of causes. The
pipeline was weakened by physical
damage from nearby construction.
High pressures on the pipeline
during subsequent operation ex-
acerbated this damage, resulting
in the rupture and release of gaso-
line. However, an investigation
determined that an unresponsive
SCADA system prevented the op-
erator from recognizing that the
pipeline had ruptured and tak-
ing appropriate action to limit the
amount of gasoline spilled. The
report authors believe that shut-
ting down the pipeline earlier
could have prevented the result-
ing explosion (see www.ntsb.gov/
publictn/2002/PAR0202.pdf).

Finding Solutions
As these examples demonstrate,
software errors affect many criti-
cal systems, from military installa-
tions to medical systems to critical
infrastructure. Moreover, in some
cases, software faults result in fatal
consequences because software is
integral to how we assess and re-
spond to situations in the physical
domain. Whether software faults
are triggered by operator error,
an unlikely sequence of events,
or a malicious adversary matters
little—the results can be equally
disastrous. Robustness and secur
ity are two sides of the same coin
because both can be compromised
by failures in a system’s availabil-
ity, reliability, or integrity.

Although we can’t blame soft-

ware errors entirely for the inci-
dents we present here, our reliance
on software must come with an
understanding of the consequenc-
es of software failures. These ex-
amples further support the NIST
report’s conclusions—software is
inadequately tested for supporting
critical systems reliably. Academic
work in several disciplines, such as
model checking, software verifica-
tion, static analysis, and automated
testing, exhibits promise in de-
livering software systems that are
free from certain defects.

Model checking and software
verification rely on mathemati-
cally modeling a program’s com-
putation to verify that a certain
fault (such as a division by zero)
can’t occur at any point in the pro-
gram. These methods identify not
the problem’s location but rather
parts of the code that are guaran-
teed to be problem-free. Although
this metric turns the usual bug-
finding task on its head, it lets us
make certain statements about the
quality of the code that the system
can prove to be correct. Unfortu-
nately, conducting such proofs for
large code bases becomes imprac-
tical because an accurate model of
software behavior becomes un-
wieldy quickly, forcing the system
to make approximations that affect
the analysis’s precision.

Static analysis has become
rather popular, and several com-
mercial companies sell tools that
can analyze C, C++, Java, and C#
software. Static analysis encom-
passes several different techniques,
the most prominent being lexical
analysis and abstract interpreta-
tion. A lexical analysis tool scans
the software to identify usages and
language idioms that are frequent-
ly misused and thus likely indicate
that the programmer has made an
error. However, these tools tend
to have high false-alarm rates,
requiring developers to evaluate
many false warnings in search of
real bugs. Abstract interpretation
tools, on the other hand, per-

form a symbolic execution of the
program that treats all inputs and
unknown memory locations as
containing a symbolic value that
the program can manipulate. Such
a technique tends to arrive at more
precise results than lexical analy-
sis; however, program size and
complexity can force the tool to
use approximations that adversely
affect both the false-positive and
false-negative rates.3

Automated testing has also re-
ceived a lot of attention in the past
several years. With the advent of
fuzzing, a technique that uses mu-
tation or other mechanisms to
send random-looking inputs to
the program in attempts to crash
it, many developers are looking
to augment their functional test-
ing infrastructure to include auto-
mated fuzz testing. Incorporating
such testing into the software de-
velopment process provides some
confidence in software’s ability to
handle even unexpected inputs ro-
bustly. Such techniques also bene-
fit from source or binary program
instrumentation that can detect
subtle errors that might not result
in a crash.4,5

A lthough much academic re-
search has focused on software

analysis and testing, the software
industry has been slow to adopt
these tools. A quick back-of-the-
envelope calculation presented as
part of the Quality of Protection
Workshop indicates that industry
spending on protecting software
assets (estimated at 0.2 percent of
the value of the software market) is
an order of magnitude smaller than

T he ACM Forum on Risks to the Public in Com-

puters and Related Systems (Risks) is an excel-

lent resource for examples of computer failures and

their effects on the public. You can find an archive of

this mailing list at http://catless.ncl.ac.uk/Risks/.

Further Reading

Secure Systems

90	 IEEE SECURITY & PRIVACY

spending to protect network assets
(estimated at 2.3 percent of the
value of the network equipment
market; see http://1raindrop.type
pad.com/1_raindrop/2008/11/the
-economics-of-finding-and-fixing
-vulnerabilities-in-distributed-systems
-.html). On the other hand, the
market for software tools and ser-
vices is growing—in 2007, it was
worth US$275 to $300 million,
with 50 to 83 percent increases in
static analysis and black-box testing
sectors.6 We can only hope that
this trend continues, as more ro-
bust and secure software can help
us prevent tragedies similar to the
ones described here from happen-
ing in the future.

References
US–Canada Power System Out-1.	
age Task Force, Final Report on
the August 14, 2003 Blackout in the
United States and Canada: Causes
and Recommendations, tech. report,
US Dept. of Energy, Apr. 2004.

G. Williamson, “Software Safety 2.	
and Reliability,” IEEE Potentials,
vol. 16, no. 4, 1997, pp. 32–36.
R. Lippmann, M. Zitser, and T. 3.	
Leek, “Testing Static Analysis Tools
using Exploitable Buffer Overflows
from Open Source Code,” ACM
SIGSOFT Software Eng. Notes, vol.
29, no. 6, 2004, pp. 97–106.
T. Leek, M. Zhivich, and R. Lipp-4.	
mann, “Dynamic Buffer Over-
flow Detection,” Proc. Workshop
Evaluation of Software Defect De-
tection Tools, 2005; www.cs.umd.
edu/~pugh/BugWorkshop05/
papers/61-zhivich.pdf.
M. Zhivich, 5.	 Detecting Buffer Over-
flows using Testcase Synthesis and
Code Instrumentation, master’s the-
sis, Dept. of Electrical Eng. and
Computer Science, Massachusetts
Inst. of Tech., May 2005.
G. McGraw, “Software [In]Secu-6.	
rity: Software Security Demand
Rising,” InformIT, 11 Aug. 2008;
www.in formit.com/ar t icles/
article.aspx?p=1237978.

Michael Zhivich is an associate mem-

ber of the technical staff at the MIT Lin-

coln Laboratory. His research interests

include program analysis, automated

testing, cryptography, and usability as-

pects of security. Zhivich has Sc.B. and

M.Eng. degrees in computer science

and electrical engineering from MIT.

He’s a member of the ACM and Eta

Kappa Nu. Contact him at mzhivich@

ll.mit.edu.

Robert K. Cunningham is the associ-

ate leader of the Information Systems

Technology group at the MIT Lincoln

Laboratory. His research interests in-

clude detection and analysis of mali-

cious software and automatic detection

of software faults in mission-critical

software. Cunningham has an Sc.B.

in computer engineering from Brown

University, an MS in electrical engineer-

ing, and a PhD in cognitive and neural

systems from Boston University. He’s a

member of Sigma Xi and a senior mem-

ber of the IEEE. Contact him at rkc@

ll.mit.edu.

