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rely on software’s correct operation. 
Here, we’ve compiled several ex-
amples from diverse critical systems 
that demonstrate just how deadly 
software errors can really be.

Patriot Missile Defense 
System Failure
Patriot is the US Army’s mobile 
surface-to-air missile defense 
system, which was designed to 
defend against aircraft, cruise 
missiles, and short-range ballistic 
missiles. On 25 February 1991, a 
Patriot system failed to track and 
intercept an incoming Iraqi Scud 
missile at an army base in Dhah-
ran, Saudi Arabia. The failure let 
the Scud missile reach its target, 
killing 28 American soldiers and 
wounding roughly 100 others (see 
www.fas.org/spp/starwars/gao/
im92026.htm).

The failure’s cause was a round-
ing error resulting in a clock drift 
that worsened with increased op-
erational time between system re-
boots. The original design assumed 
that the Patriot system would be 
fielded in a mobile fashion and 
thus frequently moved—the oper-
ational cycle was supposed to be 14 
hours. The system in Dhahran was 
running for far longer—roughly 
100 hours, resulting in a clock 
skew of 0.34 seconds. Although 
this percentage error might seem 
small, it was sufficient to miscal-
culate the incoming missile’s lo-
cation. The Patriot system verifies 
that an incoming object is a target 
for interception by computing a 
“box” based on the first radar con-
tact with the object, a known mis-
sile speed, and a time counter. A 
radar contact within the predicted 

Estimating the cost of these er-
rors is difficult because the effects 
of a single critical system’s failure 
can have profound consequences 
across various sectors of the econ-
omy. The US National Institute of 
Standards and Technology (NIST) 
estimates that the US economy 
loses $60 billion each year in costs 
associated with developing and 
distributing software patches and 
reinstalling systems that have been 
infected, as well as cost from lost 
productivity due to computer mal-
ware and other problems that soft-
ware errors enable (see www.nist.
gov/public_affairs/releases/n02 
-10.htm). The amount spent 
cleaning up from any particu-
lar virus is staggering—the Love 
Bug virus (2000) cost an estimat-
ed US$8.75 billion worldwide, 
whereas CodeRed (2001) weighed 
in at $2.75 billion and Slammer 
(2003) at $1.5 billion (see www.
computereconomics.com/article.
cfm?id=936).

Worse yet, software problems 
don’t stop with crashing brows-
ers, zombie computers sending 
spam, or credit-card number theft. 
Critical infrastructure systems, in-
cluding the power grid, petroleum 
refineries, oil and gas pipelines, 
water treatment plants, and nuclear 
power plants, all rely on industrial 

automation systems to perform 
data acquisition and real-time 
control. The software operating 
these systems suffers from similar 
errors as its enterprise counter-
parts; however, failures in these 
domains are much more severe. 
The August 2003 blackout in the 
northeastern US occurred, in part, 
because of a software fault in GE’s 
XA/21 alarm-management sys-
tem. A memory corruption error 
triggered by a race condition sent 
the system into an infinite loop, 
thus leaving the operator with-
out updated information about its 
state. Had the system been work-
ing correctly, the operator could 
have prevented the cascading fail-
ures and minimized the damage.1 
Estimated costs associated with 
this blackout were between US$7 
and $10 billion (see www.icfi.
com/Markets/Energy/doc_files/
blackout-economic-costs.pdf ).

Given that software errors are 
so costly, an astute reader might 
ask why the software industry isn’t 
doing more to prevent them. A 
common answer, even from some 
software security professionals, 
is that software errors aren’t suf-
ficiently important because they 
“don’t kill people.” Unfortunately, 
this statement indicates a misun-
derstanding of just how much we 

S
oftware is no longer creeping into every as-

pect of our lives—it’s already there. In fact, 

failing to recognize just how much everything 

we do depends on software functioning cor-

rectly makes modern society vulnerable to software errors. 
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box would confirm target detec-
tion, but the clock skew caused the 
system to miscalculate the box’s 
boundaries, so it didn’t register 
the second radar contact with the 
high-speed missile.

The ultimate irony in this di-
saster is that the army had already 
worked out a software fix for this 
problem—the updated software 
arrived at the base just one day 
too late.

Radiation Treatment 
Overdoses
Although we might expect deaths 
due to military systems (faulty 
or otherwise), fatalities resulting 
from medical systems designed to 
heal are more concerning. A fairly 
well-known failure in a linear ac-
celerator, known as Therac-25, 
resulted in several cancer patients 
receiving deadly radiation over-
doses during their treatment be-
tween June 1985 and January 1987 
at several oncology clinics in the 
US and Canada. The dosages were 
later estimated to be more than 
100 times greater than those typi-
cally used for treatment.

A race condition was partly to 

blame for these accidents. Therac-25 
was an improvement over the 
Therac-20 model; it was smaller 
and cheaper, and it utilized fewer 
hardware components. One change 
from the Therac-20 model replaced 
hardware circuitry that acted as a 
safety interlock—ensuring proper 
positioning of shielding surfaces 
and preventing the electron beam 
power level from exceeding a pre-
defined maximum regardless of 
operator input—with a software 
implementation. The software 
bug was triggered when a quick-
fingered operator issued a specific 
set of commands at a control ter-
minal; the display information on 
the operator’s screen was incon-
sistent with the device’s actual op-
eration and prevented the operator 
from recognizing that an error had 
occurred. The same bug existed in 
the Therac-20 model’s software, 
but the hardware safety interlock 
prevented the system from deliver-
ing fatal radiation dosages.2

A more recent case of deadly 
overdoses in radiation treatment 
occurred at the Instituto Onco-
logico Nacional in Panama City 
in 2001. Treatment-planning 

software from Multidata Systems 
International resulted in incor-
rectly calculated radiation dosages. 
Twenty-eight patients received ex-
cessive amounts of radiation, with 
fatal consequences for several. Op-
erators triggered the software er-
ror by attempting to overcome the 
system’s limitation in the number 
and configuration of shielding 
surfaces used to isolate an area for 
irradiation. The operators found 
that by drawing an area with a 
hole in it, they could get the sys-
tem to dispense the right dosage 
in the correct location. However, 
unknown to them, drawing such 
a surface in one direction resulted 
in a correct calculation, whereas 
drawing the surface differently 
resulted in an overdose. We can’t 
blame the software alone for these 
incidents—the operators were sup-
posed to perform manual calcula-
tions to ensure that the dosage the 
software computed was appropri-
ate. They ignored this important 
check due to lax administrative 
procedures at the medical institu-
tion (see www.fda.gov/cdrh/ocd/
panamaradexp.html or www.fda.
gov/bbs/topics/NEWS/2003/
NEW00903.html).

Bellingham, WA, 
Pipeline Rupture
Critical infrastructure systems, 
like military and medical systems, 
also depend on software for robust 
and secure operation. Operators 
rely on supervisory control and 
data acquisition (SCADA) systems 
to provide accurate, real-time in-
formation in order to assess the 
system state correctly and operate 
it reliably. Although critical infra-
structure systems include physical 
safeguards in conjunction with 
computerized SCADA systems, a 
software failure that prevents the 
operator from seeing the system’s 
actual state can result in a cata-
strophic failure.

On 10 June 1999, a 16-inch-
diameter pipeline ruptured in 
Bellingham, Washington, releas-
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ing 237,000 gallons of gasoline 
into a creek that flowed through 
Whatcom Falls Park. The gasoline 
pools ignited and burned an area 
covering approximately 1.5 miles 
along the creek. Two 10-year-old 
boys and an 18-year-old man died 
as a result of this accident, and 
an additional eight injuries were 
documented. The failed pipe-
line’s owner, the Olympic Pipe-
line Company, estimated the total 
property damages to be at least 
US$45 million.

The rupture itself occurred due 
to a combination of causes. The 
pipeline was weakened by physical 
damage from nearby construction. 
High pressures on the pipeline 
during subsequent operation ex-
acerbated this damage, resulting 
in the rupture and release of gaso-
line. However, an investigation 
determined that an unresponsive 
SCADA system prevented the op-
erator from recognizing that the 
pipeline had ruptured and tak-
ing appropriate action to limit the 
amount of gasoline spilled. The 
report authors believe that shut-
ting down the pipeline earlier 
could have prevented the result-
ing explosion (see www.ntsb.gov/
publictn/2002/PAR0202.pdf ).

Finding Solutions
As these examples demonstrate, 
software errors affect many criti-
cal systems, from military installa-
tions to medical systems to critical 
infrastructure. Moreover, in some 
cases, software faults result in fatal 
consequences because software is 
integral to how we assess and re-
spond to situations in the physical 
domain. Whether software faults 
are triggered by operator error, 
an unlikely sequence of events, 
or a malicious adversary matters 
little—the results can be equally 
disastrous. Robustness and secur
ity are two sides of the same coin 
because both can be compromised 
by failures in a system’s availabil-
ity, reliability, or integrity.

Although we can’t blame soft-

ware errors entirely for the inci-
dents we present here, our reliance 
on software must come with an 
understanding of the consequenc-
es of software failures. These ex-
amples further support the NIST 
report’s conclusions—software is 
inadequately tested for supporting 
critical systems reliably. Academic 
work in several disciplines, such as 
model checking, software verifica-
tion, static analysis, and automated 
testing, exhibits promise in de-
livering software systems that are 
free from certain defects.

Model checking and software 
verification rely on mathemati-
cally modeling a program’s com-
putation to verify that a certain 
fault (such as a division by zero) 
can’t occur at any point in the pro-
gram. These methods identify not 
the problem’s location but rather 
parts of the code that are guaran-
teed to be problem-free. Although 
this metric turns the usual bug-
finding task on its head, it lets us 
make certain statements about the 
quality of the code that the system 
can prove to be correct. Unfortu-
nately, conducting such proofs for 
large code bases becomes imprac-
tical because an accurate model of 
software behavior becomes un-
wieldy quickly, forcing the system 
to make approximations that affect 
the analysis’s precision.

Static analysis has become 
rather popular, and several com-
mercial companies sell tools that 
can analyze C, C++, Java, and C# 
software. Static analysis encom-
passes several different techniques, 
the most prominent being lexical 
analysis and abstract interpreta-
tion. A lexical analysis tool scans 
the software to identify usages and 
language idioms that are frequent-
ly misused and thus likely indicate 
that the programmer has made an 
error. However, these tools tend 
to have high false-alarm rates, 
requiring developers to evaluate 
many false warnings in search of 
real bugs. Abstract interpretation 
tools, on the other hand, per-

form a symbolic execution of the 
program that treats all inputs and 
unknown memory locations as 
containing a symbolic value that 
the program can manipulate. Such 
a technique tends to arrive at more 
precise results than lexical analy-
sis; however, program size and 
complexity can force the tool to 
use approximations that adversely 
affect both the false-positive and 
false-negative rates.3

Automated testing has also re-
ceived a lot of attention in the past 
several years. With the advent of 
fuzzing, a technique that uses mu-
tation or other mechanisms to 
send random-looking inputs to 
the program in attempts to crash 
it, many developers are looking 
to augment their functional test-
ing infrastructure to include auto-
mated fuzz testing. Incorporating 
such testing into the software de-
velopment process provides some 
confidence in software’s ability to 
handle even unexpected inputs ro-
bustly. Such techniques also bene-
fit from source or binary program 
instrumentation that can detect 
subtle errors that might not result 
in a crash.4,5

A lthough much academic re-
search has focused on software 

analysis and testing, the software 
industry has been slow to adopt 
these tools. A quick back-of-the-
envelope calculation presented as 
part of the Quality of Protection 
Workshop indicates that industry 
spending on protecting software 
assets (estimated at 0.2 percent of 
the value of the software market) is 
an order of magnitude smaller than 

T he ACM Forum on Risks to the Public in Com-

puters and Related Systems (Risks) is an excel-

lent resource for examples of computer failures and 

their effects on the public. You can find an archive of 

this mailing list at http://catless.ncl.ac.uk/Risks/.
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spending to protect network assets 
(estimated at 2.3 percent of the 
value of the network equipment 
market; see http://1raindrop.type 
pad.com/1_raindrop/2008/11/the 
-economics-of-finding-and-fixing 
-vulnerabilities-in-distributed-systems 
-.html). On the other hand, the 
market for software tools and ser-
vices is growing—in 2007, it was 
worth US$275 to $300 million, 
with 50 to 83 percent increases in 
static analysis and black-box testing 
sectors.6 We can only hope that 
this trend continues, as more ro-
bust and secure software can help 
us prevent tragedies similar to the 
ones described here from happen-
ing in the future. 
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