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Coherent iImaging
asalinear, shift-invariant system
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Thin transparency
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The Optical Transfer Function

|:|(u,v)= <~Uh(x y)(z} normalizedtol

” H (u (U =u,v —vivdu'dy
m H(u', v’){ du'dv’
real (H) * real(H )
1 1
—Unax Unnax _Zumax | | 2ur;ax
1D amplitude transfer function 1D OTF

MIT 2.71/2.710 Optics
11/15/04 wk11l-a-4



Amplitudetransfer function and M TF of
circular aperturein a4F system
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Amplitudetransfer function and M TF of
circular aperturein a4F system
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I | I X “ Safe’ resolution in optical
D systems
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Diffraction—imited resolution (safe)

Two point objects are “just resolvable” (limited by diffraction only)

If they are separated by:
Two—dimensional systems One-dimensional systems
(rotationally symmetric PSF) (e.g. dit-ike aperture)

Safe definition: y) y)

. Ar'=122—— AX'=——
(one-obe spacing) (N A) (N A)
Pushy deflnltlgn: AF = 0.61 A AX = 0.5 A
(1/2- obe spacing) (NA) (NA)

Y ou will see different authors giving different definitions.
Rayleigh in his original paper (1879) noted the issue of noise
and warned that the definition of “just—resolvable” points
IS system— or application—dependent
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Also affecting resolution: aberrations

All our calculations have assumed “geometrically perfect”
systems, i.e. we calculated the wave—optics behavior of
systems which, in the paraxial geometrical optics approximation
would have imaged a point object onto a perfect point image.

The effect of aberrations (cal culated with non—paraxial geometrical
optics) isto blur the “geometrically perfect” image; including
the effects of diffraction causes additional blur.

_ geometrical optics picture
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Also affecting resolution: aberrations
A
1 ‘ wave optics picture 1

A

H

. .
* *
\d L
. .
. .
. -
. .
. .
A4 .
A4 g
. .
. -
A 4
\g .
. .
\d .
A4 .

* “
. .
. .
. .

. -
. .
** %

.
‘e

ZSxrrnax _zsx,max

_zsx,max | ZSx,max
“diffraction—imited”
(aberration—free) 1D MTF 1D MTF with aberrations
S et diffractionlimited ~ ~3 wancorm something
1D PSF wider
(sinc?)

MIT 2.71/2.710 Optics
11/15/04 wk11-a-10



Typical result of optical design
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Thelimitsof our approximations

 Red-ife MTFsinclude aberration effects, whereas our
analysis has been “diffraction-imited”

« Aberration effectson the MTF are FoV (field) location—
dependent: typically we get more blur near the edges of the
field (narrower MTF < broader PSF)

e This, in addition, means that real-ife optical systems are
not shift invariant either!

* = the concept of MTF is approximate, near the region
where the system is approximately shift invariant (recall:
transfer functions can be defined only for shift invariant
linear systems!)
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Theutility of our approximations

* Nevertheless, within the limits of the paraxial, linear shift—
Invariant system approximation, the concepts of PSF/MTF
provide

— auseful way of thinking about the behavior of optical
systems

— an upper limit on the performance of a given optical
system (diffraction-imited performance is the best we
can hope for, in paraxial regions of the field;

aberrations will only make worse non—paraxial portions
of the field)
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Common misinter pretations

Attempting to resolve object features smaller than the
“resolution limit” (e.g. 1.22A/NA) Is hopeless.

|mage quality degradation as object
® features become smaller than the
® resolution limit (“exceed the resolution

limit”) is noise dependent and gradual.
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Common misinter pretations

Attempting to resolve object features smaller than the
“resolution limit” (e.g. 1.22A/NA) Is hopeless.

Besides, digital processing of the acquired
N () @ mages (e.g. methods such asthe CLEAN
® algorithm, Wiener filtering, expectation
maximization, etc.) can be employed.
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Common misinter pretations

Super -resolution

By engineering the pupil function (“apodizing”) to
result in a PSF with narrower side-lobe, one can
“beat” the resolution limitations imposed by the

angular acceptance (NA) of the system.

Pupil function design always resultsin
@ () narrower main lobe but accentuated
® side-obes
(i1) lower power transmitted through the

system
Both effects are BAD on the image
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Apodization
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Apodization

Clear pupil Gaussian pupil
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Unapodized (clear—aperture) MTF

Clear pupil MTF of clear pupil
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Unapodized (clear—aperture) MTF

Clear pupil MTF of clear pupil
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Unapodized (clear—aperture) PSF
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Apodized (annular) MTF

Annular pupil MTF of annular pupil
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Apodized (annular) PSF
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Apodized (Gaussian) MTF

Gaussian pupil MTF of Gaussian pupil
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Apodized (Gaussian) PSF
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Conclusions (?)

e Annular—type pupil functionstypically narrow the main
lobe of the PSF at the expense of higher side lobes
o Gaussian—type pupil functions typically suppress the side
lobes but broaden the main lobe of the PSF
o Compromise? — application dependent
— for point-ike objects (e.g., stars) annular apodizers
may be agood idea
— for low—frequency objects (e.g., diffuse tissue)
Gaussian apodizers may image with fewer artifacts
o Caveat: Gaussian amplitude apodizers very difficult to
fabricate and introduce energy loss = binary phase

apodizers (lossless by nature) are used instead; typically
designed by numerical optimization
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Common misinter pretations

Super -resolution

By engineering the pupil function (“apodizing”) to
result in a PSF with narrower side-lobe, one can
“beat” the resolution limitations imposed by the

angular acceptance (NA) of the system.

main lobe size | < sidelobes T
® and vice versa
® main lobe size T < sidelobes |
power |oss an important factor

compromise application dependent
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Common misinter pretations

“This super cool digital camera has resolution
of 5 Mega pixels (5 million pixels).”

Thisisthe most common and worst
® misuse of the term “resolution.”
® They are actually referring to the

space-bandwidth product (SBP)
of the camera
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What can a camer aresolve?

Answer depends on the magnification and
PSF of the optical system attached to the camera

PSF of optical
system

pixelson

TR R AR RN .
cameradie

Pixels significantly smaller than the system PSF
are somewhat underutilized (the effective SBP is reduced)
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Summary of misinter pretations
of “resolution” and thar refutations

o |tispointlessto attempt to resolve beyond the Rayleigh
criterion (however defined)

— NO: difficulty increases gradually as feature size
shrinks, and difficulty is noise dependent

« Apodization can be used to beat the resolution limit
Imposed by the numerical aperture

— NO: watch sidelobe growth and power efficiency loss
e Theresolution of my camerais NxM pixels
— NO: the maximum possible SBP of your system may be
NxM pixels but you can easily underutilize it by using a
suboptimal optical system
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