Aberrations

- Chromatic
 - is due to the fact that the refractive index of lenses, etc. varies with wavelength; therefore, focal lengths, imaging conditions, etc. are wavelength-dependent
- Geometrical
 - are due to the deviation of non-paraxial rays from the approximations we have used so far to derive focal lengths, imaging conditions, etc.; therefore, rays going through imaging systems typically do not focus perfectly but instead scatter around the "paraxial" (or "Gaussian") focus

Geometrical aberrations

• Deviation of the wave front from its ideal" spherical shope due to superfect refraction by the optical elements

perfect spherical wavefort (fourses to a point)

Optical elements (lenses, mirrors) produce perfect (non-olderroited) wavefronts only in the paraxial approximation (i.e., for angles of propagation never the optical axis). At larger angles, 5 kinds of aberration (called "Seidel" aberrations) occur

Optical design

Exact ray-tracing

Optical design

Exact ray-tracing

ray scatter diagram (\Leftrightarrow defocus)

Optical design

Surface	Curvature	Index to the	Distance
name		right	to next
			element
SO	Inf	1.0	0.1
S 1	21.6	1.54	0.001
S2	-21.6	1.0	0.1
S3			
S 4			

Features of optical design software

- Databases of common lenses and elements sold by vendors
- Simulate aberrations and ray scatter diagrams for various points along the field of the system
- Standard optical designs (e.g. achromatic doublet, Cooke triplet)
- Permit optimization of design parameters (e.g. curvature of a particular surface or distance between two surfaces) *vs* designated functional requirements (e.g. field curvature and astigmatism coefficients)
- Also account for diffraction by calculating the <u>modulation transfer function (MTF)</u> at different points along the field

Vendors

- Optical design
 - Code V
 - Oslo
 - Zemax
 - Accos
 - Asap
 - consultants

- Optics & optomechanics
 - Newport
 - Newfocus
 - Coherent
 - Opto-Sigma
 - Thorlabs
 - Edmund
 - specialized shops

Images removed due to copyright concerns

www.optikos.com