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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Electrical Engineering and Computer Science 

6.241: Dynamic Systems—Fall 2003 

Final Exam Solutions 

oProblem 1 (i) There are many choices for u . We can achieve the desired result, namely, 
ṡ = d′(A + bk′)x = 0 when d′x = 0,  if  we  pick  k such that λd′ = d′(A + bk′). Letting λ = 0  
yields u = ao a1 − do a2 − d1 . . .  an−1 − dn−2 x.   

0 1 0 · · ·  0  0 0 1 · · ·  0  (ii) Using the uo that was found above, we have that ẋ = Ax+bu =  .  x..  .. . .  

0 −do −d1 · · ·  −dn−2 
First, note that no vector in S can evolve in the direction of the eigenvalue at the origin, since 
the left eigenvector associated with this eigenvalue is d′ and d′x = 0  ∀x ∈ S. Alternatively, note 

′ = 0, will not that the vectors in the nullspace of A + bk′, namely x = c 0 0  · · ·  0 and c �
belong to S as long as do �= 0. So, the necessary and sufficient conditions becomes that the roots of 
sn−1 + dn−2s

n−2 + · · · + d1s + do (i.e. the eigenvalues of A + bk′ except the one we placed at zero 
by our choice of uo) are in the open LHP. 

(iii) First, note that ṡ = −ao −a1 + do −a2 + d1 . . .  −an1 + dn−2 x + uo(x)+  ̃ u(x),u(x) =  ̃
where the last equality follows from our choice of uo of part (i). Now, we can verify that if 
˜ d′x = 0  and  ̃u(x) =  −1 c |d′x| for d

′x � u(x) = 0 for  d′x = 0 we have the desired result. Namely, when 2 

= 0,  2sṡ = 2d′x˜d′x � u(x) ≤ −c|d′x|. 
d′x(iv) Assume, without loss of generality, that so = d′x(0) > 0; then, |d′x| = 1 until s(tf ) = 0, at 

which time the input changes. Thus, ṡ = −1 c; integrating, we have that sf = so − 1 ctf . So, sf = 02 2 
2sowhen tf = c . 

(v) With the choice of u made above, we have that ẋ = (A + bk′)x − c d′x 
2 |d′x| b. Consider the Lyapunov 

function W = x′Px  where P >  0 such that (A+bk′)′P +P (A+bk′) ≤ 0 since  A+bk′ has an eigenvalue 
˙ d′ xat the origin. Then, we have, W = x′((A + bk′)′P + P (A + bk′))x − 2c |d′ x| x

′Pb  ≤ −2c d
′x x′Pb.  |d′x|

˙Note that if we chose P such that its last column is d, we have  W ≤ −2c|d′x|. 

Problem 2 

1. It is not possible. To see that we rewrite (I + P0K)−1 as: 

1
(I + P0K)−1 = I − 

1′Kp0 + 1  
P0K 

As such, regardless of K, for every w, we can choose x such that (I + P0(jw)K(jw))−1x = x. 
That implies that supw σmax((I + P0(jw)K(jw))−1) ≥ 1. 
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2. Consider the decomposition: 

(I + PK)−1 = (I + P (I + ∆)K)−1 = (I + P0K)−1(I + P0∆K(I + P0K)−1)−1 

where ∆ = diag(∆1, ∆2). Since (I + P0K)−1 is stable, we only have to check if det(I + 
P0∆K(I + P0K)−1) = 0 for some choice of ∆i satisfying ‖∆i‖2−ind < γi.


We start by noticing that det(I +P0∆K(I +P0K)−1) =  det(1+1′∆f), where f(s) =  K(s)(I +

P0K)−1p0(s) is a vector of dimension 2. The condition for stability becomes:


∆1(jw)f1(jw) + ∆2(jw)f2(jw) �= −1 

Since we have complete freedom to choose ∆i, the necessary and sufficient condition for robust 
stability is just γ1|f1(jw)| + γ2|f2(jw)| < 1, for every w. 

3. Using the decomposition of the previous problem, we get: 

(I + PK)−1 = (I + P0K)−1(I + P0∆K(I + P0K)−1)−1 

We can further expand to find: 

(I + PK)−1 = (I + P0K)−1((I + P0K)−1 + (I + P0K)−1P0∆K(I + P0K)−1)−1(I + P0K)−1 

The submultiplicative and triangular inequalities allow us to get: 

σmax((I + PK)−1) ≤ 
σmax((I + P0K)−1) 

1 − σmax (∆)σmax ((I +P0K)−1P0)σmax (K(I+P0K)−1) 
σmax ((I+P0K)−1) 

From the definition of γ, it follows: 

σmax((I + P0K)−1)
σmax((I + PK)−1) ≤ 

1 − γσmax ((I+P0K)−1P0)σmax (K(I +P0K)−1) 
σmax ((I+P0K)−1) 

Taking sups, we find: 

‖(I + PK)−1‖ ≤  
‖(I + P0K)−1‖ 

1 − γ supw
σmax ((I+P0K)−1P0)σmax (K(I+P0K)−1) 

σmax ((I+P0K)−1) 

Problem 3 (i) To check stability of the closed loop, we must check stability of the transfer func-
tions from all inputs injected at the inputs of the blocks to all (physical) outputs. In this problem, 
the transfer function from an input injected at the input of the plant to the output of the plant 

s−3 2(P (I + Q(P − Po))−1(I −QPo)) is unstable: s+1 s−1 . 

(ii) Since P (s) and  Po(s) are in a parallel connection, a common unstable pole is an unstable unob-
servable mode of the closed loop system (see the Claim under the heading “Parallel Connection” in 
Chapter 30 of the Lecture notes.) Thus, the unstable pole will appear in at least one of the tranfer 
functions from all inputs to all outputs of the system. 
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(iii) All transfer function in the loop are stable since Q and P are stable. The transfer function 
from the output of the plant, to the input of the plant (seen by the plant) is −(I − QPo)−1Q. 
Hence, K = −(I −QPo)−1Q, and as we vary over stable Q, we obtain K for which the closed loop 
is stable, provided the interconnection remains well-posed. 

(iv) In the block diagram given for the problem, substitute the plant “P(s)”, by a block diagram 
representing Po + ∆ (drawn as a parallel connection of Po and ∆). Now, the transfer function seen 
by ∆ turns out to be −Q. So, applying the small gain theorem, we must have that ‖Q‖∞ ≤ 1. 

Problem 4 

1. Using the hint we get: 

∫ ∞ ∫ ∞ 

u ydt = U ′(jw)(H(jw)′ + H(jw))U(jw)dw 
0 0 

(Sufficient condition) Assume σmin(H(jw)′ + H(jw)) ≥ γ >  0 Clearly, from the definition of 
σmin we have: 

∫ ∞ ∫ ∞ 

u ydt = U ′(jw)(H(jw)′ + H(jw))U(jw)dw ≥ 
0 0 ∫ ∞ ∫ ∞ 

≥ σmin(H(jw)′ + H(jw))U ′(jw)U(jw)dw ≥ γ U ′(jw)U(jw)dw = γ‖u‖ (1) 
0 0 

(Necessary condition) Assume that there exists w0 such that σmin(H(jw0)′ + H(jw0)) < γ. 
Choose { 

v × cos(w0t) if  t ∈ [0, T ] 
uT (t) =  

0 otherwise 

2where v is chosen to satisfy v′(H(jw)′ + H(jw))v = σmin(H(jw0)′ + H(jw0))‖v‖
It can be shown that: ∫ ∞ 

UT 
′ (jw)(H(jw)′ + H(jw))UT (jw)dw0lim = σmin(H(jw0)′ + H(jw0))

T →∞ ‖uT ‖2 

where we used the fact that, as T grows, ‖UT (jw)‖2 

approaches a “dirac” at the frequency w0.‖uT ‖2 

2. Using the block diagram, we start with ∫ ∞ ∫ ∞∫ ∞ ∫ ∞ 

y u = y ′(e + Ky) =  y e + y ′Ky 
0 0 0 0 ∫ ∞Now notice that 

∫ 
0 
∞ 
y′Ky ≥ σmin(K)‖y‖2 and that passivity of H implies y e ≥ 0, so that 0 

we get: ∫ ∞ 

y ′ u ≥ σmin(K)‖y‖2 

0 

But, from Cauchy-Schwartz we have 
∫ 
0 
∞ 
y′u ≤ ‖u‖‖y‖. By substitution we get: ‖y‖ ≤  

1 ‖u‖σmin (K) 
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3. The equivalence shown in the block diagram shows that we can equivalenlty analyse the 
¯stability of H = 1+Hk2 

in feedback with ¯1+Hk1 k. According to the previous exercise a sufficient 
¯condition is just the passivity of H. 

4. Using the result proven in problem 1.2, we know that the operator defined by (I + H(jw))−1 

¯ u‖2 + ‖z‖2 −is 2-stable. Define U(jw) = (I + H(jw))−1U(jw), so that we can get ‖y‖2 = ‖¯
2 

∫ ∞

z u, where Z(jw) =  H(jw) ¯
′ ̄ U(jw) and  Y (jw) =  G(jw)U(jw) = (I − H(jw))(I + 

H(jw))−1U(jw). Also note that ‖u‖2 = ‖¯ 0u‖2 + ‖z‖2 + 2  
∫ ∞ 
z u, so that ∫ ∞ 

‖y‖2 = ‖u‖2 − 4 z u (2) 
0 

Passivity of H is equivalent to ∫ ∞ 

z u ≥ γ‖u‖2 

0 

which, according to (2) is equivalent to 

‖y‖2 < ‖u‖2 

or ‖G‖ < 1. 
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