Massachusetts Institute of Technology 6.241 Dynamic Systems

Prof. M.A. Dahleh

Midterm Exam

Instructions

- 1. During the exam, you can use the course notes, this year's homework and solutions, and any additional handouts given in the class.
- 2. Please, write down the solution of each problem on a separate page. Be organized and clear. If you write down an argument and you think it is not completely correct, indicate exactly where the problem is. This way I can assess the level of confidence you have in your arguments.

Problem 1 (30 points) This problem consists of *short* computational problems.

- 1. Let $A = (1 \ 1 \ 1)'$ and $b = (1 \ 2 \ 1)'$. Find x that minimizes $||Ax b||_2$.
- 2. Let $A = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}'$ and $b = \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}'$. Let Δ and e be 3×1 vectors. Find the minimum value of $\|\Delta\|_2^2 + \|e\|_2^2$ such that $(A + \Delta)x = b + e$ for some x.
- 3. Let $\dot{x} = Ax$ be an unforced system with initial state $x_0 = (1, 1, 1, 1)'$, and A

T	0	-07
0	1	0
0	0	1
0	0	0/
	1 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Find $x(t), \forall t \ge 0$.

4. Find a state space realization for the following Multi-input Singleoutput system:

$$\begin{bmatrix} 1 & s \\ \overline{s-1} & \overline{s+2} \end{bmatrix}$$

5. Verify whether the following system is unstable, stable i.s.L., or asymptotically stable:

$$\dot{x}_1 = -2x_1x_2^2, \qquad \dot{x}_2 = -2x_1^2x_2 - 4x_2^3$$

Problem 2 (30 points) Prove or disprove (by a counter example) the following statements.

1. Suppose $\dot{x} = (A + \Delta)x$ and A is known to be a stable symmetric matrix of size $n \times n$. Then

 $\min_{\Delta} \{\sigma_{max}[\Delta] | \text{system is not asymptotically stable, } \Delta \text{ is a real matrix} \} = \min_{1 \le i \le n} |\lambda_i(A)|$ where $\lambda_i(A)$ denotes the ith eigenvalue of A.

2. Let P and Q be positive definite matrices. Then

$$\max_{x} \{ x' P x | x' Q x \le 1 \} = \lambda_{max} [Q^{-1} P].$$

(Hint: Q can be written as Q = F'F)

3. Let $x_{k+1} = Ax_k$ and $y_k = Cx_k$ be a discrete time system of order n where C is a matrix of rank r < n. If for every x_0 the output satisfies $y_r = 0$, then $dim(\mathcal{N}(A)) \ge r$.

Problem 3 (40 points) Given the discrete-time system

 $x_{k+1} = vw'x_k + bu, \quad y_k = c'x_k$

where v, w, b, c are all n-dimensional vectors.

a. Answer the following questions for general v, w, b, c:

- 1. Under what conditions (on v and w) is this system asymptotically stable? What are the eigenvalues of the system.
- 2. For a zero input and initial condition x_0 , compute y_k , $k \ge 0$.
- 3. Assume that the transition matrix is perturbed from vw' to $v(w + \delta)'$. Find the smallest $\|\delta\|_2$ that results in an unstable system (not asymptotically stable).
- **b.** Assume that v, w, b, c have the following numerical values:

$$v = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \quad w = \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \quad b = \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \quad c = \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$

We are interested in relocating the eigenvalues of this system. One approach for doing this is to use constant output feedback; i.e., $u = \alpha y$ for some gain α .

- 1. Is this system asymptotically stable without feedback?
- 2. What is the resulting transition matrix after feedback?
- 3. What are the new eigenvalues of the system? Can α be chosen so that the resulting eigenvalues are all inside the unit disc?