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Which probability distribution should be used to most appropriately rep-
resent a given stochastic event? In this note I provide a short review of a few
common distributions, mentioning for each some of the typical random phenom-
ena it is often used to model.

In general, the process of identifying a distribution accurately representing a
given data set is called fitting, and there are a number of statistical software tools
performing this function. There is also a number of statistical tests designed
to assess whether a given distribution faithfully describes a data set. However,
in practice it may not always be possible to collect a large data set for each
relevant source of variability because of time or financial constraints. In some
cases, an extensive data collection may not even be useful, as the output of a
given model may not be sensitive to the detailed probabilistic structure of the
random input considered beyond basic mean and variance information. I thus
believe that it is important to develop an intuitive feel for the likely stochastic
structure of typical sources of variability in industry - hopefully this note will
be helpful in that regard. For a (considerably) more exhaustive reference on
theoretical properties of probability distributions and their uses in stochastic
modeling, see the handbooks by Johnson, Kotz and Balakrishnan (ed. Wiley
Interscience), and for a catalogue of distributions (and many other mathematical
concepts/formulas) on the web, see http://mathworld.wolfram.com/. The book
by Law and Kelton Simulation Modeling and Analysis also includes a description
of probability distribution for simulation purposes.
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1 Continuous Distributions

1.1 Uniform Ula, b|
1.1.1 Structure
Support (a,b), F(z) = =2, f(x) = 7L, B[X] = 52, olx] = 052

a

Use This is the model of choice when the only information available about
some random variable are the limits of its support. This distribution also has
the property that all values within the support (a,b) are equally likely (hence
its name). So this distribution is often used when very little information is
available, but it is believed that the variability of the corresponding phenom-
enon is still an important feature to model. Finally, this distribution is in many
settings is easy to deal with analytically, and it also plays an important theo-
retical role (generation of random numbers for other distributions in simulation
software, distribution of arrival epochs of a Poisson process within a specified
time interval).

1.2 Triangular Tria,c,b]
1.2.1 Structure

iy fra<a <e G fora<z<e
Support (a,b), F(x) = ib—I)Q , flx) = 2(b—x)
I =I(=0] forc<axz<b ((=IC=0] forc<axz<b

ElX] = %(a—i—b—!—c),a[X] = ﬁ\/aQ—i-bQ—FcQ—ab—ac—bc

1.2.2 Use

Like the uniform distribution, this distribution is used in cases when the limits
of the support are known, but it allows in addition to model an asymetric
probabilistic structure (values close to the mode parameter ¢ are more likely).
It is also useful when limited available information except a given finite support
would suggest to use a uniform distribution, but the real phenomenon seems to
exhibit less variability than is imposed by the uniform.

1.3 Exponential Fzp[)]
1.3.1 Structure
Support (0, 4+00), F(z) =1 —e 2, f(x) = Ae ™, B[X] = %, olX] = %

1.3.2 Use

This very important distribution can be used to model any phenomenon with a
positive value and a known mean % In particular, it is often used to model time



to failure/breakdown for a component or a machine, time between two consec-
utive customer orders, spatial distance between two objects... Its fundamental
property (and claim to fame) is the memoryless property, i.e. P(X > x+t|X >
t) = P(X > z). In words, how long you've waited already is completely ir-
relevant when trying to predict how much longer you will have to wait... The
exponential distribution is the only continuous distribution with this property!
A process of consecutive arrivals when the inter-arrival times are independent
exponential distribution is also known as a Poisson process.

1.4 Normal N(u,o)
1.4.1 Structure

(—p)?
Support (—00, +00), f(z) = —b=e ™= | E[X| =p, o[X] =0

1.4.2 Use

This is the famous Gaussian or ”Bell curve”. It is used very widely to model
any random variable with a symmetric structure and specified mean p and
standard deviation o. A fundamental theoretical result associated with the
normal distribution is the Central Limit Theorem (CLT), which is sometimes
used abusively to justify the statement that ”everything can be modeled as a
normal” | or to assume that any distribution is a priori normal. Because from the
CLT the mean of a random sample quickly converges to a normal distribution,
the normal distribution is also key to the construction of confidence intervals
associated with simulation experiments and estimations. In part because of this,
it is probably a good idea to keep in mind the fractile value z{, 5 = 1.96 for the
standard normal distribution Y ~ N(0,1) defined by P(|Y| < z{ ¢5) = 0.95 (in
layman’s terms: there is only a 5% chance that you will find yourself more than
1.96 standard deviations away from the mean).

2 Discrete Distributions

2.1 Fixed Value (Deterministic)

When you have good reasons to believe that the variability of a given phenom-
enon is very small compared to other factors and has only little impact on the
output of your model, don’t bother with a distribution!!! For example, in many
manufacturing environment with a relatively high level of automation, the vari-
ability of individual machine processing times may be very small compared to
demand or breakdown periods, and thus suitably represented by just a fixed
number.



2.2 Bernouilli Ber|p|
2.2.1 Structure
Support {0,1}, P(X = 1) = p, E[X] =p, o[X] = /p(1 - p)

2.2.2 Use

Whenever you are dealing with a binary event, this is the one! For instance,
quality issues (piece is defective with a given probability), branching decisions
(25% of parts go to machine 1, 75% to machine 2), representation of test power
and accuracy through decision trees (with type I and type II errors), etc...

2.3 Geometric Geom/[p]
2.3.1 Structure
Support {0,1,2,...,+00}, P(X = k) = (1 — p)*p, E[X] = 1=p o[X] = Vi-p

2.3.2 Use

Think of the russian roulette ”game” when the gun barrel is spun again after
every turn, or the number of successive bernoulli trials it takes to obtain a suc-
cessful outcome. This is the discrete memoryless equivalent to the exponential
distribution, in that P(X = ¢+ k|X > k) = P(X = t). Suppose that there is
an independent probability of p that a system will crash at each period, then
the number of periods before the crash follows Geom/[p]. This can also represent
for example the number of cycles that an item realizes in a process with a feed-
back loop, when there is an independent branching probability p that the item
goes back through the loop again after each cycle. There is also a connection
between this distribution and time discounting: If a given investment provides
a constant return of S and the interest rate is r, a classical expression for the
time-discounted stream of revenues is 2;08 a fr)t - S(ltr)
interpeted as the expected total return when there is no interest rate, but at
every period a probability p = lir that the stream of revenue will be terminated
forever.

. This can also be

2.4 Binomial Bin[N,p]

2.4.1 Structure

Support {0,1,...N}, P(X = k) = (})p*(1 — p)N~*, E[X] = Np, o[X] =
Np(1 —p)

2.4.2 Use

This is the distribution obtained when summing up N outcomes of Bernoulli
variables with parameter p, and for this reason is very widely used. In the field



of quality for example, if the overall proportion of defective pieces is p, then the
number of defective pieces in a sample of N will follow a distribution Bin[N, p].
If the independent probability that any plane will crash in a given year is p, then
the number of crashes for a fleet of N aircrafts in that year will be Bin[N, p...
ete, etc.

2.5 Poisson Poisson|)\|
2.5.1 Structure
Support {0,1,2, ..., +0c}, P(X = k) = e 37, E[X] = A, o[X] = VA

2.5.2 Use

The Poisson distribution is most frequently used to represent the occurence of
a random number of events in a given time period. It is related to the Poisson
process in the following way: Consider a stochastic arrival stream where the time
between two consecutive arrivals follows an exponential distribution Exp(\)
(this is the exact definition of a Poisson process), then the number of arrivals
in any interval of length T' follows a distribution Poisson[AT].



