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Abstract

Under the sociological theory of homophily, people who are similar to one another are more
likely to interact with one another. Marketers often have access to data on interactions among
customers from which, with homophily as a guiding principle, inferences could be made about
the underlying similarities. However, larger networks face a quadratic explosion in the number
of potential interactions that need to be modeled. This scalability problem renders probabil-
ity models of social interactions computationally infeasible for all but the smallest networks.
In this paper we develop a probabilistic framework for modeling customer interactions that
is both grounded in the theory of homophily, and is flexible enough to account for random
variation in who interacts with whom. In particular, we present a novel Bayesian nonparamet-
ric approach, using Dirichlet processes, to moderate the scalability problems that marketing
researchers encounter when working with networked data. We find that this framework is a
powerful way to draw insights into latent similarities of customers, and we discuss how mar-
keters can apply these insights to segmentation and targeting activities.

∗The authors thank David Dahl, Daria Dzyabura , Pete Fader, Jacob Goldenberg, John Hauser, Barak Libai, Jon
McAuliffe, Carl Mela, Adrian Raftery, David Schweidel, and Romain Thibaux for useful suggestions and helpful com-
ments on previous versions of this paper, as well as Rico Bumbaca and Alex Riegler for research assistance, and Jeong-
wen Chiang and China Mobile for providing the dataset.
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Introduction

Marketers have long been interested in the notion that interactions among customers will affect

behavior. For example, knowledge of how customers relate to one another improves our under-

standing on how preferences are formed (Reingen et al. 1984), how preferences are correlated

within groups (Witt and Bruce 1972; Park and Lessig 1977; Ford and Ellis 1980; Bearden and Et-

zel 1982), or how useful referrals are for marketers when developing new markets (Reingen and

Kernan 1986). Connections among customers are opportunities for preference influence (e.g. con-

tagion in diffusion, Bass 1969). Marketers can leverage ”word of mouth” to amplify the efficacy

of their communication campaigns (Goldenberg et al. 2001; Nam et al. 2007; Iyengar et al. 2008;

Godes and Mayzlin 2009). Incorporating network information into marketing models has also

been shown to improve forecasts of both new product adoption (Hill et al. 2006) and customer

churn (Dasgupta et al. 2008).

Similar customers are more likely to interact with one another, so given the need for marketers

to find efficient ways to attract and cultivate customers, there exists vast opportunity in leverag-

ing interactions data to infer similarity and connect this to marketing behavior (e.g., Yang and

Allenby 2003; Bell and Song 2007; Nam et al. 2007). This link between similarity and interactions

is the sociological theory of homophily (Akerlof 1997; Blau 1977; Lazarsfeld and Merton 1954) and

is the basis for many marketing studies that examine or accommodate interactions among cus-

tomers (e.g. Gatignon and Robertson 1985; Brown and Reingen 1987; Choi et al. 2010). Put simply,

homophily implies that customers who are similar to one another are more likely to interact with

one another, and share information and influence, than customers who are not. There is a sub-

stantial volume of literature that links similarities to interactions (see McPherson et al. 2001, for

a review), but interactions and similarities are not the same thing. We consider interactions to be

the “data” that records some observable action between two individuals, while similarities form a

latent, unobserved construct (though possibly correlated with other observed measurements) that

determines which individuals are more likely to interact with others. In this paper, we present an

illustrative yet parsimonious model, grounded in the theory of homophily, that allows marketers

to infer latent similarities from observed interactions. The idea is to develop a probability model

that uses interactions data to infer latent similarities, and generates output that can help marketers
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better understand why customers interact with whom they do, or why they behave the way they

do, in terms that are useful to marketers.

We build on a class of probability models known as latent space models (Hoff et al. 2002;

Handcock et al. 2007). The fundamental idea behind latent space models is that each individual

is characterized as occupying some unobserved point on a multi-dimensional space. When esti-

mated on relationship data (e.g. a list of self-reported friendships, as in Reingen et al. 1984; Brown

and Reingen 1987, or working relationships, as in Iyengar et al. 2008), the distance among points in

latent space determines the probabilities for the incidence of these relationships.1 What is becom-

ing increasingly available to marketers, however, are clean, observational data on the interactions

among customers, such as phone call records or online social networking transactions, but with

no observed information about the content of the interaction (who these people are and what they

talk about), or the nature of the relationship between these individuals (what it is about these two

particular people that generates an interaction between them).

When latent space models are estimated on interactions data, we can interpret the distance

among points as relative similarity. Homophily gives us the theoretical foundation on which we

can make this claim. The managerial usefulness of estimating latent space models on interactions

data comes from identifying and inferring these similarities. Sometimes, such as our application in

telecommunication services, interactions generate revenue directly. There are many examples, like

those mentioned in the first paragraph, where marketers deliberately target customers who will

contact, and hopefully influence, others. But in other cases, the marketing activities themselves

might have nothing at all to do with “following network links,” or generating “word of mouth.”

Knowing how similar customers are to one another is of direct relevance to marketing practition-

ers because it forms the basis of segmentation and targeting across a heterogeneous population.

Once we have inferences about relative similarities of customers in hand (through posterior dis-

tributions of latent distances), we can segment and target customers accordingly. Ordinarily, this

segmentation is done based on observed characteristics of individuals. Very little attention has

been paid to how marketers might be able exploit the information contained in interactions data

for traditional, non-networked marketing tactics, like deciding in which publications (online or

1Latent space methods are, of course, not limited to examining social network data, and could be used to model sim-
ilarities between units in two distinct groups (Bradlow and Schmittlein 2000), or to model the difference in knowledge
by individuals (van Alstyne and Brynjolfsson 2005). Further applications are discussed in Toivonen et al. (2009).

3



otherwise) to advertise. Indeed, the company that uses interactions data for segmentation and

targeting (e.g. an online retailer) does not necessarily have to be the same company that collects it

(e.g., the cell phone provider).

One reason modelers have not been able to apply latent space models to marketing data in

a general sense is that it can be a daunting computational challenge. One of the key tenets of

probability modeling is that we need to take all data into account, including pairs of individu-

als for whom we do not observe any interactions at all (the “zeros” in the data offer valuable

information about relative similarities). Thus, there has been a formidable obstacle to using prob-

ability models for larger observational network datasets. A dataset with N individuals involves

(N
2 ) dyads (the binomial coefficient (N

x ) is defined as N!
x!(N−x)! ). For the exemplar dataset that we

use in this paper, there are 11,426,590 sets of dyad-specific parameters that we need to consider,

and this is for a dataset of only 4,781 individuals. Unless we want to break the interdependencies

among dyads, ignore unobserved heterogeneity, or make other assumptions that are similarly re-

strictive, we need to compute all of these (N
2 ) dyad-specific likelihoods, and the same number of

dyad-specific parameters, at each iteration of our estimation algorithm. The problem with scale

makes probability models of social interactions computationally intractable for all but the smallest

datasets.

The modeling challenge is therefore to reveal similarities in heterogeneous characteristics from

customers’ interaction data, in a scalable and interpretable way. We accomplish this by applying

a Bayesian nonparametric prior, the Dirichlet process (DP), as the distribution of locations on the

latent space. The DP is essentially a distribution over distributions (as opposed to over scalars or

vectors), and for our purposes, its most salient characteristic is that each realized distribution is

discrete. Consequently, individuals in the network are clustered on common locations on the latent

space. So if this discrete distribution has k mass points, there are only (k
2) + 1 distinct distances on

the latent space (the +1 comes from the zero distance between two individuals at the same latent

coordinate). Since k must be smaller than N, there are substantially fewer distinct likelihoods to

compute and parameters to estimate.

In this research, we show how marketers could use latent space models to segment customers

based on posterior inferences of latent similarities, using this more efficient Bayesian nonparamet-

ric approach. An output of our algorithm is a posterior estimate of the latent space that is inferred
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from the interactions data. Our probabilistic approach to modeling these data allows for the fact

that similar individuals may not interact, even though they may have similar characteristics and

travel in the same social circles. Also, we recognize that while interactions typically occur among

similar customers, there is also the possibility that dissimilar customers (who may have different

purchase patterns and preferences) may interact at some time. To demonstrate the power and util-

ity of this approach to modeling interactions data, we apply it to a dataset of observed interactions

from a cellular communication network. We propose a probability specification for this particular

dataset, in which the incidence and rates of interactions are functions of distances in latent space.

We validate the approach in two ways: by showing that adding the latent space structure to the

probability model improves the fit of the model, with respect to several metrics commonly used

in the social networking literature; and by showing that the latent space model can distinguish

among pairs of individuals for whom the observed number of interactions are all identically zero

during a calibration period, in terms of how well the model predicts which of those pairs will

eventually interact in a future holdout period. These tests demonstrate that failing to account for

the unobserved heterogeneous interdependencies among individuals leads to a model that simply

does not represent the observed patterns in interactions.

We then assess the computational improvements and scalability issues surrounding our Bayesian

nonparametric approach, and the managerial insights that one can get from estimates of the latent

space itself. By using a graphical representation of the latent space, we show how marketers can

augment network based practices that follow observed interaction paths, with tactics that segment

and target customers according to inferred latent similarities. The data that are available to us do

not let us offer hard evidence of a correlation between similarities and purchase preferences but,

given the findings in the marketing literature that show the importance of similarities and interac-

tions in customer behavior, it is reasonable to expect that marketing mix efforts benefit from being

able to distinguish interactions among similar customers from interactions among dissimilar cus-

tomers. The computational improvements from using a DP prior for the latent space make these

inferences attainable for the datasets that marketers typically encounter.
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1 General model formulation

1.1 Intuitive description

In a probability model of network data, each dyad in the network generates some vector of data,

which can represent a wide variety of behavior. Examples include binary indicators of relation-

ships, counts of transactions (among customers), times between interactions, or combinations

thereof. However simple or complicated the data are, they should be treated as some output

of a stochastic process that is governed by dyad-specific parameters (and possibly some addi-

tional population-level parameters). Data that is generated from a network of customers differs

from individually-generated data, such as household purchase data, in that we can no longer as-

sume that the data-generating processes are independent across dyads. For example, if we were

to observe telephone calls between members of a dyad, the rate at which A calls B, and B calls

C, can provide information about how often A calls C. However, we do assume that the dyad-

level processes are conditionally independent, so the only correlation among dyads is what occurs

because of similarities in parameters. This means that even though frequencies of phone calls

might be dependent across dyads, the specific times at which those calls ultimately take place are

independent, conditional on the rate of interactions.

We determine dyad-level parameters so that similar individuals will have higher incidence of

interaction than dissimilar individuals. The characteristics upon which this similarity is based are

likely unobservable by the researcher. Therefore, we represent unobserved, exogenous charac-

teristics of the individual (and thus, the individual himself), as a D-dimensional vector on some

latent space (Hoff et al. 2002; Handcock et al. 2007; Bradlow and Schmittlein 2000; van Alstyne and

Brynjolfsson 2005). Similarity between two individuals is measured by the distance between their

latent coordinates across this latent space, and we can express the rates or probabilities of interac-

tion between two people as a decreasing function of the latent distance between them. Note that

these distances and locations do not directly represent physical or geographic locations in any way

(although they may, of course, be incidentally correlated with them). Instead, they are individual-

level parameters to be estimated, based on observed patterns of interaction. For the purposes of

this article, we treat the location of each latent coordinate as persistent and stationary. So even

though interactions among people may appear and disappear periodically (a non-stationary ob-
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served phenomenon that Kossinets and Watts (2006) describe as evolving), the underlying rates

and probabilities of these incidences remain the same. Thus, our stationary model can still cap-

ture non-stationary behavior in the observed data. Also, we want to emphasize that a latent space

model is an abstraction of reality, and we caution researchers not to place too much concrete mean-

ing on any one dimension. It is the relative distances among individual latent coordinates, and

not the absolute positioning in the latent space, that matter.

1.2 Formal model

A more formal definition of the general model is as follows. Let yij be a vector of observed data

that is attributable to the dyad of person i and person j, and let f
(
yij|θij

)
be the likelihood of

observing yij, given the dyad-specific parameter vector θij. Next, let θij be heterogeneous across

dyads, with each θij drawn randomly from a dyad-specific prior distribution g
(
θij|φij

)
. A model

in which φij is common across all dyads, or itself distributed independently (drawn from its own

mixing distribution), would imply cross-dyad independence of θij, which may not make sense

in a network setting. To incorporate some network-based dependence in the distribution of θij,

we instill a pattern of heterogeneity of φij that allows for a useful, intuitive interpretation of the

similarities. Thus, there are two sources of heterogeneity that generate θij: independent dyad-level

variation from g
(
θij|φij

)
, and network-induced interdependence in the distribution of φij.

Before explaining how we model heterogeneity in φij, let us shift our focus from the level of

the dyad to the level of the individual. Each dyad is made up of two individuals, each of whom

has its own, mostly unobserved traits and characteristics. Let zi be a D−dimensional vector that

is associated with person i, and let z be the collection of all N of these vectors. Since each zi

is unobserved, we call it a “latent coordinate,” and the D-dimensional space on which it lies a

“latent space,” as in Hoff et al. (2002) and Handcock et al. (2007). Even if the N vectors in z are

distributed independently on the latent space, the distances between every pair of zi (the “latent

distances”) are not. By expressing φij as a monotonic function of the distance between zi and

zj, we induce dependency among all the φij and, in turn, all the θij. As an example, suppose

that θij represents a rate of contact between i and j, and the distribution of θij depends positively

on φij (for example, the mean of g
(
θij|φij

)
increases with φij). We determine φij by evaluating a
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monotonically decreasing function of the latent distance, so as i and j are less similar (the distance

between zi and zj goes up), the rate of interaction between i and j goes down. But we never need

to estimate θij or φij directly. We need only to estimate the locations of zi for all N people to get the

values of φij for all (N
2 ) dyads.

1.3 Mixtures of Dirichlet processes: what they are, and how to use them to model the

latent space

Even if we model φij as a function of the latent distance among the zi’s, we still have the issue

that there are many zi’s, and thus a large number of latent distances, to model. This means that at

each iteration of our estimation algorithm, we need to compute (N
2 ) values of φij, and (N

2 ) corre-

sponding data likelihoods. When N is small, scalability becomes less of a problem, and one could

use the original parametric formulation of the latent space model. But as N becomes even mod-

erately large, estimating the latent coordinates becomes computationally infeasible. We reduce

the number of distinct values of zi by using a discrete distribution, H (zi|·) for the distribution of

zi on the latent space. If this discrete distribution has k mass points, then there are only (k
2) + 1

distinct latent distances. For a given network size, a larger difference between k and N leads to a

greater computational savings by having fewer distinct values of φij to consider. To avoid having

to estimate each θij directly, we choose f
(
yij|θij

)
and g

(
θij|φij

)
such that we can integrate over θij

analytically, and express the marginal distribution f
(
yij|φij

)
in closed form. However, we do not

want to prespecify the functional form of H, because we don’t know for certain what it is, nor do

we want to prespecify k, since we do not know what the “correct” number of mass points for H is.

Our approach is to use a mixture of Dirichlet processes as a Bayesian nonparametric prior dis-

tribution for the points on the latent space. Although the properties of Dirichlet processes (DP)

have been known for a while (back to Ferguson 1973), they are still relatively new to marketing.

The few examples include Ansari and Mela (2003) (as a Bayesian alternative to collaborative fil-

tering), Kim et al. (2004) (identifying clusters of customers in discrete choice models), Wedel and

Zhang (2004) (analyzing brand competition across subcategories) and Braun et al. (2006) (esti-

mating thresholds of claiming behavior for home owners’ insurance). In our context, a Dirichlet

process is a probability distribution over distributions (as opposed to a distribution over a scalar
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or vector). Accordingly, a single draw from a Dirichlet process is itself a random distribution,

from which we can draw samples of a variable of interest. An important feature for our context

is that each realization of a DP is a discrete distribution, with its support having a finite number of

mass points (k in the previous paragraph), so the DP can be thought of as a prior distribution on

discrete distributions.2

There are, of course, many ways to model discrete points on a space; a traditional latent class

model with a prespecified number of locations is an extreme example. What makes the DP more

useful in this context is that it has a parsimonious representation, with straightforward sampling

properties, and does not require a prespecification of the number of mass points. In our latent

space framework, we let H be a realization from DP(H0, α), and then have each zi be a draw from

H. The first parameter, H0, is itself a probability distribution, and is the “mean” of the distribu-

tions that the DP generates. A scalar α controls the variance of the realizations of the DP around

H0. This variance is low when α is high, so for high α, realizations from DP(H0, α) will look a lot

like the distribution function of H0. This concentration of the DP towards H0 results from a DP

that generates a discrete distribution with a lot of mass points (a high k). When α is low, realiza-

tions from DP(H0, α) look much less like H0 (high variance), because this DP generates discrete

distributions with fewer mass points. So α plays an important role in determining just how dis-

crete (i.e. value of k), or clustered, a DP-generated distribution really is. Reasonable choices for H0

are those distributions for zi that one might use in a purely parametric model (note that H0 could

have parameters of its own, with their own priors, that need to be estimated.) Depending on the

application, one can either put a prior on α or set it directly.

Given H0 and α we need to know how to simulate H from DP(H0, α) and then each zi from H.

Since H is nonparametric, even though we know it was generated by the DP(H0, α), the posterior

distribution of any new zi depends on all the other z−i. Consequently, there is no obvious way to

draw a zi from H directly. The “trick” is to integrate out H analytically, and treat zi as if it were

drawn from this marginal distribution, a mixture of Dirichlet processes (MDP, see Antoniak 1974).

2The formal definition of what makes a stochastic distribution a DP is a more technical issue. Essentially, the prob-
abilities of certain events occurring must follow a Dirichlet distribution with parameters that depend on H0 and α).
There is an accessible and readable explanation in O’Hagan and Forster (2004, ch. 13).
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The probability of any one zi, given the empirical distribution ED(·) of all the other z−i, is

Prob(zi|z−i, H0, α) =
αH0 + ED(z−i)

α + N − 1
(1)

(Blackwell and MacQueen 1973; Escobar 1994). So in the estimation algorithm, α determines how

likely it is that any new draw of zi comes from one of the existing, distinct values already possessed

by another individual in the dataset (if this is likely, then there are few mass points, with lots of

clustering), or from the baseline distribution H0, as a new value.

To illustrate how this works, Figure 1 shows simulations from an MDP when H0 is a univariate

standard normal distribution, for different values of α. In the figure, the heavy black line is the

standard normal cdf, and each colored line is a single realization from the MDP. We see that when

α is low, there are fewer mass points in each realization, and when α is high, the higher number

of mass points allows the realizations to approximate the normal cdf. In Figure 1b, for each α

we present histograms from draws of a single realization of the MDP (so these are draws from a

distribution that the MDP generated). Again, we see fewer distinct clusters (low k) when α is low,

more clusters when α is high. In our network model, we are dealing with more dimensions and a

richer specification of H0, but the basic idea remains the same.

How we select H0 and α, and the priors we place on them, is described in more detail in

Appendix B. Selection of an appropriate distribution for H0 requires that we introduce some iden-

tifying restrictions on the location vectors (zi). The concern is that we cannot simultaneously and

uniquely identify both the scale of the latent space, and the parameters of the distance function

determining φij. To handle this problem, we constrain the prior distribution of zi so the mean

distance of any zi from the origin is one. However, we need to do this without introducing too

much “incorrect” prior information. For example, a simple choice for H0 could be a standard mul-

tivariate normal distribution; setting the mean at the origin and the variance at one addresses the

translation and scale identification issues. The problem with defining H0 as a multivariate normal

is that it implies that our prior on the distribution of zi has a mode at the origin. This prior turns out

to be informative, as it generates artifactual clusters of individuals around the origin in the pos-

terior. An alternative specification for H0 could be a bounded uniform distribution (so the mean

distance from the origin remains one), but that would constrain all zi to be inside a hypersphere,
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(b) Histograms of draws from a single realization

Figure 1: Illustration of realizations from a mixture of Dirichlet process with H0 being a standard
normal. At left, the black line is the cdf of the H0, and each colored line represents a single realiza-
tion of a MDP. Each panel corresponds to a different value of α. At right, each panel is a histogram
of draws from a single realization.

effectively placing an upper bound on the latent distance between customers. This, too, seems

like an unreasonable expression of prior information. Our solution involves using spherical coor-

dinates for zi, consisting of two components: a radius representing the distance from the origin,

and the location on the surface of a hypersphere that has that radius. We show in Appendix B that

H0 can be factored into priors for these two components from which it is straightforward to draw

samples.

This prior on zi, combined with the data likelihood, leads to conditional posterior distributions

that are easily incorporated into Gibbs samplers. Escobar (1994) and Escobar and West (1998)

describe some of the theory and derivations behind this, while Neal (2000) details step-by-step

instructions on how to add MDPs to Gibbs samplers for both conjugate and nonconjugate mod-

els.3 Thus, MDPs allow marketing modelers to relax many of their distributional assumptions by

adding only one additional step to the parametric Gibbs sampling algorithm. We give details of

our estimation algorithm in Appendix C. Our exploitation of the discreteness property of Dirichlet

3This way of expressing the MDP (and the approach we took in our estimation is known as the “Polya urn” repre-
sentation. There is another, equally useful approach known as the “stick-breaking” representation (Sethuraman 1994)
that one can also use to build conditional posterior distributions for Gibbs samplers Ishwaran and James (2001).
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processes also lets us reduce the computational burden substantially, as we demonstrate in Section

3.

2 Example: telephone calls

We now turn to a specific application of our model, using a dataset provided by Chongqing Mo-

bile, a subsidiary of China Mobile, the largest cellular phone operator in China. Cellular phone

networks have been reported to be highly representative of self-reported friendships (Eagle et al.

2009), making such data ideal for studies of network based interdependencies among customers.

The data consist of contact record information (for phone calls and SMS messages) for a panel

of 4, 781 residents of Chongqing who are members of the “silver tier”, “gold tier” or “diamond

tier” of the company’s preferred customer program. Each record contains the identifiers for both

parties in the contact, and the date of when the contact takes place. For the purposes of this ex-

ample, we ignore contacts with people outside this N-person network.4 The observed geodesic

distance is finite for all dyads (i..e, all customers are connected to every other customer in a finite

number of steps). We divide the observation period into a six-month calibration period and a

six-month holdout period. Descriptive statistics for this dataset are summarized in Table 1. Of

the 18, 078 nonempty dyads in the dataset, only 7, 559 appear in both the calibration and holdout

samples. 5, 058 dyads are nonempty in calibration, but empty in holdout, and 5, 461 are empty in

calibration, but nonempty in holdout.

One way to describe the structure of the observed network is to compare it to the “small world”

networks described in Watts and Strogatz (1998) and Watts (1999). Generally speaking, a small

world network is one in which everyone in the network is connected to everyone else through

a relatively small number of intermediaries (i.e., a low mean geodesic distance), and a relatively

large number of common friends who are connected among themselves (i.e., a high clustering

coefficient). We can assess the extent to which a network is “small world” comparing the mean

geodesic distances and clustering coefficients to those that we would expect to see from a network
4Our intent in using this dataset is to demonstrate the effectiveness of our estimation method, and to illustrate

some of the issues that arise when modeling dyadic data. Therefore, we treat our dataset as an entire population of
individuals, and not as a random sample; our interest is only in contacts made among individuals in this population. If
we were to generalize parameter estimates and predictions to a greater population, ignoring out-of-network calls could
influence specific parameter estimates. There are an additional 209 silver, gold or diamond customers in the panel for
whom there were no observed calls to other silver, gold or diamond customers during the observation period.
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Calibration Holdout Full
Weeks 26 26 52
Customers 4,781 4,781 4,781
Non-empty dyads 12,617 13,020 18,078
Proportion of empty dyads 0.9989 0.9989 0.9984
Clustering coefficient 0.128 0.127 0.127
Mean (s.d.) degree distribution 5.3 (4.9) 5.4 (5.3) 7.6 (6.7)
Mean (s.d.) geodesic distance 5.5 (1.4) 5.3 (1.3) 4.7 (1.1)
Mean (s.d.) calls per non-empty dyad 7.5 (18.7) 7.6 (18.7) 15.1 (36.0)
Mean (s.d.) shared friends in non-empty dyad 3.0 (2.7) 3.3 (2.8) 5.7 (2.8)

Table 1: Descriptive statistics of China Mobile dataset.

in which connections are determined at random for the same number of people (4,781) and aver-

age number of “friends” per person (7.6). Using the asymptotic approximations in Watts (1999),

the mean geodesic distance we would expect from a random graph of this size is about 4.2, and

the expected clustering coefficient is about 0.002. In the observed Chongqing Mobile network

we observe quite a bit more clustering than we expect to see from a random graph, while the

mean geodesic path is slightly longer what we would expect. One possible reason that our mean

geodesic distance is not smaller is that we could have a large number of small clusters, and not

all small clusters are connected to each other. In fact, our estimates of k (illustrated in Figure 4)

will bear this out. We also note that our network would not qualify as a “scale free” network, in

that the degree distribution clearly does not follow a power law-type distribution (we show the

observed degree distribution in Figure 2).

2.1 Model specifics

Using the notation introduced in Section 1, yij is the vector of intercontact times, ending with

the survival time (the duration between the last observed contact and the end of the observation

period). If there are no observed contacts in the dyad, yij is the length of the observation period,

and we call that dyad “empty.” If there are observed calls, the dyad is “non-empty.” The definition

of f
(
yij|θij

)
follows the logic of the “exponential never-triers” model in (Fader et al. 2003), which

in turn draws from the “hard-core never-buyers” model in Morrison and Schmittlein (1981) and

Morrison and Schmittlein (1988). First, there is a probability pij that a dyad will remain forever

empty, no matter how long we wait. We call dyads like this “closed”. Next, for dyads that are
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“open,” (with probability 1− pij), intercontact times follow an exponential distribution with rate

λij. To link these specifics with our general model, θij = {pij, λij}. Note that there are two ways

we could observe an empty dyad. The dyad is either closed, or it is open, but with a contact rate

that is sufficiently low that we just happened to not observe any contacts during the observation

period.

Whether the exponential distribution is appropriate for this dataset is ultimately an empirical

question, but we choose it for four reasons. First, we do not need to make special provisions for

left-censoring because of the memorylessness property. Second, the number of contacts is a suf-

ficient statistic for the individual elements in yij. We were able to exploit these two features of

the exponential distribution to gain computational savings without compromising the fundamen-

tal purpose of the research. Third, we did run the model on a much smaller dataset where f (·)

is governed by a “Weibull never-triers” model, in order to allow for duration dependence, and

found that since the shape parameter of the Weibull was close to 1, it reduced to the exponential

distribution anyway. Finally, we chose the exponential distribution because it forms a conjugate

pair with our choice of g
(
θij|φij

)
, a gamma distribution for λij with dyad-specific mean µij and

common variance v, and a degenerate distribution over pij, so that at this level of the hierarchy, pij

is homogeneous for all dyads (we will add heterogeneity to pij later through the latent space). The

exponential-gamma pair lets us integrate over θij analytically, further easing computational effort.

The vector φij therefore contains three elements, pij, µij and v (pij is contained in both θij and φij.)

To evaluate whether latent space is worth adding to a model of interactions data, we estimated

the model with three different definitions of the elements of φij. For a “Baseline” model, we let

φij = φ, a common value for all dyads (note that we still maintain dyad-level heterogeneity in

θ, but it does not appear explicitly in the data likelihood). For a second model, HMCR (for “Ho-

mogeneous Mean Contact Rate”), µij and v remain homogeneous across dyads, but pij is now

determined by the distribution on the latent space. Specifically, we define

logit pij = β1p − β2pdβ3p
ij (2)

where the β’s are coefficients to be estimated, and dij is the latent distance between zi and zj. For a

third model, named “Full,” pij retains the same definition as in Equation 2, except that µij is now
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heterogeneous across dyads, defined as

log µij = β1µ − β2µdβ3µ

ij (3)

Equations (2) and (3) allow the respective relationships to latent distance to be concave, linear

or convex. The parameters β2p, β3p, β2µ, and β3µ are constrained to be nonnegative, because as

latent distance increases, the probability of contact, and the rate of contact, should decrease. We

selected Euclidean distance as our distance measure, after experimenting with others that did not

perform as well (van Alstyne and Brynjolfsson 2005).5 Another candidate for this distance met-

ric is the Mahabalonis distance (as used in Bradlow and Schmittlein 2000), which weights some

dimensions more than others in the computation of the distance among individuals. However,

the non-parametric nature of the estimated latent space means the dimensions are already dif-

ferentially scaled. Also, the Euclidean distance is computationally more efficient. As with the

parametric specification, the functions in Equations 2 and 3, and the distance measure, are subject

to empirical testing and may not be appropriate in all contexts.

2.2 Assessing contribution of the latent space

So far, we have assumed that parameter interdependence is an important characteristic of a model

of customer interactions. However, one could falsify this claim by showing that models in which

dyad-level parameters are independent fit no worse than models that incorporate a latent space.

We ran our algorithm with latent spaces of different dimensionality and, based on estimates of log

marginal likelihoods, we decided that the parsimonious choice of D = 2 is most appropriate (see

Appendix A). As evidence that the latent space models do better than independent models, we

evaluate the contribution of latent space based on both posterior predictive checks (PPCs) and on

forecasting interactions in empty dyads.

Posterior predictive checks allow us to evaluate how well our model represents the data-

generating process (Rubin 1984; Gelman et al. 1996). Three of our PPC test statistics are the same as

those used by Hunter et al. (2008) to assess goodness-of-fit for social networking data: the degree

5Here, we are talking about distance between two individuals’ coordinates on the latent space. This concept of
distance is different from when we talk about geodesic distance, which is the smallest number of observed connections
along the shortest path between two individuals.
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distribution, the dyad-wise shared partner distribution, and the distribution of geodesic distances.

We also examine the histogram of the number of calls made within non-empty dyads, the density

of the network, and the clustering coefficient for the network. All of our PPCs in this article are

with respect to the 26-week holdout sample. Figure 2 shows the results for the distributional PPCs,

and Figure 3 shows the PPCs for the density and clustering coefficients. The x-axis in each panel

is the count of individuals or dyads, and the y-axis is the log proportion of those individuals

with each count. The dark dots represent the log probabilities generated from the actual dataset,

and the box-and-whisker plot represents the distribution of log probabilities across the simulated

datasets. Figure 3 shows the PPCs for the network density and clustering coefficients; the vertical

line is the observed value.

At first glance, it might appear that all of the models replicate the actual datasets rather well.

The reason that even the Baseline model does as well as it does is that most of the value from

posterior prediction comes from inferring whether a dyad is open or closed. Simply looking at

whether a dyad is empty or non-empty provides a lot of information about the likelihood of future

emptiness, because non-empty dyads must be open. However, closer examination reveals that the

Baseline model is not well calibrated at all. The “actual” dots lie far outside the whiskers for the

predictive distributions for many of the counts. The two models that involve some kind of latent

space structure fit better on these test statistics. However, we do not see much difference between

the HMCR and Full models. This suggests that the value of the latent space is more in predicting

the potential existence of an interaction (whether the dyad is open or closed), than in predicting

the contact rate.

In addition to assessing model fit in aggregate, we also care about how well the model per-

forms at the dyad level. Our approach here is to predict which of the dyads that are empty during

the calibration period become nonempty in the holdout period. Empty dyads all have the same

observed data pattern, so there is no obvious way to differentiate among them. We can, however,

use the latent space structure and a straightforward application of Bayes’s Theorem to compute

posterior distributions of unobserved parameters, and then use those probabilities to rank dyads

in terms of those most likely to generate interactions during some future period of any duration

we want. To assess the predictive ability of a model, we first identify, individual by individual,

the top Q% lift (or the top q lift, where q = Q/100) most likely, previously uncontacted, individ-
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(b) Dyadwise Shared Partners Distribution
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(c) Geodesic distance distribution
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Figure 2: Posterior predictive checks for holdout sample. For each sub-figure, observed data are
represented using dots, and the posterior predictive distributions are represented by the “box-
and-whisker” symbols.
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Figure 3: PPCs for the density and clustering coefficients.

uals observed to contact during the holdout period6. For a completely random or naive model,

the percentage of the top Q% most likely empty dyads to become non-empty should be equal to

q. For any other model, if the value for the top Q% metric is greater than q, then the model pro-

vides some ”better-than-chance” predictive value. The use of the Q% lift metric ensures that the

maximum of this value is always equal to one.

Table 2 presents these lift metrics for different models and values of Q%, and different calibra-

tion/holdout samples. Results are presented for all three model variants, with D = 2 for the latent

space models. In addition, we present results for a “Condition on Observed” prediction rule, un-

der which empty dyads are to remain empty in holdout, and non-empty dyads remain non-empty

in holdout. The “Geodesic Distance” model ranks dyads according to their geodesic distances, as

in Kossinets and Watts (2006) (we break ties in two different ways: randomly, or based on the

total number of observed interactions along the path). The lift metrics suggest that both the Base-

line model and the “Condition on Observed” rule do exactly as well as one would expect from

random selection. This is because they both assumes that there is no network structure among

individuals in the dataset, and thus all empty dyads are considered to be identical. In contrast,

6For any individual i, the top q lift requires rank ordering all potential customers j 6= i based on the predicted
probability of interaction. For a holdout sample, the top q lift of this rank ordered list is equal to the proportion of
the top q customers for whom we observe interactions with i, divided by the proportion of total interactions made by
customer i.
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Duration of calibration (holdout) period
13 (39) weeks 26 (26) weeks 39 (13) weeks

Q%= 0.1 0.2 1.0 0.1 0.2 1.0 0.1 0.2 1.0
Baseline .001 .002 .010 .001 .002 .010 .001 .002 .010
HMCR .100 .112 .141 .133 .138 .178 .153 .154 .177
Full .100 .109 .146 .132 .135 .157 .154 .159 .197
Condition on Observed .001 .002 .010 .001 .002 .010 .001 .002 .010
Geodesic - random tiebreak .050 .088 .166 .036 .067 .149 .025 .051 .198
Geodesic - # calls tiebreak .064 .110 .186 .056 .098 .190 .046 .083 .206

Table 2: Percentage of the top Q% of the empty dyads (in calibration period) that are most likely to
become nonempty during holdout period, that actually did become nonempty during the holdout
period. Reported values are posterior means; credible intervals are removed for space and clarity.

in the two latent space models, some dyads are more likely to contact each other than others. By

sorting the empty dyads according to their posterior latent distances, we no longer assume that

all empty dyads are the same. Thus, we can improve on dyad-level prediction dramatically. We

do not, however, see any substantive differences between the HMCR and Full models, suggesting

that, in this application, all of the action is on the open/closed probability and not on the contact

rates. Nevertheless, our results indicate that the use of the latent space structure for networked

data is a better model than assuming independence across dyads.7

3 Scalability and computation

Having demonstrated the contribution of latent space models, we now turn to the issue of scal-

ability and computation. The amount of computational improvement one can expect from using

DP priors on the latent space depends on how well we can cluster dyads into groups that have

the same data and parameters. In networks in which every dyad generates a different observed

outcome (e.g., if the network is dense and the observed value is continuous), the likelihood for

each dyad will have to be computed separately, and a discrete representation of the latent space

7There are of course many different ways to predict link formation (known in the machine learning community as
“link mining”), such as the Katz Score (Katz 1953) and the SimRank algorithm (Jeh and Widom 2003). Getoor and
Diehl (2005) provides a detailed review of link mining methods, and Liben-Nowell and Kleinberg (2007) compare the
performance of some of them. We compared the predictive ability of our latent space approach against some of these
methods, and found that while our model did best when tests were more discriminating (low Q), the other models
“caught up” when Q was increased. However, our model offers behavioral intuition (see Section 4) that machine
learning algorithms cannot provide, and we are willing trade off some predictive power for managerial interpretability.
Nevertheless, our objective in predicting future link formation is only to demonstrate the value of accounting for latent
network structure when modeling interactions data.
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will have little effect. However, the density of many (if not most) social networks tends to be very

low. Even if non-empty dyads generate data on a continuous domain (as in our China Mobile

example), there are so many empty dyads, all with the same data, that the number of distinct

likelihoods to compute is much lower than the total number of dyads in the network. If the ob-

served data is discrete, then even more aggregation is possible. Of course, aggregation according

to observed data is standard practice when a model is homogeneous, or marginal likelihoods are

available in closed form. The DP prior lets us group observations with similar latent parameters

as well.

The number of likelihood evaluations at each MCMC iteration depends on two factors: i) the

number of groups with distinct data patterns (which in turn depends on the size and density of

the network); and ii) the number of mass points for each realization from the Dirichlet process.

Dyads with the same zi, zj pair, and the same value of yij, must have the same likelihood, since

they have the same data and same parameters. As long as we keep track of the number of dyads

with each zi, zj pair, we can compute the log likelihood for that pair once for each y, and multiply

by the number of dyads with that pair and that y. Among all the data zeros, there are only (k
2) + 1

possible likelihood values. If k is less than N, there is a computational saving, even if all of the

non-zero values of y are different (as happens when y is continuous). If y is discrete (so Cy is

the number of distinct values of y), there are at most
(
(k

2) + 1
)
Cy possible likelihoods. For a

continuous y, but with a large number of zeros, the number of possible likelihoods is (k
2) + 1, plus

the number of nonzero y’s. Clearly, the more distinct observed data patterns there are, the less one

can take advantage of the discretization of the latent space that is generated by the DP. But in the

social networking applications that are common in marketing, networks are often very sparse, so

we have at least one very large group of dyads with the same data.

To assess just how much computational savings there is, consider the Full model in the tele-

phone call example. The calibration dataset has 12, 617 non-empty dyads; likelihoods for each of

these dyads must be computed individually. The mean of k is 530, so there are 140, 186 distinct

distances between mass points on the latent space. Instead of computing 11, 413, 973 separate like-

lihoods for each of the empty dyads, we only need to compute 140, 186 of them. Thus, the number

of likelihoods to compute at each MCMC iteration is 152, 803. This represents a 98.7% reduction

in computational requirements.
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Figure 4: Posterior means for number of mass points, and total likelihood computations, for sub-
sampled networks.

The extent to which our method can scale for datasets with many more individuals (large N)

depends on how both the network density and k change as N increases. Ultimately, these are

both empirical questions, the second of which we cannot know up front because not only is k

unobserved, but it can be influenced by the choice of H0 and α. However, the expected number of

mass points can be asymptotically approximated as E(k) ≈ α log
(

α+N
α

)
(Antoniak 1974; Escobar

1994). Thus, if α is small, the expected number of mass points is also expected to be small, but it

will grow for larger datasets. If α is large, the number of mass points for smaller datasets might

be larger, but this number will not grow as quickly for larger datasets. To test how well this

approximation works in practice, we estimated the full model using successively larger subsets of

our original network. We then fixed α at three different values: 0.5, 20 and 300 (instead of placing

a weakly informative prior on α, as we did in the main analysis). We also computed the total

number of likelihood computations for each sweep of the Gibbs sampler, which is just (k
2), plus

the number of non-empty dyads in the dataset.

Figure 4 plots the posterior mean of k (the number of mass points) and the total number of

likelihood evaluations, against the size of the network. For the number of mass points, we observe
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the expected pattern. For small α, the number of mass points is small, but the incremental number

of mass points grows with network size. For large α, the number of mass points is large, but the

incremental change goes down with network size. The asymptotic approximation suggests that

incremental computational effort would decrease even more for even larger values of N, even

though the number of total dyads continues to grow quadratically. In terms of total computation,

for low α, the number of computations increases more rapidly with N than for higher values of

α, but when α is high, the relationship becomes more linear. Even though the number of dyads

grows quadratically with k, larger networks will tend to have larger number of nonempty dyads.

For low α, computation grows faster than linear, but the number of latent dyads is low to begin

with, because of the increased clustering. Collectively, our results suggest that, if using a DP

prior is not computationally feasible for a particular dataset, the incremental effort likely comes

from the inability to aggregate the observed data, and not from an inability to aggregate the latent

parameters. Of course, this is no different from scalability problems faced by Bayesian hierarchical

modelers who use MCMC to update model parameter estimates from non-networked data.

4 Interpretation and usefulness of the latent space

In Figure 5(a), we plot a single draw from the joint posterior distribution of the latent coordinates

from the Full model with D = 2 (we chose the draw with the largest conditional likelihood).

Each person in the network occupies a position in the latent space, and we define a cluster as all

individuals who share the same coordinates in the latent space (this is akin to two observations

having the same mass point in a realization from a mixture of Dirichlet processes, and we counted

593 such clusters in this realization). But since multiple individuals are located at the same coor-

dinates, to aid visualization we ”jitter” the individual locations of customers by adding a small

amount of random noise (drawn from a uniform(-0.03,0.03) distribution) to each coordinate. The

scale labels on the axes are included to help reference certain parts of the space, and do not have

a concrete interpretation themselves. In Figure 5(a), we see that there is considerable clustering,

with distinct “super-clusters” (clusters of clusters, or clusters closer to other clusters), of individu-

als on the latent space. Also, there are some clusters that contain only a few customers, and which

are quite separate from the rest of the network of customers, such as the one at {x, y} coordinate
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Figure 5: Illustration of the full latent space, and connections among some selected customers. In
both panels the black dots represent jittered locations for individual customer on {x, y} coordi-
nates. Lines represent observed connections among customers. In panel (b), we labeled several
customers who have hypothetically adopted a new product. Circles around customers are used to
identify other customers who may be similar to the targeted customers and therefore have similar
adoption likelihoods.

(-0.9,-2.2). Note that the latent space is a random variable, so this figure represents just one pos-

sible configuration of the individuals into clusters. Figure5(b) “zooms in” on a small partition of

the latent space. Having provided and discussed a graphical depiction of latent space, the next

question becomes: what use is this to marketers? We examine this in the context of segmentation

and targeting.

Segmentation and targeting using interactions data Segmentation and targeting is central to

the development of effective marketing strategy. The fundamental idea behind segmentation is to

find people who are similar to one another, with the assumption that they will respond in simi-

lar ways, and therefore can be targeted using similar methods (e.g. the same price discount, the

same promotion, or same advertising copy). In our study we reveal two ways marketers can use
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network based data (our interactions observations) in practice. As is well documented by authors

such as Novak et al. (1992) and Hill et al. (2006), following observed interactions to or from cus-

tomers who have already adopted a product or service can help identify other potential customers.

Their results show improvements in response rates, compared with methods using observed, tra-

ditional segmentation and targeting bases. While these network-based methods are powerful

tools for eliciting new customers, our graphical representation of the latent space highlights that

there are sometimes interactions among customers who are quite different from one another. We

see this in Figure 5(b). In this figure, we identify five individuals for whom a marketer might have

some specific information (e.g., an existing customer, or a respondent to a promotion). The lines

radiating from these individuals represent observed links in the dataset. We also placed circles of

common radius around these focal individuals.

Network marketing tactics that “follow the links,” would use the lines to determine the next

potential customers to target. While this is useful in reaching new clusters, there are many mar-

keting tactics that have nothing to do with following links or word of mouth, and instead de-

pend more on understanding which customers can be grouped into more homogeneous segments.

Given the interpretation of the latent space as representing similarity, anyone in close proximity

(within the circle) to a focal customer should also be a target. Although most observed contacts

also occur within a cluster, there are certainly interactions among dissimilar individuals as well.

As an example, consider a marketer of trendy casual clothing, targeting a college student who

interacts with two people: a classmate at the same college, who shares similar demographic traits

such as age, education, gender, values; and an older relative with whom there is a closer personal

relationship, but nothing else in common in terms of purchase patterns. While the college student

might have identical observed interaction patterns with his classmate and with the relative, he

shares many more common friends with his classmate than with his relative. Our model places

the student closer on the latent space to his classmate than to his relative, and the relative is closer

to her own friends and others in her social circle. This is useful for marketers to be aware of, be-

cause the classmate and the relative represent quite different marketing prospects. If the marketer

were to identify prospects based on the observed interactions alone, however, he could be target-

ing the relative, and her friends, who are unlikely to behave in the same way as the focal customer

(the student). Targeting these prospects incurs additional costs with little expected return. In ad-
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dition, there are many individuals within the circle who never talk to our focal customer, but still

“travel in the same social circles,” or who might otherwise be exposed to, or susceptible to, similar

marketing activities.

We can compare the use of targeting based on proximity in latent space, with targeting based

on geodesic distance8. In fact, many more customers can be identified for targeting than if one

were to use a geodesic-type distance metric represented by observed interactions. We calculate

that if one were to follow the first degree geodesic distance, on average the marketer would expect

to reach eight customers (rounded up from 7.56) . If this data were available and the marketer also

included in the target set the ”second degree,” or friends of friends, the marketer then expects

to reach on average 97 customers. Drawing a circle of radius equal to 0.1 around the customer,

the marketer may expect to reach, on average, 232 customers9. Since homophily implies that

similar individuals are more likely to interact, then targeting based on latent space means that the

customers identified for targeting are more likely to be similar to the focal customer. The geodesic

distance in some cases could be connections which span much of the space and therefore may lead

to leads that are substantially different than the original customer. For example, in Figure 5(b), the

customer labelled ”C” has seven interactions, but two of these interactions are to customers who

are at substantially different locations in the latent space. Given the desire for marketers to find

customers similar to the focal customer, we assert that it is better to target those customers close

to the labeled customers in the network. The latent space model presents an opportunity to refine

these targeting methods, and using the Dirichlet process to model the latent space makes the

approach computationally feasible for marketing data.

Extracting information from limited data Another advantage of using our probability model-

ing approach is that the interpretation of the posterior latent space is only loosely dependent on

the kind of data that one uses to estimate it. Of course, larger, richer datasets, collected over

longer periods of time, might lead to better posterior distributions, but the data itself could really

be anything, as long as the underlying data-generating process is dyad-specific, and depends on

8A third perspective is that perhaps one should first follow connections within the clusters, then the similar cus-
tomers, and then follow the geodesic links outside of some cluster

9Of course, this depends on the size of the circle, but since customers in the same cluster occupy identical coordi-
nates, even a circle of minimal radius gives us the result that more customers are identified for targeting, on average,
than the first-degree geodesic.
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similarities in a monotonic way (events are more likely if latent distances are small). The data

that is available could be limited in terms of time (a censored dataset), or by the fact that ob-

served cell phone interactions are only one of many possible means of communication. Interac-

tions occur among customers at heterogeneous rates, and since it is not practical for marketers

to wait extended amounts of time to see if interactions will occur among customers, it may be

that some interactions that exist among customers occur at such a rate that they may not be ob-

served in a small observation window. One might be tempted to treat the addition or subtraction

of observed interactions as evidence of nonstationarity. The Bayesian approach to data analysis

makes it straightforward to update our estimates of the latent space as new data becomes avail-

able, even when the space itself is stationary. Therefore, what Kossinets and Watts (2006) refer

to as an ”evolving social network” may, in effect, be an artifact of the censoring of the data. All

the observed data does is provide some clues from which the true underlying similarities must be

inferred.

Related to censoring, one of the concerns about using data like phone call records is that they

do not necessarily represent the universe of interactions among the population. Unless customers

reveal all of the people with whom they ever interact with, observed data cannot be an authori-

tative document of the underlying social network. There may be other modes of communication,

such as email or face-to-face contact. For example, Ansari et al. (2008) consider the case of a Swiss

music sharing website, where the connection between users could be described alternatively as

“friendship,” “communication,” or “download.” So what value does using only a network of cell

phone calls have, if it is an incomplete representation of all interactions? We can think of any

“true” observed interaction network as a population of subnetworks, and each observed network

(e.g., the cell phone data), as a single draw from that population (Gelman 2007). We then treat

that observed network as a single data point, and use it to update our beliefs about the structure

of the latent space. If we had observed another mode of communication first, we might get a dif-

ferent posterior latent space but, in any event, the posterior of the latent space after observing one

network becomes the prior before observing the next.

Focus on Diffusion and WOM We see two key contributions of the latent space useful to mar-

keters managing the diffusion of innovation of information through customer networks. The first
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involves the concept of ”Word of Mouth” (e.g. Arndt 1967). While contagion could occur via

non-explicit advocacy (e.g. fashion can be seen by people that one does not interact with), explicit

communication is well regarded as an important source of information for customers. WOM is at

the heart of models of information diffusion in networks (e.g. Goldenberg et al. 2001). As testi-

mony to the importance of consumer reviews, there are many services and organizations focused

on collecting and presenting such information on just about every product or service. Of key

interest in the WOM literature is how the network structure affects diffusion patterns. The con-

tribution of our work is in considering that WOM may work via some geodesic distance versus

distance measured in latent space. From relations data, only the geodesic distance can be studied,

but there is likely considerable value to considering distance in latent space as a channel for WOM.

The second area where the latent space model could be useful in practice is in identifying

influential customers. The concept of a market maven, or opinion leader (Katz and Lazarsfeld

1955; Feick and Price 1987; Iyengar et al. 2008; Kratzer and Lettl 2009) has frequently been stud-

ied in the context of diffusion research. However, recent research challenges the notion that such

influentials are the primary reason for ”global cascading influence” (Watts and Dodds 2007), i.e.

the contagious diffusion of innovation or information throughout an entire network. These in-

sights suggests that it is vital for marketers to understand how influence can occur among all

customers, and that there is more to WOM marketing than focusing attention on just influentials.

Observations from practice certainly seem to support this, from the popularity of services such

as BzzAgent, and Procter & Gamble’s Vocalpoint, which are not selective about recruiting only

”opinion leaders,” but rather would prefer more people in their network.

Further research opportunities The sociological theory of homophily, coupled with the latent

space framework, yields a stochastic representation of the relative latent characteristics underlying

interactions data. The latent characteristics are represented on a latent space, and we propose a

Bayesian nonparametric for the latent space using Dirichlet processes. Latent spaces are well

known in social network analysis, and Dirichlet processes and probability models are known in

marketing. However, due to the computational obstacle involved in estimating larger networks,

the concepts have not yet fully integrated across disciplines. Our research lowers this obstacle,

and makes probability modeling more accessible to marketing researchers who possess data on
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customer interactions. This approach maintains the properties of interdependence, heterogeneity

and interpretability, a goal that is harder to accomplish with extant classical or machine learning

approaches.

We readily admit that our interpretation of the latent space, and our suggestions on how to

use it, depend on an acceptance of two premises. First, we need to believe that similarities drive

interactions, and so one can use interactions to infer similarities. We use the volumes of research

of homophily to support this contention, but we have not tried to test this directly. Second, our

recommendation that managers consider using latent distance, rather than observed geodesic dis-

tance, to segment and target customers assumes that similar individuals have correlated purchase

preferences or behavior. This is a premise that could be tested, and we hope that both researchers

and practitioners will undertake that challenge. Unfortunately, the data that we have at our dis-

posal does not allow us to follow that path, but we would like to describe briefly how we think

this might work.

The output of the latent space model is a posterior distribution of configurations on a latent

space. Figure 5 is one such configuration. Although the distances among individuals in a sin-

gle configuration do not have a physical interpretation, we can still treat them as distances in a

statistical sense. So we could draw upon the methods of hierarchical spatial modeling to infer a

correlation structure among individuals, similar to those described in Banerjee et al. (2004). An ex-

ample of this kind of treating a non-physical distance as a physical one is Yang and Allenby (2003),

who computed a demographic distance between people based on profiles of personal characteris-

tics. So just as they modeled correlations in preferences as functions of observed geographic and

demographic distance, we propose modeling these correlations as functions of latent distances.

We hypothesize that since observed interactions represent only one possible path for the sharing

of information, it is latent distance, rather than geodesic, demographic or geographic distance,

that would best predict these correlations. In order to conduct a test like this, one would need two

types of data for the same set of people: dyad-level interactions data to infer the latent space, and

individual-level purchase data to see if latent distance explains correlations in purchase behavior.

As more and more business is conducted through mobile communications devices, we anticipate

that data like this will become more available. A corollary to this research stream would be to

incorporate individual-level demographics or covariates into the latent space model, and to better
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understand how that information might complement interactions data in understanding purchase

behavior.

Appendices

A Choosing dimensionality of the latent space

There are a number of approaches one could take to selecting D, and finding a general method

for choosing among different specifications of Bayesian hierarchical models, especially those that

incorporate nonparametric priors, remains an area of active research among statisticians. We be-

lieve that because of the abstract nature of the latent space, there is no “correct” value of D that one

needs to infer from the data. Hoff (2005) notes that one should choose the smallest value of D that

offers a reasonable model fit, erring on the side of parsimony. Adding more dimensions improves

model flexibility, but can also lead to over-fitting. As far as objective measures go, he suggests ex-

amining the log marginal likelihoods (LML) (we use the holdout LML for the Full model), as well

as the posterior predictive checks (PPC) for test statistics that capture important characteristics of

the data (we discuss PPCs in Section 2.2).

In Table 3 we present relative estimated LML of the HMCR and Full models, for different val-

ues of D, from both the calibration and holdout datasets. Our estimates were generated using

cumulant approximations, and adjusting for the discrepancy between posterior and prior sup-

port, using the methods proposed in Lenk (2009). Results are normalized such that the reported

estimate for the HMCR model, with D = 2 is 0, for each of the calibration and holdout datasets,

and then scaled by 1,000 for readability.

calibration holdout
D HMCR Full HMCR Full
2 0 -40 0 -337
3 221 -310 -378 -690
4 -396 -1,609 -190 -1,792
5 -1,550 -1,130 -3,183 -1,560
6 -4,729 -829 -5,069 -1,573

Table 3: Estimates of log marginal likelihoods (LML) of models, by dimensionality of latent space
and model variant. Estimates are normalized with respect to the D = 2 HCMR model for each
dataset.
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In three of the four cases, D = 2 is preferred, and in the remaining one, D = 3 is preferred.

Also, we found essentially no difference among values of D in posterior predictive checks. So,

following Hoff’s advice, we use the D = 2 models for subsequent analysis.

B Model specification for China Mobile example

In this appendix, we derive the data likelihood and hyperprior specifications for our Chongqing

Mobile application. Let pij be the probability that a dyad between i and j is open, and let λij

be the rate of contacts between i and j (assuming exponentially-distributed intercontact times), if

the dyad is open. We also define an auxilliary latent Bernoulli variable sij that indicates whether a

dyad is open (sij = 1) or closed (sij = 0). To remain consistent with our general model specification

in the text, we use yij to denote the vector of observed intercontact times, and y∗ij to denote the

count of observed contacts. Also, let T be the duration of the observation period.

The data likelihood is similar to an “exponential never triers” model (Fader et al. 2003). There

are two ways a dyad could be empty (i.e., y∗ = 0): the dyad could be closed (sij = 0), or it

could be open, but the contact rate λij is sufficiently low that there just happened to be no contacts

during the observation period. If we observe any contacts at all, we know the dyad must be open.

Therefore, the data likelihood is

f
(
yij|λij, pij

)
=
(
1− pij

)
I
[
y∗ij = 0

]
+ pijλ

y∗ij
ij exp

(
−λijT

)
(4)

We incorporate dyad-wise unobserved heterogeneity in λij by using a gamma distribution with

dyad-specific shape parameter rij and dyad-specific scale parameter aij

f
(
λij|rij, aij

)
=

a
rij
ij

Γ
(
rij
)λ

rij−1
ij exp

(
−aijλij

)
(5)

After integrating over λij,

f
(
yij|pij, rij, aij

)
=
(
1− pij

)
I
[
y∗ij = 0

]
+ pij

Γ
(

rij + y∗ij
)

Γ
(
rij
) (

aij

aij + T

)rij
(

1
aij + T

)y∗ij
(6)

We will also use the reparameterizations rij = µ2
ij/v and aij = µij/v, where µij and v are the dyad-
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specific mean and common variance of the gamma distribution, respectively. Linking back to our

general model formulation in Section 1.1, φij =
[
pij, µij, v

]
. The definitions of these parameters are

described in Section 2.1.

Hyperprior specifics

For the choice of H0, we decompose each latent coordinate into two components: the distance

from the origin (a “radius”) and the location on the surface of a hypersphere that has that radius.

We then choose a H0 that factors into a prior on these two components. In other words, we think

of the elements of zi in terms of their spherical, rather than Cartesian, coordinates. If the Cartesian

coordinates of zi (herein suppressing the i subscript) are z1, z2, ..., zD , then its polar coordinates are

(ϑ1, ..., ϑD−1, ρ), where ρ is a distance from the origin and the ϑ′s are angles, expressed in radians,

such that 0 < ϑ1 < 2π, and 0 < ϑj < π for 2 ≤ j ≤ D− 1. We can then factor H0 as

g0 (z) = f (ϑ1, ..., ϑD−1, ρ) = f (ϑ1, ..., ϑD−1|ρ) f (ρ) (7)

Conditioning on ρ, we want to place a distribution on ϑ = (ϑ1, ..., ϑD−1), such that there is a

uniform probability of being at any location on a D−dimensional hypersphere with radius ρ. This

is achieved by letting f (ϑ|ρ) be a multivariate power sine distribution (Johnson 1987; Nachtsheim

and Johnson 1988), where

f (ϑ) ∝
D−1

∏
j=1

sinj−1 ϑj (8)

Thus, ϑ1 has a uniform distribution, f (ϑ2) ∝ sin (ϑ2) , f (ϑ3) ∝ sin2 (ϑ3), and so forth. Johnson

(1987, ch 7) proposes some algorithms for simulating from a multivariate power sine distribution.

For f (ρ), recall that ρ is defined on the positive real line, with E (ρ) = 1. We also need the

ability to trade off tail weight (probability of draws of z being far away from the origin) against

kurtosis (likelihood of draws of z being clustered around the origin). Beginning with the gen-

eralized Laplace distribution (Kotz et al. 2001, sec. 4.4.2), we center, and then fold, at zero, to

get

f (ρ) =
[

κ
1
κ σΓ

(
1 +

1
κ

)]−1

exp
[
−
( ρ

κσ

)κ]
, ρ > 0 (9)
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where

E (ρ) = κ
1
κ σ

Γ
( 2

κ

)
Γ
( 1

κ

) (10)

Setting E (ρ) = 1,

σ =
Γ
( 1

κ

)
Γ
( 2

κ

)
κ

1
κ

(11)

so the density of ρ, constrained so E (ρ) = 1, is

f (ρ|κ) =
κΓ
( 2

κ

)
Γ
( 1

κ

)2 exp

[
−
(

ρΓ
( 2

κ

)
Γ
( 1

κ

) )κ]
(12)

The parameter κ controls the tradeoff between tail weight and kurtosis. If κ = 1, f (ρ|κ) reduces

to an exponential distribution, and if κ = 2, f (ρ|κ) is a half-normal distribution. As κ becomes

large, the mode of ρ becomes less and less peaked, and f (ρ|κ) converges to a uniform(0, 2) distri-

bution. The “correct” value for κ is inferred through the estimation process, letting the data drive

the tradeoff between placing a mode on ρ and bounding the locations such that ρ ≤ 2. Note that

this prior using the multivariate power sine distribution and our restricted half-Laplace distribu-

tion adds only one additional parameter to the model, compared to an independent multivariate

normal hyperprior, which adds many more.

It turns out that f (ρ|κ) is a special case of a power gamma distribution. To see this, perform a

change of variables so v = ρκ, ρ = v
1
k and dρ = 1

κ v
1
κ−1. Then,

f (v|κ) =
Γ
( 2

κ

)
Γ
( 1

κ

)v
1
κ−1 exp

[
−
(

Γ
( 2

κ

)
Γ
( 1

κ

))κ

v

]
(13)

which is a gamma distribution with shape parameter 1
κ and rate parameter

(
Γ( 2

κ )
Γ( 1

κ )

)κ

. This result

makes it easy to simulate values of ρ; just draw v from this gamma distribution, and transform

ρ = v
1
κ . After simulating values of ϑ and ρ, it is often convenient to convert zij back to its Cartesian

coordinates. The elements of z can be expressed as:

z1 = ρ cos ϑ1 zj = ρ cos ϑj

j−1

∏
l=1

sin ϑl , for 2 ≤ j < D zD = ρ
D−1

∏
l=1

sin ϑl (14)
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(Johnson 1987, ch 7).

We selected the other hyperpriors to balance weak information content against numerical sta-

bility. Following Escobar and West (1995), we place a weakly informative gamma prior on α, with

mean of 4 and variance of 80. Since β and v are all population-level parameters that appear only in

the definitions of φij, we can combine them all into a single parameter vector Ξ (log-transforming

parameters when necessary), with a multivariate normal prior Ξ0, centered at the origin, with

covariance matrix A = 10I. Note that if κ = 2, then H0 is a multivariate normal distribution.

Since we were concerned about a mode of H0 introducing too much prior information, we used a

gamma prior with a mean of 3 and a variance of about 5. Experimenting with alternative values

led to no substantive effect.

C Estimation algorithm

In this section we present the complete MCMC sampling algorithm for the general latent space

model. The parameters to be estimated are α, κ, β, and zi, i = 1...N. Recall that since H is discrete,

at each iteration there are only k possible values that any zi can take.

C.1 Simulate α|·

Let rα and aα be the parameters of the gamma hyperprior on α. Using the algorithm proposed by

Escobar and West (1995), do the following.

1. Starting with the current value of α, draw a temporary variable η from a Beta (α + 1, N)

distribution.

2. Draw τ from a Bernoulli trial with probability rα+k−1
N(a−log(η))+rα+k−1

3. If τ = 0, draw α from a gamma (rα + k− 1, aα − log (η)) distribution. If τ = 1, draw α from

a gamma (rα + 1, aα − log (η)) distribution.

C.2 Simulate β, v|·

To simplify notation, we combine β and v into a single parameter vector Ξ. The conditional pos-

terior distribution of Ξ depends on the data likelihood and the prior. The data likelihood we care
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about here is the marginal likelihood in Section 1.2, after integrating over θi, multiplied across all

dyads (using our assumption of conditional independence across dyads). Note that φij is a function

of Ξ, zi and zj. The prior on Ξ is a multivariate normal with mean Ξ0 and covariance A. Thus, the

log conditional posterior (without normalizing constant) for Ξ is

log f (Ξ|·) =
N

∑
i=1

N

∑
j=i+1

log f (yij|Ξ, zi, zj)−
1
2
(Ξ− Ξ0)

′ A−1 (Ξ− Ξ0) (15)

We simulate Ξ using a random walk Metropolis sampler (Rossi et al. 2005, ch. 3).

C.3 Simulate κ|·

We place a gamma (rκ, aκ) prior on κ. Let ρ1:k be the radii of the k distinct values of z. Combining

the likelihood of the radii in 12 with the prior, the conditional posterior distribution for κ is

f (κ|·) ∝

[
κΓ
( 2

κ

)
Γ
( 1

κ

)2

]k

exp

[
−

k

∑
j=1

(
ρjΓ
( 2

κ

)
Γ
( 1

κ

) )κ

− aκκ

]
κrκ−1 (16)

There are many different ways to simulate from this univariate density. We chose to use sampling-

importance resampling (SIR) (Smith and Gelfand 1992), but one might choose Metropolis, grid-

based inverse CDF, or slice sampling methods instead.

C.4 Simulate z|·

This step, in which we draw each of the zi vectors from the mixture of Dirichlet processes (MDP),

is an adaptation Algorithm 8 in Neal (2000). We direct the reader there for an explanation of

how and why the algorithm works, but we present a summary here, using our terminology and

notation. The distribution of the zi’s is discrete, so at each iteration of the estimation algorithm,

there are only k possible values that zi can take. Let z∗ =
(
z∗1 . . . z∗k

)
define these k distinct latent

coordinates, let z∗−i be the distinct mass points when not including person i, and let k−i be the

number of distinct mass points in z∗−i when not including person i (z∗ and z∗−i, and k and k−i,will

differ only if i is a “singleton” who is the only person located at zi). At the current state of the

sampler, each person is “assigned” to one of the z∗j , in the sense that there is exactly one j for

which zi = z∗j . Let Nj be the number of people assigned to z∗j , and let N−i,j be the number of
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people assigned to z∗j , when not counting person i.

The algorithm involves choosing some number of proposal values (determined by a prespec-

ified control parameter m) for each zi. Define fi (yi|zi, z−i) as the likelihood contribution for all

dyads that involve person i, given the current values of zi assigned to i, and of z−i assigned to

everyone else. There are two cases that we need to consider. The first is if there is some other

person i′ for which zi = zi′ (i.e., i is not a singleton). In this case, draw m proposal draws from H0,

call them z∗k+1, ..., z∗k+m, and let z̃ =
(
z∗1 , ..., z∗k , z∗k+1, ..., z∗k+m

)
. Intuitively, z̃ is the union of the set of

all latent vectors that are already assigned to someone in the population, with the set of m new

proposal vectors. Next, compute fi
(
yi|z̃j, z−i

)
, for all j = 1 . . . (k + m). These are the likelihood

contributions for all dyads involving i, if zi were set to each of the values in z̃. These “proposal

likelihoods” form a set of weights that we use to draw a new zi for each i. Thus, draw a new value

for zi from z̃ using the following probabilities:

Pr
(
zi = z̃j

)
=

{
ω

n−i,j
N−1+α Fi

(
yi|z̃j, z−i

)
for 1 ≤ j ≤ k

ω (α/m)
N−1+α Fi

(
yi|z̃j, z−i

)
for k + 1 ≤ j ≤ k + m

where ω is a normalizing constant (and does not need to be known for the purposes of random

sampling). Thus, zi can take on the value of any of the existing elements of z∗, or one of the m new

candidate values. Which value is selected depends on three values: the likelihood of the data for

each z̃j (values of z̃j that yield a high likelihood are more likely to be chosen), the number of other

people who also are assigned to z̃j (coordinates where the prior distribution has more mass are

more likely to be chosen), and the DP control parameter α, which governs how close the DP prior

on z is to H0. If i is a singleton, then there are only k−i = k− 1 elements in z∗. In this case, draw

m + 1 candidate values from H0, re-index them so z̃ =
({

z∗−i
}

, z∗k , ..., z∗k+m

)
, and select according

to the probabilities

Pr
(
zi = z̃j

)
=

{
ω

N−i,j
N−1+α Fi

(
yi|z̃j, z−i

)
for 1 ≤ j ≤ k− 1

ω (α/m)
N−1+α Fi

(
yi|z̃j, z−i

)
for k ≤ j ≤ k + m
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